Please wait a minute...
金属学报  2025, Vol. 61 Issue (7): 998-1010    DOI: 10.11900/0412.1961.2025.00028
  研究论文 本期目录 | 过刊浏览 |
CaF2-TiO2 焊剂作用下EH36船板钢气电立焊焊缝金属组织优化及力学性能调控
谢旭1,2, 万一博1, 钟明1, 邹晓东3, 王聪1()
1 东北大学 冶金学院 沈阳 110819
2 华北水利水电大学 材料学院 郑州 450045
3 广东省科学院中乌焊接研究所 广州 510650
Optimizing Microstructures and Mechanical Properties of Electro-Gas Welded Metals for EH36 Shipbuilding Steel Treated by CaF2-TiO2 Fluxes
XIE Xu1,2, WAN Yibo1, ZHONG Ming1, ZOU Xiaodong3, WANG Cong1()
1 School of Metallurgy, Northeastern University, Shenyang 110819, China
2 School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
3 China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangzhou 510650, China
引用本文:

谢旭, 万一博, 钟明, 邹晓东, 王聪. CaF2-TiO2 焊剂作用下EH36船板钢气电立焊焊缝金属组织优化及力学性能调控[J]. 金属学报, 2025, 61(7): 998-1010.
Xu XIE, Yibo WAN, Ming ZHONG, Xiaodong ZOU, Cong WANG. Optimizing Microstructures and Mechanical Properties of Electro-Gas Welded Metals for EH36 Shipbuilding Steel Treated by CaF2-TiO2 Fluxes[J]. Acta Metall Sin, 2025, 61(7): 998-1010.

全文: PDF(3732 KB)   HTML
摘要: 

针对大线能量气电立焊过程中因复杂冶金反应所引起的焊缝金属成分、组织及性能难以量化和调控的问题,本工作设计了5种不同TiO2含量的CaF2-TiO2熔炼焊剂应用于匹配药芯焊丝中,并对30 mm厚EH36船板钢进行气电立焊对接实验,重点研究了TiO2含量对焊缝金属成分、组织、夹杂物和力学性能的影响规律。结果表明,随着焊剂中TiO2含量增加,焊缝金属的硬度降低,冲击韧性提高。高温电弧作用使得更多的TiO2分解进入熔池,从而显著增加熔池中O和Ti含量;同时,更多的Si和Mn元素通过熔渣-熔池界面流失进入熔渣中。焊缝金属中合金元素含量减少使得对应的连续冷却转变曲线向左上方移动,引起铁素体相变温度区间从755~578 ℃提升到780~595 ℃;同时,O和Ti含量增加使得促进针状铁素体形核的夹杂物的数量密度从4289 mm-2增加到5327 mm-2。多重因素的协同效应促使焊缝金属中针状铁素体的体积分数从9.3%增加到62.1%。焊缝金属组织形貌由平行状板条贝氏体向交织状针状铁素体转变,晶粒尺寸从(53 ± 14) μm细化到(10 ± 5) μm,大角度晶界的体积分数从41.8%提升到59.2%,有利于焊缝金属冲击韧性的改善。

关键词 船板钢大线能量焊接焊缝金属微观组织CaF2-TiO2焊剂    
Abstract

In the shipbuilding industry and coastal engineering, thick EH36 steel plates used in vertical construction generally require joining by high heat input electro-gas welding with matching flux-cored wire to enhance production efficiency and reduce construction time. However, high heat input welding can result in high peak temperatures and slow cooling rates, leading to coarse and deteriorated microstructures in the weld metal, thereby compromising the mechanical properties of the welded joint. Given the challenge of quantifying and controlling the composition, microstructure, and properties of weld metal due to complex metallurgical reactions during high heat input electro-gas welding, five CaF2-TiO2 fluxes were designed, prepared, and incorporated into flux-cored wires to join EH36 shipbuilding steels with a thickness of 30 mm. The effect of TiO2 content on the composition, microstructure, inclusions, and properties of the weld metals was systematically studied. The results indicate that as the TiO2 content in the fluxes increases, the hardness of the weld metal decreases, while impact toughness improves. During welding, the high-temperature arc causes greater decomposition of TiO2, leading to increased O and Ti contents in the molten pool. Simultaneously, more Si and Mn are lost into the slag through the slag-metal interface. The reduction in alloying element content shifts the continuous cooling transformation curve toward the upper left, expanding the temperature range of the ferrite phase transformation from 755-578 oC to 780-595 oC. Increasing the O and Ti contents in the weld metals raises the number density of inclusions from 4289 mm-2 to 5327 mm-2. The synergistic effect of multiple factors promotes an increase in the volume fraction of acicular ferrite from 9.3% to 62.1%. The morphology of key microstructures in the weld metals transitions from parallel lath bainite to interwoven acicular ferrite, refining the grain size from (53 ± 14) μm to (10 ± 5) μm and increasing the volume fraction of high-angle grain boundaries from 41.8% to 59.2%, further enhancing the impact toughness of the weld metals.

Key wordsshipbuilding steel    high heat input welding    weld metal    microstructure    CaF2-TiO2 flux
收稿日期: 2025-01-21     
ZTFLH:  TG111.5  
基金资助:国家自然科学基金项目(W2411047);国家自然科学基金项目(52350610266);国家自然科学基金项目(52474351);国家重点研发计划项目(2023YFB3709900);辽宁省科技创新重大专项项目(2023JH1/11200012);河南省科技攻关项目(242102231030);广东省海洋经济发展专项项目(GDNRC[2024]24);武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室开放课题项目(FMRUlab25-04)
通讯作者: 王 聪,wangc@smm.neu.edu.cn,主要从事焊接冶金研究
作者简介: 谢 旭,男,1993年生,博士
图1  CaF2-TiO2二元相图及黏度[21]

Flux

number

DesignedAnalyzed
TiO2CaF2TiO2CaF2
Flux-1109010.6689.34
Flux-2158517.0482.96
Flux-3208021.0278.98
Flux-4307030.7769.23
Flux-5406040.8959.11
表1  CaF2-TiO2焊剂成分配比 (mass fraction / %)
MaterialCSiMnNiAlPTiSOFe
Base metal0.1850.0041.5200.0440.0010.0090.0010.0070.002Bal.
Flux-cored wire0.0680.3062.5041.2600.7770.0040.0520.0030.002Bal.
表2  EH36船板钢和自制药芯焊丝的化学成分 (mass fraction / %)
WM numberCSiMnNiAlTiMoOFe
WM10.1020.2062.0800.6600.0370.0410.0640.022Bal.
WM20.0900.2052.0300.6340.0330.0440.0700.024Bal.
WM30.0890.2011.8600.6570.0260.0480.0510.025Bal.
WM40.0870.1851.8200.6120.0210.0590.0640.027Bal.
WM50.0860.1651.7900.6030.0210.0630.0590.029Bal.
表3  焊缝金属(WM)的实测化学成分(MA) (mass fraction / %)
WM number

d

%

MN (mass fraction / %)ΔM (mass fraction / %)
OTiMnSiOTiMnSi
WM129.10.0020.0372.2180.2180.0200.004-0.138-0.012
WM228.60.0020.0382.2230.2190.0220.006-0.193-0.014
WM328.20.0020.0382.2280.2210.0230.010-0.368-0.020
WM430.70.0020.0372.2020.2130.0250.022-0.382-0.028
WM531.50.0020.0372.1940.2110.0270.026-0.404-0.046
表4  WM中母材稀释率(d)、典型元素的名义成分(MN)和过渡交换量的变化值(ΔM)
图2  WM中典型夹杂物形貌的SEM像以及相应的EDS元素分析结果
图3  不同WM中夹杂物内Ti、Si和Mn元素的归一化原子百分比
图4  不同WM中不同尺寸夹杂物的数量密度
图5  不同WM的SEM像和夹杂物数量密度及针状铁素体体积分数的变化
WMAverageAverage size of
numbergrain sizemartensite-austenite
constituent
WM153 ± 1412 ± 7
WM249 ± 1110 ± 6
WM331 ± 104 ± 3
WM412 ± 63 ± 2
WM510 ± 53 ± 2
表5  不同WM中微观组织的平均晶粒尺寸 (μm)
图6  不同WM的EBSD分析
图7  焊剂中TiO2含量对WM的Vickers硬度和Charpy冲击韧性的影响
图8  不同WM断口形貌的SEM像
WM numberαTiO2 (mole fraction)ΔG / (J·mol-1)
WM10.102-347767
WM20.121-350996
WM30.137-353342
WM40.167-357084
WM50.198-360302
表6  熔渣中TiO2的活度(αTiO2)和相应的Gibbs自由能变化(ΔG)
图9  不同WM中典型相的体积分数与TiO2含量的关系
图10  TiO2含量诱导WM的连续冷却转变(CCT)图变化
1 Zhang J, Leng J, Wang C. Tuning weld metal mechanical responses via welding flux optimization of TiO2 content: Application into EH36 shipbuilding steel [J]. Metall. Mater. Trans., 2019, 50B: 2083
2 Han M, Zhang X, Ma Q J, et al. The effect of trace elements on the microstructure and properties of coarse grain heat affected zone of EH36 ship steel with super large heat input [J]. Trans. China Weld. Inst., 2024, 45(2): 47
2 韩 美, 张 熹, 马青军 等. 微量元素对超大线能量EH36船板热影响区粗晶区组织和性能的影响 [J]. 焊接学报, 2024, 45(2): 47
3 Shen Y, Leng J, Wang C. On the heterogeneous microstructure development in the welded joint of 12MnNiVR pressure vessel steel subjected to high heat input electrogas welding [J]. J. Mater. Sci. Technol., 2019, 35: 1747
doi: 10.1016/j.jmst.2019.03.035
4 Xie X, Zhao T, Zhao H M, et al. Heterogeneous microstructure-induced mechanical responses in various sub-zones of EH420 shipbuilding steel welded joint under high heat input electro-gas welding [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1427
5 Wang L J, Cai Q W, Yu W, et al. Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel [J]. Acta Metall. Sin., 2010, 46: 687
5 王立军, 蔡庆伍, 余 伟 等. 1500 MPa级低合金超高强钢的微观组织与力学性能 [J]. 金属学报, 2010, 46: 687
doi: 10.3724/SP.J.1037.2009.00855
6 Bhadeshia H K D H. Bainite in Steels: Transformation, Microstructure and Properties [M]. 2nd Ed., London: IOM Communications, 2001: 201
7 Wang C Y, Han S W, Xie F, et al. Influence of solid-state phase transformation and softening effect on welding residual stress of ultra-high strength steel [J]. Acta Metall. Sin., 2023, 59: 1613
doi: 10.11900/0412.1961.2022.00243
7 王重阳, 韩世伟, 谢 峰 等. 固态相变和软化效应对超高强钢焊接残余应力的影响 [J]. 金属学报, 2023, 59: 1613
doi: 10.11900/0412.1961.2022.00243
8 Song F Y, Li Y M, Wang P, et al. Effects of heat input on the microstructure and impact toughness of weld metal processed by a new fluxnovel flux cored wire weld [J]. Acta Metall. Sin., 2016, 52: 890
8 宋峰雨, 李艳梅, 王 平 等. 热输入量对一种新型药芯焊丝熔敷金属组织及冲击韧性的影响 [J]. 金属学报, 2016, 52: 890
doi: 10.11900/0412.1961.2015.00584
9 An T B, Wei J S, Shan J G, et al. Influence of shielding gas composition on microstructure characteristics of 1000 MPa grade deposited metals [J]. Acta Metall. Sin., 2019, 55: 575
doi: 10.11900/0412.1961.2018.00375
9 安同邦, 魏金山, 单际国 等. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响 [J]. 金属学报, 2019, 55: 575
doi: 10.11900/0412.1961.2018.00375
10 Kah P, Martikainen J. Influence of shielding gases in the welding of metals [J]. Int. J. Adv. Manuf. Technol., 2013, 64: 1411
11 Wang C, Zhang J. Fine-tuning weld metal compositions via flux optimization in submerged arc welding: An overview [J]. Acta Metall. Sin., 2021, 57: 1126
11 王 聪, 张 进. 埋弧焊中焊剂对焊缝金属成分调控的研究进展 [J]. 金属学报, 2021, 57: 1126
12 Kou S. Welding Metallurgy [M]. 2nd Ed., New Jersey: Wiley, 2003: 234
13 Tian Y Q, Zhang H J, Chen L S, et al. Effect of alloy elements partitioning behavior on retained austenite and mechanical property in low carbon high strength steel [J]. Acta Metall. Sin., 2014, 50: 531
doi: 10.3724/SP.J.1037.2013.00709
13 田亚强, 张宏军, 陈连生 等. 低碳高强钢合金元素配分行为对残余奥氏体和力学性能的影响 [J]. 金属学报, 2014, 50: 531
doi: 10.3724/SP.J.1037.2013.00709
14 Wang X L, Dong L M, Yang W W, et al. Effect of Mn, Ni, Mo proportion on microstructure and mechanical properties of weld metal of K65 pipeline steel [J]. Acta Metall. Sin., 2016, 52: 649
14 王学林, 董利明, 杨玮玮 等. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响 [J]. 金属学报, 2016, 52: 649
doi: 10.11900/0412.1961.2015.00453
15 Han C, Zhong M, Zuo P, et al. SiO2-bearing fluxes induced evolution of γ columnar grain size [J]. Weld. J., 2024, 103: 308
16 Sampath K. Metallurgical design rules for high-strength steel weld metals [J]. Weld. J., 2022, 101: 123
17 He L, Wang R F, Cheng Y J, et al. Effect of TiO2 and Al2O3 on melting characteristics of CaO-SiO2-CaF2 base welding slag [J]. Trans. China Weld. Inst., 2023, 44(5): 7
17 何 磊, 王任甫, 成应晋 等. TiO2和Al2O3对CaO-SiO2-CaF2基础焊接渣系熔化特性的影响 [J]. 焊接学报, 2023, 44(5): 7
18 Li C N, Lou S Y, Di X J, et al. Effect of TiO2 in the self-shielded flux-cored wire on microstructures and properties of deposited metal [J]. J. Tianjin Univ. (Sci. Technol.), 2023, 56: 1171
18 利成宁, 楼嗣耀, 邸新杰 等. TiO2对自保护药芯焊丝熔敷金属组织与性能的影响 [J]. 天津大学学报(自然科学与工程技术版), 2023, 56: 1171
19 Natalie C A, Olson D L, Blander M. Physical and chemical behavior of welding fluxes [J]. Annu. Rev. Mater. Res., 1986, 16: 389
20 A R. Improvement of microstructure and toughness in high heat input weld [D]. Beijing: Central Iron & Steel Research Institute, 2014
20 阿 荣. 大热输入钢焊缝组织及韧性改善 [D]. 北京: 钢铁研究总院, 2014
21 Mills K C. Slag Atlas [M]. Düsseldorf: Verlag Stahleisen GmbH, 1995: 21
22 Zhang J, Coetsee T, Dong H B, et al. Element transfer behaviors of fused CaF2-TiO2 fluxes in EH36 shipbuilding steel during high heat input submerged arc welding [J]. Metall. Mater. Trans., 2020, 51B: 1953
23 Zong R, Chen J, Wu C S, et al. Influence of shielding gas on undercutting formation in gas metal arc welding [J]. J. Mater. Process. Technol., 2016, 234: 169
24 Chai C S. Slag-metal reactions during flux shielded arc welding [D]. Cambridge: Massachusetts Institute of Technology, 1980
25 Sikorski A K. Effects of the chemical composition of the gas shield on the properties of flux-cored wire welds [J]. Weld. Int., 1993, 7: 683
26 Zou X D, Matsuura H, Wang C. Quantifying MnS inclusion evolution behaviors during 1473 K heating in EH36 shipbuilding steel with Zr addition [J]. Metall. Mater. Trans., 2019, 50B: 1134
27 Koseki T, Thewlis G. Overview: Inclusion assisted microstructure control in C-Mn and low alloy steel welds [J]. Mater. Sci. Technol., 2005, 21: 867
28 Yuan X B, Zhong M, Wu Y W, et al. Characterizing inclusions in the weld metal of EH36 shipbuilding steel processed by CaF2-30 wt pct TiO2 flux [J]. Metall. Mater. Trans., 2022, 53B: 656
29 Kang Y, Jang J, Park J H, et al. Influence of Ti on non-metallic inclusion formation and acicular ferrite nucleation in high-strength low-alloy steel weld metals [J]. Met. Mater. Int., 2014, 20: 119
30 Kang Y, Jeong S, Kang J H, et al. Factors affecting the inclusion potency for acicular ferrite nucleation in high-strength steel welds [J]. Metall. Mater. Trans., 2016, 47A: 2842
31 Babu S S, David S A, Vitek J M, et al. Model for inclusion formation in low alloy steel welds [J]. Sci. Technol. Weld. Joining, 1999, 4: 276
32 Liu S, Olson D L. The role of inclusions in controlling HSLA steel weld microstructures [J]. Weld. J., 1986, 65: 139s
33 Babu S S. The mechanism of acicular ferrite in weld deposits [J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 267
34 Xie X, Zhong M, Kaldre I, et al. Detailing microstructural evolution roadmap in the weld metal of EH420 shipbuilding steel subjected to varied reheating inputs [J]. Metall. Mater. Trans., 2023, 54A: 1077
35 Wen C F, Deng X T, Tian Y, et al. Microstructural evolution and toughness of the various HAZs in 1300-MPa-grade ultrahigh-strength structural steel [J]. J. Mater. Eng. Perform., 2019, 28: 1301
36 Liu Y, Wan X L, Li G Q, et al. Grain refinement in coarse-grained heat-affected zone of Al-Ti-Mg complex deoxidised steel [J]. Sci. Technol. Weld. Joining, 2019, 24: 43
37 Wang H H, Li G Q, Wan X L, et al. Microstructural characteristics and impact toughness in YS690MPa steel weld metal for offshore structures [J]. Sci. Technol. Weld. Joining, 2017, 22: 133
38 Wu Y W, Yuan X B, Kaldre I, et al. TiO2-assisted microstructural variations in the weld metal of EH36 shipbuilding steel subject to high heat input submerged arc welding [J]. Metall. Mater. Trans., 2023, 54B: 50
39 Xiong Z H, Liu S L, Wang X M, et al. The contribution of intragranular acicular ferrite microstructural constituent on impact toughness and impeding crack initiation and propagation in the heat-affected zone (HAZ) of low-carbon steels [J]. Mater. Sci. Eng., 2015, A636: 117
40 Kang Y, Park G, Jeong S, et al. Correlation between microstructure and low-temperature impact toughness of simulated reheated zones in the multi-pass weld metal of high-strength steel [J]. Metall. Mater. Trans., 2018, 49A: 177
41 Yang X C, Di X J, Liu X G, et al. Effects of heat input on microstructure and fracture toughness of simulated coarse-grained heat affected zone for HSLA steels [J]. Mater. Charact., 2019, 155: 109818
42 Di X J, Tong M, Li C N, et al. Microstructural evolution and its influence on toughness in simulated inter-critical heat affected zone of large thickness bainitic steel [J]. Mater. Sci. Eng., 2019, A743: 67
43 Zhang T L, Li Z X, Kou S, et al. Effect of inclusions on microstructure and toughness of deposited metals of self-shielded flux cored wires [J]. Mater. Sci. Eng., 2015, A628: 332
44 Tabor D. The Hardness of Metals [M]. Oxford: Clarendon Press, 2000: 160
45 Wen M Y, Dong W C, Pang H Y, et al. Microstructure and impact toughness of welding heat-affected zones of a Fe-Cr-Ni-Mo high strength steel [J]. Acta Metall. Sin., 2018, 54: 501
doi: 10.11900/0412.1961.2017.00331
45 文明月, 董文超, 庞辉勇 等. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究 [J]. 金属学报, 2018, 54: 501
doi: 10.11900/0412.1961.2017.00331
46 Zhu D M, He J L, Shi G H, et al. Effect of welding heat input on microstructure and impact toughness of the simulated CGHAZ in Q500qE steel [J]. Acta Metall. Sin., 2022, 58: 1581
doi: 10.11900/0412.1961.2021.00175
46 朱东明, 何江里, 史根豪 等. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响 [J]. 金属学报, 2022, 58: 1581
doi: 10.11900/0412.1961.2021.00175
47 Erokhin A A, translated by Zhao Y M. Theory of Fusion Welding [M]. Beijing: China Machinery Press, 1981: 232
47 Erokhin A A著, 赵裕民 译. 熔焊原理 [M]. 北京: 机械工业出版社, 1981: 232
48 Bale C W, Bélisle E, Chartrand P, et al. FactSage thermochemical software and databases, 2010-2016 [J]. Calphad, 2016, 54: 35
49 Baune E, Bonnet C, Liu S. Reconsidering the basicity of a FCAW consumable-Part 1: Solidified slag composition of a FCAW consumable as a basicity indicator: A basicity index for a flux cored electrode was developed, taking into consideration the metal sheath, fill ingredien [J]. Weld. J., 2000, 79: 57s
50 Baune E, Bonnet C, Liu S. Reconsidering the basicity of a FCAW consumable-Part 2: Verification of the flux/slag analysis methodology for weld metal oxygen control: The prediction model is verified by experimental results [J]. Weld. J., 2000, 79: 66s
51 Zhang Y Y, Zhang J, Liu H X, et al. Addressing weld metal compositional variations in EH36 shipbuilding steel processed by CaF2-SiO2-CaO-TiO2 fluxes [J]. Metall. Mater. Trans., 2022, 53B: 1329
52 Zhang J, Coetsee T, Dong H B, et al. Element transfer behaviors of fused CaF2-SiO2-MnO fluxes under high heat input submerged arc welding [J]. Metall. Mater. Trans., 2020, 51B: 885
53 Yuan H, Zhang Y, Liu H Y, et al. Bond characteristic-dependent viscosity variations in CaF2-SiO2-Al2O3-MgO welding fluxes [J]. Weld. J., 2025, 104: 107-s
54 Meng M D, Wei J S, An T B, et al. Effects of Si content on microstructure and toughness of the 800 MPa grade high-strength low-alloy deposited metals [J]. Trans. China Weld. Inst., 2024, 45(4): 93
54 孟满丁, 魏金山, 安同邦 等. Si元素对800 MPa级HSLA钢焊材熔敷金属组织及韧性的影响 [J]. 焊接学报, 2024, 45(4): 93
55 Li X D, Shang C J, Ma X P, et al. Elemental distribution in the martensite-austenite constituent in intercritically reheated coarse-grained heat-affected zone of a high-strength pipeline steel [J]. Scr. Mater., 2017, 139: 67
56 Xie X, Han S, Zhong M, et al. In situ observation of acicular ferrite growth behavior differences in weld metals subjected to varied CaF2-TiO2 flux-cored wires [J]. Metall. Mater. Trans., 2025, 56A: 7
57 Zhang J W, Yu L M, Liu C X, et al. Synergistic strengthening of high-Cr martensitic heat-resistant steel and application of thermo-mechanical treatments [J]. Acta Metall. Sin., 2024, 60: 713
doi: 10.11900/0412.1961.2023.00488
57 张竟文, 余黎明, 刘晨曦 等. 高Cr马氏体耐热钢的协同强化机制及形变热处理应用 [J]. 金属学报, 2024, 60: 713
doi: 10.11900/0412.1961.2023.00488
58 Abson D J. Acicular ferrite and bainite in C-Mn and low-alloy steel arc weld metals [J]. Sci. Technol. Weld. Joining, 2018, 23: 635
59 Zhang K Y, Dong W C, Zhao D, et al. Effect of solid-state phase transformation on stress and distortion for Fe-Co-Ni ultra-high strength steel components during welding and vacuum gas quenching processes [J]. Acta Metall. Sin., 2023, 59: 1633
59 张开元, 董文超, 赵 栋 等. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响 [J]. 金属学报, 2023, 59: 1633
doi: 10.11900/0412.1961.2022.00177
60 Shen Y, Gu Z M, Wang C. Phase transformation behaviors in the heat-affected zones of ferritic heat-resistant steels enabled by in situ CSLM observation [J]. Acta Metall. Sin., 2024, 60: 802
doi: 10.11900/0412.1961.2023.00045
60 申 洋, 谷征满, 王 聪. 铁素体系耐热钢焊接热影响区相变行为的CSLM原位观察 [J]. 金属学报, 2024, 60: 802
61 Mao G J, Cao R, Guo X L, et al. In situ observation of kinetic processes of lath bainite nucleation and growth by laser scanning confocal microscope in reheated weld metals [J]. Metall. Mater. Trans., 2017, 48A: 5783
62 Yamada T, Terasaki H, Komizo Y I. Relation between inclusion surface and acicular ferrite in low carbon low alloy steel weld [J]. ISIJ Int., 2009, 49: 1059
63 Takada A, Komizo Y I, Terasaki H, et al. Crystallographic analysis for acicular ferrite formation in low carbon steel weld metals [J]. Weld. Int., 2015, 29: 254
64 Yang Y K, Zhan D P, Lei H, et al. In situ observation of acicular ferrite nucleation and growth at different cooling rate in Ti-Zr deoxidized steel [J]. Metall. Mater. Trans., 2019, 50B: 2536
[1] 孙欢腾, 马运柱, 蔡青山, 王健宁, 段有腾, 张梦祥. fccbcc钢板在超高速撞击下的微观组织差异[J]. 金属学报, 2025, 61(7): 1011-1023.
[2] 郝旭邦, 程伟丽, 李戬, 王利飞, 崔泽琴, 闫国庆, 翟凯, 余晖. 低合金化Mg-Ag镁空气电池阳极材料的电化学行为和放电性能[J]. 金属学报, 2025, 61(6): 837-847.
[3] 刘子儒, 郭乾应, 张虹雨, 刘永长. V添加对Ti2AlNb合金组织演变及硬度的影响[J]. 金属学报, 2025, 61(6): 848-856.
[4] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[5] 蒋斌, 张昂, 宋江凤, 黎田, 游国强, 郑江, 潘复生. 镁合金一体化压铸缺陷控制[J]. 金属学报, 2025, 61(3): 383-396.
[6] 黄科, 李新志, 方学伟, 卢秉恒. 镁合金电弧熔丝增材制造技术研究现状与展望[J]. 金属学报, 2025, 61(3): 397-419.
[7] 郭星星, 帅美荣, 楚志兵, 李玉贵, 谢广明. 不锈钢复合钢筋近界面微观组织演变及元素扩散动力学[J]. 金属学报, 2025, 61(2): 336-348.
[8] 王旗涛, 李艳芬, 张家榕, 李尧志, 付海阳, 李新乐, 严伟, 单以银. 聚变增殖包层用低活化9Cr-ODS钢的室温低周疲劳行为[J]. 金属学报, 2025, 61(2): 323-335.
[9] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[10] 王叶青, 付珂, 赵永柱, 苏礼季, 陈正. Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61(1): 143-153.
[11] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[12] 李俊杰, 李盼悦, 黄立清, 郭杰, 吴京洋, 樊凯, 王锦程. 真空自耗电弧熔炼铸锭凝固行为多尺度模拟研究进展[J]. 金属学报, 2025, 61(1): 12-28.
[13] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
[14] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[15] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.