Please wait a minute...
金属学报  2008, Vol. 44 Issue (9): 1076-1080     
  论文 本期目录 | 过刊浏览 |
Ti-50.8Ni-0.3Cr超弹性合金的相变与形变特性
贺志荣
陕西理工学院材料科学与工程学院
Transformation and deformation characteristics of Ti-50.8Ni-0.3Cr superelastic alloy
Zhi-rong HE
陕西理工学院材料科学与工程学院
引用本文:

贺志荣 . Ti-50.8Ni-0.3Cr超弹性合金的相变与形变特性[J]. 金属学报, 2008, 44(9): 1076-1080 .
. Transformation and deformation characteristics of Ti-50.8Ni-0.3Cr superelastic alloy[J]. Acta Metall Sin, 2008, 44(9): 1076-1080 .

全文: PDF(775 KB)  
摘要: 用示差扫描量热仪、X射线衍射仪、拉伸实验和循环实验研究了退火温度、形变温度和应力--应变循环对 Ti-50.8Ni-0.3Cr超弹性(SE)合金丝和弹簧相变、形变及应力循环特性的影响. 350-600 ℃退火态Ti--50.8Ni--0.3Cr合金 室温下呈SE特性, 室温组织由母相B2和TiNi3组成. 退火温度显著影响合金的相变类型, 随退火温度升高, 合金的马 氏体相变温度升高, R相变温度先升高后降低, 应力诱发马氏体应力先降低后升高; 随形变温度的升高, SE弹簧的应力 诱发马氏体切应力增加; 随应力循环次数增加, SE弹簧的应变恢复率先快速衰减后趋于稳定. 预循环训练可增加弹簧SE 特性的稳定性. 要使该合金弹簧具有良好的SE特性, 退火温度应为400-550 ℃, 使用温度应在室温以上.
关键词 Ti-50.8Ni-0.3Cr合金超弹性合金形状记忆    
Abstract:Effects of annealing and deforming temperatures, and the stress-strain cycle on the transformation, deformation and stress cycling characteristics of Ti-50.8Ni-0.3Cr superelastic (SE) alloy wires and coil springs were investigated with differential scanning calorimetry, X-ray diffraction, tensile test, and cycling test. The 350—600 ℃ annealing Ti-50.8Ni-0.3Cr alloy shows SE property at the room temperature, and the microstructure at the room temperature consists of parent phase. The annealing temperatures influence remarkably transformation type of the alloy. With increasing the annealing temperature the martensitic (M) transformation temperature increases, the R transformation temperature increases firstly then decreases, and the stress-induced M stress decreases firstly then increases. With increasing the deforming temperature the stress-induced M critical shear stress of the SE spring increases. The decline of recovery ratio is quick at the beginning of the stress-strain cycle, and the ratio is slow with the increasing of cycle number. The prior cyclic training can enhance the SE stability of the alloy spring. To obtain stable SE property for the alloy spring, the annealing temperature should be 400—550 ℃, and the using temperature should be over room temperature.
Key wordsTi-50.8Ni-0.3Cr alloy    superelastic alloy    shape memory alloy    transformation    deformation
收稿日期: 2007-11-23     
ZTFLH:  TG113.25  
[1]He Z R,Wang F,Zhou J E.Heat Treat Met,2006;31(9): 18 (贺志荣,王芳,周敬恩.金属热处理,2006;31(9):18)
[2]He Z R,Zhang Y H,Wang Y S,Zhou J E.Acta Metall Sin,2004;40:46 (贺志荣,张永宏,王永善,周敬恩.金属学报,2004;40:46)
[3]He Z R.Mater Rev,2005;19(4):50 (贺志荣.材料导报,2005;19(4):50)
[4]Hosoda H,Wakashima K,Miyazaki S,Inoue K.Mater Res Soc Symp Proc,2005;842:353
[5]Choi M S,Ogawa J,Fukuda T,Kakeshita T.Mater Sci Eng,2006;A438-440:527
[6]He Z R,Wang F.Acta Metall Sin,2008;44:23 (贺志荣,王芳.金属学报,2008;44:23)
[7]Kishi Y,Yajima Z,Shimizu K,Morii K.J Phys IV,2001; 11(8):101
[8]Hosoda H,Hanada S,Inoue K,Fukui T,Mishima Y, Suzuki T.Intermetallics,1998;6:291
[9]Kinoshita K,Matsumoto E,Shibata T.Trans Jpn Soc Mech Eng,2004;70(689)A:43 (木下胜之,松本英二,柴田俊忍.日本机械学会论文集,2004;70(689)A:43)
[10]He Z R,Wang F,Wang Y S,Xia P J,Yang B.Acta Metall Sin,2007;43:1293 (贺志荣,王芳,王永善,夏鹏举,饧波.金属学报,2007;43:1293)
[11]He Z R,Zhou J E,Miyazaki S.Acta Metall Sin,2003;39: 617 (贺志荣,周敬恩,宫崎修一.金属学报,2003;39:617)
[12]Miyazaki S,Otsuka K.Metall Trans,1986;17A:53
[13]Semba H,Okabe N,Yamaji T,Okita K,Yamauchi K. Mater Trans,2006;47:772
[14]Tan G,Liu Y,Sittner P,Saunders M.Scr Mater,2004; 50:193
[15]Miyazaki S,Imai T,Igo Y.Metall Trans,1986;17A:115
[16]Gong J M,Tobushi H.J Funct Mater,2002;33:391 (巩建鸣,户伏寿昭.功能材料,2002;33:391)
[1] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[2] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[3] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[4] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-NbTi原位复合材料的Lüders带型变形和载荷转移行为[J]. 金属学报, 2021, 57(7): 921-927.
[5] 叶俊杰, 贺志荣, 张坤刚, 杜雨青. 时效对Ti-50.8Ni-0.1Zr形状记忆合金显微组织、拉伸性能和记忆行为的影响[J]. 金属学报, 2021, 57(6): 717-724.
[6] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[7] 肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.
[8] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[9] 郑晓航, 宁睿, 段佳彤, 蔡伟. Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为[J]. 金属学报, 2020, 56(12): 1690-1696.
[10] 崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展[J]. 金属学报, 2019, 55(1): 45-58.
[11] 贺志荣, 吴佩泽, 刘康凯, 冯辉, 杜雨青, 冀荣耀. 激冷Ti-47Ni合金薄带的组织、相变和形状记忆行为[J]. 金属学报, 2018, 54(8): 1157-1164.
[12] 赵燕春, 孙浩, 李春玲, 蒋建龙, 毛瑞鹏, 寇生中, 李春燕. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为[J]. 金属学报, 2018, 54(12): 1818-1824.
[13] 余滨杉,王社良,杨涛,樊禹江. 基于遗传算法优化的SMABP神经网络本构模型[J]. 金属学报, 2017, 53(2): 248-256.
[14] 白静,李泽,万震,赵骧. Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的第一性原理研究[J]. 金属学报, 2017, 53(1): 83-89.
[15] 宋鹏程,柳文波,陈磊,张弛,杨志刚. 形状记忆合金Au30Cu25Zn45中热弹性马氏体相变的相场模拟*[J]. 金属学报, 2016, 52(8): 1000-1008.