Please wait a minute...
金属学报  2005, Vol. 41 Issue (9): 897-904     
  论文 本期目录 | 过刊浏览 |
双相不锈钢中表面浮凸的测量与表征
邱 冬 张文征
清华大学材料科学与工程系;北京 100084
MEASUREMENT AND CHARACTERIZATION OF THE SURFACE RELIEF IN A DUPLEX STAINLESS STEEL
QIU Dong; ZHANG Wenzheng
Department of Materials Science and Engineering; Tsinghua University;Beijing 100084
引用本文:

邱冬; 张文征 . 双相不锈钢中表面浮凸的测量与表征[J]. 金属学报, 2005, 41(9): 897-904 .
, . MEASUREMENT AND CHARACTERIZATION OF THE SURFACE RELIEF IN A DUPLEX STAINLESS STEEL[J]. Acta Metall Sin, 2005, 41(9): 897-904 .

全文: PDF(517 KB)  
摘要: 在马氏体相变表面浮凸测量的传统手段基础上,发展了双面金相位移合成法; 综合运用原子力显微术(AFM)和背散射电子衍射技术(EBSD), 对双相不锈钢中铁素体/奥氏体相变伴随的表面浮凸进行了系统的测量,包括奥氏体片条与铁素体基体的位向关系、惯习面取向以及产生浮凸的位移矢量和最大浮凸角,并用O线模型进行了初步的解释.
关键词 双相不锈钢相变表面浮凸     
Abstract:The surface relief, especially the double-tilt surface relief, associated with diffusion controlled phase transformations in some alloys, has not been well understood so far. A bottleneck is the absence of a strict and systematic measurement method. The present paper introduced a new measurement method based on the EBSD and AFM technology. Various crystallographic features were quantitatively determined by this method, including the orientation relationship (OR),the orientation of the habit plane (IO), the displacement vector inducing the surface relief and the maximum relief angle. The OR and IO were consistently in agreement with the calculated results from the O-line method. However understanding of the displacement vector and unusual large relief angle needs further study.
Key wordsduplex stainless steel    transformation    surface relief
收稿日期: 2005-02-20     
ZTFLH:  O71  
[1] Bain E C. Trans AIME, 1924; 70: 25
[2] Wechsler M S, Lieberman D S, Read T A. Trans AIME, 1953; 197: 1503
[3] Bowles J S, Mackenzie J K. Acta Metall, 1954; 2: 129, 138, 224
[4] Aaronson H I, Laird C, Kinsman K R. Phase Transformations. Metals Park, OH: ASM, 1970: 59
[5] Ko T, Cottrell S A. J Iron Steel Inst, 1952; 172: 307
[6] Tsuya K. J Mech Lab, 1956; 2: 20
[7] Speich G R. In: Aaronson H I ed., Decomposition of Austenite by Diffusional Process, New York: Interscience, 1962: 361
[8] Garwood R D. Special Report No.93, London: Iron and Steel Institute, 1965: 90
[9] Flewitt P E J, Towner J M. J Inst Met, 1967; 95: 273
[10] Smith R, Bowles J S. Acta Metall, 1960; 8: 405
[11] Pawel T E, Cathcart J V, Campbell J J. Acta Metall, 1962; 10: 149
[12] Hall M G, Aaronson H I, Lorimer G W. Scr Metall, 1975; 9: 533
[13] Ohmori Y, Nakai K, Ohtsubo H, Isshiki Y. ISIJ Int, 1995; 35: 969
[14] Lee H J, Aaronson H I. Acta Metall, 1988; 36: 787
[15] Guo H, Enomoto M. Acta Mater, 2002; 50: 929
[16] Zhang W Z. Philos Mag, 1998; 78A: 913
[17] Zhang W Z, Weatherly G C. Acta Mater, 1998; 46: 1837
[18] Efsic E J, Wayman C M. Trans TMS-AIME, 1967; 239: 873
[19] Muddle B C, Krauklis P, Bowles J S. Acta Metall, 1976; 24: 371
[20] Dunne D P, Wayman C M. Acta Metall, 1970; 18: 981
[21] Yamamoto M, Pujuisawa T, Saburi T. Ultramicroscopy, 1992; 42: 1422
[22] Yamamoto M, Pujuisawa T, Saburi T, Kussao K. Surf Sci, 1992; 266: 289
[23] Yamamoto M, Nishikawa K, Noda Y, Saburi T, Hayakawa M, Oka M, Kurumi-zawa T. J Vac Sci Technol, 1994; 12B: 1813
[24] Yang Z G, Fang H S, Wang J J, Li C M, Zheng Y K. Phys Rev, 1995; 52B: 7879
[25] Waitz T, Karnthaler H P. Acta Mater, 1997; 45: 837
[26] Deville S, Guenin G, Chevalier K. Acta Mater, 2004; 52: 5697
[27] Guo H, Okuda K, Enomoto M. Metall Mater Trans, 2000; 31A: 599
[28] Ameyama K, Weatherly G C, Aust K T. Acta Metall Mater, 1992; 40: 1835
[29] Luo Y H. Master's Dissertation, South China University of Technology, Guangzhou, 1992 (罗英辉.华南理工大学硕士学位论文,广州, 1992)
[30] Zhang W Z, Purdy G R. Philos Mag, 1993; 68A: 291
[31] Qiu D, Zhang W Z. Philos Mag, 2003; 83: 3093
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[6] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[7] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[8] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[9] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[10] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[11] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[12] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[13] 李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.
[14] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.
[15] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.