|
|
CaF2-TiO2 焊剂作用下EH36船板钢气电立焊焊缝金属组织优化及力学性能调控 |
谢旭1,2, 万一博1, 钟明1, 邹晓东3, 王聪1( ) |
1 东北大学 冶金学院 沈阳 110819 2 华北水利水电大学 材料学院 郑州 450045 3 广东省科学院中乌焊接研究所 广州 510650 |
|
Optimizing Microstructures and Mechanical Properties of Electro-Gas Welded Metals for EH36 Shipbuilding Steel Treated by CaF2-TiO2 Fluxes |
XIE Xu1,2, WAN Yibo1, ZHONG Ming1, ZOU Xiaodong3, WANG Cong1( ) |
1 School of Metallurgy, Northeastern University, Shenyang 110819, China 2 School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China 3 China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangzhou 510650, China |
引用本文:
谢旭, 万一博, 钟明, 邹晓东, 王聪. CaF2-TiO2 焊剂作用下EH36船板钢气电立焊焊缝金属组织优化及力学性能调控[J]. 金属学报, 2025, 61(7): 998-1010.
Xu XIE,
Yibo WAN,
Ming ZHONG,
Xiaodong ZOU,
Cong WANG.
Optimizing Microstructures and Mechanical Properties of Electro-Gas Welded Metals for EH36 Shipbuilding Steel Treated by CaF2-TiO2 Fluxes[J]. Acta Metall Sin, 2025, 61(7): 998-1010.
1 |
Zhang J, Leng J, Wang C. Tuning weld metal mechanical responses via welding flux optimization of TiO2 content: Application into EH36 shipbuilding steel [J]. Metall. Mater. Trans., 2019, 50B: 2083
|
2 |
Han M, Zhang X, Ma Q J, et al. The effect of trace elements on the microstructure and properties of coarse grain heat affected zone of EH36 ship steel with super large heat input [J]. Trans. China Weld. Inst., 2024, 45(2): 47
|
2 |
韩 美, 张 熹, 马青军 等. 微量元素对超大线能量EH36船板热影响区粗晶区组织和性能的影响 [J]. 焊接学报, 2024, 45(2): 47
|
3 |
Shen Y, Leng J, Wang C. On the heterogeneous microstructure development in the welded joint of 12MnNiVR pressure vessel steel subjected to high heat input electrogas welding [J]. J. Mater. Sci. Technol., 2019, 35: 1747
doi: 10.1016/j.jmst.2019.03.035
|
4 |
Xie X, Zhao T, Zhao H M, et al. Heterogeneous microstructure-induced mechanical responses in various sub-zones of EH420 shipbuilding steel welded joint under high heat input electro-gas welding [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1427
|
5 |
Wang L J, Cai Q W, Yu W, et al. Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel [J]. Acta Metall. Sin., 2010, 46: 687
|
5 |
王立军, 蔡庆伍, 余 伟 等. 1500 MPa级低合金超高强钢的微观组织与力学性能 [J]. 金属学报, 2010, 46: 687
doi: 10.3724/SP.J.1037.2009.00855
|
6 |
Bhadeshia H K D H. Bainite in Steels: Transformation, Microstructure and Properties [M]. 2nd Ed., London: IOM Communications, 2001: 201
|
7 |
Wang C Y, Han S W, Xie F, et al. Influence of solid-state phase transformation and softening effect on welding residual stress of ultra-high strength steel [J]. Acta Metall. Sin., 2023, 59: 1613
doi: 10.11900/0412.1961.2022.00243
|
7 |
王重阳, 韩世伟, 谢 峰 等. 固态相变和软化效应对超高强钢焊接残余应力的影响 [J]. 金属学报, 2023, 59: 1613
doi: 10.11900/0412.1961.2022.00243
|
8 |
Song F Y, Li Y M, Wang P, et al. Effects of heat input on the microstructure and impact toughness of weld metal processed by a new fluxnovel flux cored wire weld [J]. Acta Metall. Sin., 2016, 52: 890
|
8 |
宋峰雨, 李艳梅, 王 平 等. 热输入量对一种新型药芯焊丝熔敷金属组织及冲击韧性的影响 [J]. 金属学报, 2016, 52: 890
doi: 10.11900/0412.1961.2015.00584
|
9 |
An T B, Wei J S, Shan J G, et al. Influence of shielding gas composition on microstructure characteristics of 1000 MPa grade deposited metals [J]. Acta Metall. Sin., 2019, 55: 575
doi: 10.11900/0412.1961.2018.00375
|
9 |
安同邦, 魏金山, 单际国 等. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响 [J]. 金属学报, 2019, 55: 575
doi: 10.11900/0412.1961.2018.00375
|
10 |
Kah P, Martikainen J. Influence of shielding gases in the welding of metals [J]. Int. J. Adv. Manuf. Technol., 2013, 64: 1411
|
11 |
Wang C, Zhang J. Fine-tuning weld metal compositions via flux optimization in submerged arc welding: An overview [J]. Acta Metall. Sin., 2021, 57: 1126
|
11 |
王 聪, 张 进. 埋弧焊中焊剂对焊缝金属成分调控的研究进展 [J]. 金属学报, 2021, 57: 1126
|
12 |
Kou S. Welding Metallurgy [M]. 2nd Ed., New Jersey: Wiley, 2003: 234
|
13 |
Tian Y Q, Zhang H J, Chen L S, et al. Effect of alloy elements partitioning behavior on retained austenite and mechanical property in low carbon high strength steel [J]. Acta Metall. Sin., 2014, 50: 531
doi: 10.3724/SP.J.1037.2013.00709
|
13 |
田亚强, 张宏军, 陈连生 等. 低碳高强钢合金元素配分行为对残余奥氏体和力学性能的影响 [J]. 金属学报, 2014, 50: 531
doi: 10.3724/SP.J.1037.2013.00709
|
14 |
Wang X L, Dong L M, Yang W W, et al. Effect of Mn, Ni, Mo proportion on microstructure and mechanical properties of weld metal of K65 pipeline steel [J]. Acta Metall. Sin., 2016, 52: 649
|
14 |
王学林, 董利明, 杨玮玮 等. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响 [J]. 金属学报, 2016, 52: 649
doi: 10.11900/0412.1961.2015.00453
|
15 |
Han C, Zhong M, Zuo P, et al. SiO2-bearing fluxes induced evolution of γ columnar grain size [J]. Weld. J., 2024, 103: 308
|
16 |
Sampath K. Metallurgical design rules for high-strength steel weld metals [J]. Weld. J., 2022, 101: 123
|
17 |
He L, Wang R F, Cheng Y J, et al. Effect of TiO2 and Al2O3 on melting characteristics of CaO-SiO2-CaF2 base welding slag [J]. Trans. China Weld. Inst., 2023, 44(5): 7
|
17 |
何 磊, 王任甫, 成应晋 等. TiO2和Al2O3对CaO-SiO2-CaF2基础焊接渣系熔化特性的影响 [J]. 焊接学报, 2023, 44(5): 7
|
18 |
Li C N, Lou S Y, Di X J, et al. Effect of TiO2 in the self-shielded flux-cored wire on microstructures and properties of deposited metal [J]. J. Tianjin Univ. (Sci. Technol.), 2023, 56: 1171
|
18 |
利成宁, 楼嗣耀, 邸新杰 等. TiO2对自保护药芯焊丝熔敷金属组织与性能的影响 [J]. 天津大学学报(自然科学与工程技术版), 2023, 56: 1171
|
19 |
Natalie C A, Olson D L, Blander M. Physical and chemical behavior of welding fluxes [J]. Annu. Rev. Mater. Res., 1986, 16: 389
|
20 |
A R. Improvement of microstructure and toughness in high heat input weld [D]. Beijing: Central Iron & Steel Research Institute, 2014
|
20 |
阿 荣. 大热输入钢焊缝组织及韧性改善 [D]. 北京: 钢铁研究总院, 2014
|
21 |
Mills K C. Slag Atlas [M]. Düsseldorf: Verlag Stahleisen GmbH, 1995: 21
|
22 |
Zhang J, Coetsee T, Dong H B, et al. Element transfer behaviors of fused CaF2-TiO2 fluxes in EH36 shipbuilding steel during high heat input submerged arc welding [J]. Metall. Mater. Trans., 2020, 51B: 1953
|
23 |
Zong R, Chen J, Wu C S, et al. Influence of shielding gas on undercutting formation in gas metal arc welding [J]. J. Mater. Process. Technol., 2016, 234: 169
|
24 |
Chai C S. Slag-metal reactions during flux shielded arc welding [D]. Cambridge: Massachusetts Institute of Technology, 1980
|
25 |
Sikorski A K. Effects of the chemical composition of the gas shield on the properties of flux-cored wire welds [J]. Weld. Int., 1993, 7: 683
|
26 |
Zou X D, Matsuura H, Wang C. Quantifying MnS inclusion evolution behaviors during 1473 K heating in EH36 shipbuilding steel with Zr addition [J]. Metall. Mater. Trans., 2019, 50B: 1134
|
27 |
Koseki T, Thewlis G. Overview: Inclusion assisted microstructure control in C-Mn and low alloy steel welds [J]. Mater. Sci. Technol., 2005, 21: 867
|
28 |
Yuan X B, Zhong M, Wu Y W, et al. Characterizing inclusions in the weld metal of EH36 shipbuilding steel processed by CaF2-30 wt pct TiO2 flux [J]. Metall. Mater. Trans., 2022, 53B: 656
|
29 |
Kang Y, Jang J, Park J H, et al. Influence of Ti on non-metallic inclusion formation and acicular ferrite nucleation in high-strength low-alloy steel weld metals [J]. Met. Mater. Int., 2014, 20: 119
|
30 |
Kang Y, Jeong S, Kang J H, et al. Factors affecting the inclusion potency for acicular ferrite nucleation in high-strength steel welds [J]. Metall. Mater. Trans., 2016, 47A: 2842
|
31 |
Babu S S, David S A, Vitek J M, et al. Model for inclusion formation in low alloy steel welds [J]. Sci. Technol. Weld. Joining, 1999, 4: 276
|
32 |
Liu S, Olson D L. The role of inclusions in controlling HSLA steel weld microstructures [J]. Weld. J., 1986, 65: 139s
|
33 |
Babu S S. The mechanism of acicular ferrite in weld deposits [J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 267
|
34 |
Xie X, Zhong M, Kaldre I, et al. Detailing microstructural evolution roadmap in the weld metal of EH420 shipbuilding steel subjected to varied reheating inputs [J]. Metall. Mater. Trans., 2023, 54A: 1077
|
35 |
Wen C F, Deng X T, Tian Y, et al. Microstructural evolution and toughness of the various HAZs in 1300-MPa-grade ultrahigh-strength structural steel [J]. J. Mater. Eng. Perform., 2019, 28: 1301
|
36 |
Liu Y, Wan X L, Li G Q, et al. Grain refinement in coarse-grained heat-affected zone of Al-Ti-Mg complex deoxidised steel [J]. Sci. Technol. Weld. Joining, 2019, 24: 43
|
37 |
Wang H H, Li G Q, Wan X L, et al. Microstructural characteristics and impact toughness in YS690MPa steel weld metal for offshore structures [J]. Sci. Technol. Weld. Joining, 2017, 22: 133
|
38 |
Wu Y W, Yuan X B, Kaldre I, et al. TiO2-assisted microstructural variations in the weld metal of EH36 shipbuilding steel subject to high heat input submerged arc welding [J]. Metall. Mater. Trans., 2023, 54B: 50
|
39 |
Xiong Z H, Liu S L, Wang X M, et al. The contribution of intragranular acicular ferrite microstructural constituent on impact toughness and impeding crack initiation and propagation in the heat-affected zone (HAZ) of low-carbon steels [J]. Mater. Sci. Eng., 2015, A636: 117
|
40 |
Kang Y, Park G, Jeong S, et al. Correlation between microstructure and low-temperature impact toughness of simulated reheated zones in the multi-pass weld metal of high-strength steel [J]. Metall. Mater. Trans., 2018, 49A: 177
|
41 |
Yang X C, Di X J, Liu X G, et al. Effects of heat input on microstructure and fracture toughness of simulated coarse-grained heat affected zone for HSLA steels [J]. Mater. Charact., 2019, 155: 109818
|
42 |
Di X J, Tong M, Li C N, et al. Microstructural evolution and its influence on toughness in simulated inter-critical heat affected zone of large thickness bainitic steel [J]. Mater. Sci. Eng., 2019, A743: 67
|
43 |
Zhang T L, Li Z X, Kou S, et al. Effect of inclusions on microstructure and toughness of deposited metals of self-shielded flux cored wires [J]. Mater. Sci. Eng., 2015, A628: 332
|
44 |
Tabor D. The Hardness of Metals [M]. Oxford: Clarendon Press, 2000: 160
|
45 |
Wen M Y, Dong W C, Pang H Y, et al. Microstructure and impact toughness of welding heat-affected zones of a Fe-Cr-Ni-Mo high strength steel [J]. Acta Metall. Sin., 2018, 54: 501
doi: 10.11900/0412.1961.2017.00331
|
45 |
文明月, 董文超, 庞辉勇 等. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究 [J]. 金属学报, 2018, 54: 501
doi: 10.11900/0412.1961.2017.00331
|
46 |
Zhu D M, He J L, Shi G H, et al. Effect of welding heat input on microstructure and impact toughness of the simulated CGHAZ in Q500qE steel [J]. Acta Metall. Sin., 2022, 58: 1581
doi: 10.11900/0412.1961.2021.00175
|
46 |
朱东明, 何江里, 史根豪 等. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响 [J]. 金属学报, 2022, 58: 1581
doi: 10.11900/0412.1961.2021.00175
|
47 |
Erokhin A A, translated by Zhao Y M. Theory of Fusion Welding [M]. Beijing: China Machinery Press, 1981: 232
|
47 |
Erokhin A A著, 赵裕民 译. 熔焊原理 [M]. 北京: 机械工业出版社, 1981: 232
|
48 |
Bale C W, Bélisle E, Chartrand P, et al. FactSage thermochemical software and databases, 2010-2016 [J]. Calphad, 2016, 54: 35
|
49 |
Baune E, Bonnet C, Liu S. Reconsidering the basicity of a FCAW consumable-Part 1: Solidified slag composition of a FCAW consumable as a basicity indicator: A basicity index for a flux cored electrode was developed, taking into consideration the metal sheath, fill ingredien [J]. Weld. J., 2000, 79: 57s
|
50 |
Baune E, Bonnet C, Liu S. Reconsidering the basicity of a FCAW consumable-Part 2: Verification of the flux/slag analysis methodology for weld metal oxygen control: The prediction model is verified by experimental results [J]. Weld. J., 2000, 79: 66s
|
51 |
Zhang Y Y, Zhang J, Liu H X, et al. Addressing weld metal compositional variations in EH36 shipbuilding steel processed by CaF2-SiO2-CaO-TiO2 fluxes [J]. Metall. Mater. Trans., 2022, 53B: 1329
|
52 |
Zhang J, Coetsee T, Dong H B, et al. Element transfer behaviors of fused CaF2-SiO2-MnO fluxes under high heat input submerged arc welding [J]. Metall. Mater. Trans., 2020, 51B: 885
|
53 |
Yuan H, Zhang Y, Liu H Y, et al. Bond characteristic-dependent viscosity variations in CaF2-SiO2-Al2O3-MgO welding fluxes [J]. Weld. J., 2025, 104: 107-s
|
54 |
Meng M D, Wei J S, An T B, et al. Effects of Si content on microstructure and toughness of the 800 MPa grade high-strength low-alloy deposited metals [J]. Trans. China Weld. Inst., 2024, 45(4): 93
|
54 |
孟满丁, 魏金山, 安同邦 等. Si元素对800 MPa级HSLA钢焊材熔敷金属组织及韧性的影响 [J]. 焊接学报, 2024, 45(4): 93
|
55 |
Li X D, Shang C J, Ma X P, et al. Elemental distribution in the martensite-austenite constituent in intercritically reheated coarse-grained heat-affected zone of a high-strength pipeline steel [J]. Scr. Mater., 2017, 139: 67
|
56 |
Xie X, Han S, Zhong M, et al. In situ observation of acicular ferrite growth behavior differences in weld metals subjected to varied CaF2-TiO2 flux-cored wires [J]. Metall. Mater. Trans., 2025, 56A: 7
|
57 |
Zhang J W, Yu L M, Liu C X, et al. Synergistic strengthening of high-Cr martensitic heat-resistant steel and application of thermo-mechanical treatments [J]. Acta Metall. Sin., 2024, 60: 713
doi: 10.11900/0412.1961.2023.00488
|
57 |
张竟文, 余黎明, 刘晨曦 等. 高Cr马氏体耐热钢的协同强化机制及形变热处理应用 [J]. 金属学报, 2024, 60: 713
doi: 10.11900/0412.1961.2023.00488
|
58 |
Abson D J. Acicular ferrite and bainite in C-Mn and low-alloy steel arc weld metals [J]. Sci. Technol. Weld. Joining, 2018, 23: 635
|
59 |
Zhang K Y, Dong W C, Zhao D, et al. Effect of solid-state phase transformation on stress and distortion for Fe-Co-Ni ultra-high strength steel components during welding and vacuum gas quenching processes [J]. Acta Metall. Sin., 2023, 59: 1633
|
59 |
张开元, 董文超, 赵 栋 等. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响 [J]. 金属学报, 2023, 59: 1633
doi: 10.11900/0412.1961.2022.00177
|
60 |
Shen Y, Gu Z M, Wang C. Phase transformation behaviors in the heat-affected zones of ferritic heat-resistant steels enabled by in situ CSLM observation [J]. Acta Metall. Sin., 2024, 60: 802
doi: 10.11900/0412.1961.2023.00045
|
60 |
申 洋, 谷征满, 王 聪. 铁素体系耐热钢焊接热影响区相变行为的CSLM原位观察 [J]. 金属学报, 2024, 60: 802
|
61 |
Mao G J, Cao R, Guo X L, et al. In situ observation of kinetic processes of lath bainite nucleation and growth by laser scanning confocal microscope in reheated weld metals [J]. Metall. Mater. Trans., 2017, 48A: 5783
|
62 |
Yamada T, Terasaki H, Komizo Y I. Relation between inclusion surface and acicular ferrite in low carbon low alloy steel weld [J]. ISIJ Int., 2009, 49: 1059
|
63 |
Takada A, Komizo Y I, Terasaki H, et al. Crystallographic analysis for acicular ferrite formation in low carbon steel weld metals [J]. Weld. Int., 2015, 29: 254
|
64 |
Yang Y K, Zhan D P, Lei H, et al. In situ observation of acicular ferrite nucleation and growth at different cooling rate in Ti-Zr deoxidized steel [J]. Metall. Mater. Trans., 2019, 50B: 2536
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|