Please wait a minute...
金属学报  2004, Vol. 40 Issue (3): 241-244     
  论文 本期目录 | 过刊浏览 |
低氢含量工业纯钛循环变形的微观结构II.
陈常强;李守新;李广义;艾素华
Shenyang National Laboratory for Materials Science;中国科学院金属研究所沈阳材料科学国家(联合)实验室
Microstructure of Cyclically Deformed Titanium with Low Hydrogen Concentration II.
CHEN Changqiang; LI Shouxin; LI Guangyi; AI Suhua
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences
引用本文:

陈常强; 李守新; 李广义; 艾素华 . 低氢含量工业纯钛循环变形的微观结构II.[J]. 金属学报, 2004, 40(3): 241-244 .
, , , . Microstructure of Cyclically Deformed Titanium with Low Hydrogen Concentration II.[J]. Acta Metall Sin, 2004, 40(3): 241-244 .

全文: PDF(8621 KB)  
摘要: 对均匀弥散分布着氢化物的低氢含量的工业纯钛进行循环疲劳试验.发现滑移带能够穿过氢化物的共格界面, 使氢化物发生塑性剪切变形.由于位错周围的氢气团能够在位错的拖拽下, 随同位错一起运动.所以位错的运动能够促使氢原子沿滑移带扩散.滑移带穿过氢化物的过程伴随有氢原子沿滑移带的扩散, 材料中原有的氢化物在滑移带的冲击下, 由于局部的氢原子浓度太低, 而重新溶解.同时位错也会带着氢气团在氢化物处塞集, 引起氢原子的局部富集; 并导致应变诱发氢化物的产生.研究表明这个可逆相变过程由位错运动诱发的氢原子扩散所控制.
关键词 氢化物循环形变位错    
Abstract:Cyclic testes were conducted on commercially pure titanium with low hydrogen concentration, in which  hydrides dispersed homogenously. It was found that dislocations can transfer through the coherent interface and result in the plastic shear deformation of  hydrides. Because hydrogen atmosphere around dislocations can be dragged and move along with the dislocations, so hydrogen atoms diffuse preferentially along the slip bands. The process of slip band transferring through the hydrides accompanies the diffusion of hydrogen atoms along slip bands.The preexisting hydride may dissolve under the impingement of slip bands, due to the decrease of the localized hydrogen concentration. Also the dislocations with the hydrogen atmosphere may pile up at the hydride interface, and hence result in the increase of the hydrogen concentration, then strain induced hydrides would appear. The reversible transformation is considered to be diffusion--controlled and influenced by dislocations movement.
Key wordstitanium hydride    cyclic straining
收稿日期: 2003-04-07     
ZTFLH:  TG113.25  
[1] Numakura H, Koiwa M. Acta Metall, 1984: 32:1799
[2] Woo O T, Weatherly G C, Coleman C E, Gilbert R W. Acta Metall, 1985: 33:1897
[3] Bourret A, Lasalmonie A, Naka S. Scr Metall, 1986; 20:861
[4] Irving P E, Beevers C J. Metall Trans, 1971: 2A: 613
[5] Teter D F, Robertson I M, Birnbaum, H K. Acta Mater, 2001; 49:4313
[6] Shih D S, Robertson I M, Birnbaum H K. Acta Metall, 1988: 32:111
[7] Paton N E, Williams J C. In: Bernstein IM, Tompson A W, eds, Hydrogen in Metals, ASTM, 1974: 409
[8] Boyd J D. In: Jaffee R, Promisel N E eds. The Science, Technology and Application of Titanium, Oxford: Pergoman Press, 1970:545
[9] Bourcier R J, Koss D A. Acta Metall, 1984: 32:2091
[10] Grange M, Besson J, Andrieu E. Metall Mater Trans, 2000; 31:679
[11] Puls M P. Metall Trans, 1991; 22A: 2327
[12] Bai J B, Prioul C, Francois D. Metall Mater Trans, 1994; 25A: 1185
[13] Chen C Q, Li S X, Lu K. Acta Mater, 2003; 51:931
[14] Chen C Q, Li S X, Lu K. Acta Metall Sin, 2003; 39:120(陈常强,李守新,卢柯.金属学报,2003;39:120)
[15] Chateau J P, Delafosse D, Magnin T. Acta Mater, 2002; 50:1507
[16] Cottrell A H, Bilby B A. Proc Phys Soc, 1949; 62:49
[17] Cochardt A W; Schoeck G; Wiedersich H. Acta Metall, 1955; 3:533
[18] Takeuchi S, Argon A S. Philos Mag, 1979; 40:65
[19] Feng Y Q, Wang C Y. J Alloy Compd, 2000; 312:219
[20] Philips I I, Poole P, Shreir L L. Corros Sci, 1974; 14:533
[21] Louthan Jr M R, Caskey Jr G R, Conovan J A, Rawl Jr D E. Mater Sci Eng, 1972: 10:357
[22] Donovan J A. Metall Trans, 1976; 7:1677
[23] Vitt R S, Ono K. Metall Trans, 1971; 2:608
[24] Feaugus X, Clavel M. Acta Mater, 1997; 45:2685
[25] Williams D A. J Inst Met, 1962; 91:147
[1] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[2] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[4] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[5] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[6] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[8] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[9] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[10] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[11] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[12] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[13] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[14] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[15] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.