|
|
集成电路芯片锡基微凸点电迁移:从物理本质到可靠性提升 |
黄明亮( ), 王胜博, 尤海潮, 刘厚麟, 任婧, 黄斐斐 |
大连理工大学 材料科学与工程学院 电子封装材料实验室 大连 116024 |
|
Electromigration of Sn-Based Microbumps in Chip Interconnections of Integrated Circuits: From Physical Nature to Reliability Improvement |
HUANG Mingliang( ), WANG Shengbo, YOU Haichao, LIU Houlin, REN Jing, HUANG Feifei |
Electronic Packaging Materials Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China |
引用本文:
黄明亮, 王胜博, 尤海潮, 刘厚麟, 任婧, 黄斐斐. 集成电路芯片锡基微凸点电迁移:从物理本质到可靠性提升[J]. 金属学报, 2025, 61(7): 979-997.
Mingliang HUANG,
Shengbo WANG,
Haichao YOU,
Houlin LIU,
Jing REN,
Feifei HUANG.
Electromigration of Sn-Based Microbumps in Chip Interconnections of Integrated Circuits: From Physical Nature to Reliability Improvement[J]. Acta Metall Sin, 2025, 61(7): 979-997.
1 |
Gerardin M. De l'action de la pile sur les sels de potasse st de soude st sur les alliages soumis à la fusion ingée [J]. Comptes Rendus, 1861, 53: 727
|
2 |
Blech I A, Meieran E S. Direct transmission electron microscope observation of electrotransport in aluminum thin films [J]. Appl. Phys. Lett., 1967, 11: 263
|
3 |
Clement J J, Thompson C V. Modeling electromigration-induced stress evolution in confined metal lines [J]. J. Appl. Phys., 1995, 78: 900
|
4 |
Brandenburg S, Yeh S. Electromigration studies of flip chip bump solder joints [A]. Surface Mount International Conference and Exposition [C]. San Jose, CA: SMTA, 1998: 337
|
5 |
Tu K N. Recent advances on electromigration in very-large-scale-integration of interconnects [J]. J. Appl. Phys., 2003, 94: 5451
|
6 |
Tammaro M. Investigation of the temperature dependence in Black's equation using microscopic electromigration modeling [J]. J. Appl. Phys., 1999, 86: 3612
|
7 |
Yang D S, Huang Y L. Interfacial intermetallic compound modification to extend the electromigration lifetime of copper pillar joints [J]. Front. Mater., 2023, 9: 1080848
|
8 |
Li X M, Liu Z H, Li C, et al. Effects of trace elements Ag, Bi and Ni on solid-liquid electromigration interface diffusion in solder joints [J]. J. Electron. Mater., 2021, 50: 5312
|
9 |
Liu Y, Xu X, Xue Y X, et al. An in-situ experimental and simulation study on the electromigration behavior of SAC305 solder joints [J]. J. Adhes. Sci. Technol., 2024, 38: 3348
|
10 |
Ye S, Huang M L, Chen L D, et al. Failure mechanisms of Ni/Sn-3.0Ag-0.5Cu/OSP flip chip solder under high current stressing [A]. 12th International Conference on Electronic Packaging Technology and High Density Packaging [C]. Shanghai: IEEE, 2011: 1
|
11 |
Chen L D, Huang M L. Effect of electromigration on intermetallic compound formation in Cu/Sn/Cu interconnect [A]. 2009 International Conference on Electronic Packaging Technology & High Density Packaging [C]. Beijing: IEEE, 2009: 666
|
12 |
Wang F J, Liu L T, Li D Y, et al. Electromigration behaviors in Sn-58Bi solder joints under different current densities and temperatures [J]. J. Mater. Sci.: Mater. Electron., 2018, 29: 21157
|
13 |
Huang M L, Zhang Z J, Zhao N, et al. In situ study on reverse polarity effect in Cu/Sn-9Zn/Ni interconnect undergoing liquid-solid electromigration [J]. J. Alloys Compd., 2015, 619: 667
|
14 |
Huang M L, Zhang Z J, Zhao N, et al. A synchrotron radiation real-time in situ imaging study on the reverse polarity effect in Cu/Sn-9Zn/Cu interconnect during liquid-solid electromigration [J]. Scr. Mater., 2013, 68: 853
|
15 |
Huang M L, Zhang Z J, Zhao N, et al. Study on liquid-solid electromigration in Cu/Sn-9Zn/Cu interconnect using synchrotron radiation real-time in situ imaging technology [A]. 14th International Conference on Electronic Packaging Technology [C]. Dalian: IEEE, 2013: 126
|
16 |
Huang M L, Zhou Q, Zhao N, et al. Reverse polarity effect and cross-solder interaction in Cu/Sn-9Zn/Ni interconnect during liquid-solid electromigration [J]. J. Mater. Sci., 2014, 49: 1755
|
17 |
Huang M L, Feng X F, Zhao J F, et al. Cu-Ni cross-solder interaction in Cu/Sn-58Bi/Ni interconnect undergoing liquid-solid electromigration [J]. Chin. J. Nonferrous Met., 2015, 25: 967
|
17 |
黄明亮, 冯晓飞, 赵建飞 等. Cu/Sn-58Bi/Ni焊点液-固电迁移下Cu和Ni的交互作用 [J]. 中国有色金属学报, 2015, 25: 967
|
18 |
Zhang Z J, Huang M L. Abnormal migration behavior and segregation mechanism of Bi atoms undergoing liquid-solid electromigration [J]. J. Mater. Sci., 2019, 54: 7975
doi: 10.1007/s10853-019-03448-1
|
19 |
Zhang Z J, Huang M L. In situ observation of electromigration-induced anomalous precipitation of Ag3Sn phase in Ag-containing solder joints [J]. J. Electron. Mater., 2021, 50: 2111
|
20 |
Chen L D, Huang M L, Zhou S M. Effect of electromigration on intermetallic compound formation in line-type Cu/Sn/Cu and Cu/Sn/Ni interconnects [A]. 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) [C]. Las Vegas: IEEE, 2010: 176
|
21 |
Zhang Z J. Liquid-solid electromigration behavior and mechanism of micro interconnect [D]. Dalian: Dalian University of Technology, 2016
|
21 |
张志杰. 微互连焊点液-固电迁移行为与机理研究 [D]. 大连: 大连理工大学, 2016
|
22 |
Huang M L, Zhao J F, Zhang Z J, et al. Role of diffusion anisotropy in β-Sn in microstructural evolution of Sn-3.0Ag-0.5Cu flip chip bumps undergoing electromigration [J]. Acta Mater., 2015, 100: 98
|
23 |
Huang M L, Sun H Y. Interaction between β-Sn grain orientation and electromigration behavior in flip-chip lead-free solder bumps [J]. Acta Metall. Sin., 2018, 54: 1077
|
23 |
黄明亮, 孙洪羽. 倒装芯片无铅凸点β-Sn晶粒取向与电迁移交互作用 [J]. 金属学报, 2018, 54: 1077
doi: 10.11900/0412.1961.2017.00426
|
24 |
Huang M L, Zhao J F, Zhang Z J, et al. Dominant effect of high anisotropy in β-Sn grain on electromigration-induced failure mechanism in Sn-3.0Ag-0.5Cu interconnect [J]. J. Alloys Compd., 2016, 678: 370
|
25 |
Xu K X, Fu X, Wang X J, et al. The effect of grain orientation of β-Sn on copper pillar solder joints during electromigration [J]. Materials, 2022, 15: 108
|
26 |
Li X, Gao L Y, Tao J L, et al. Detrimental angle range between c axis of Sn crystal and electron flow for the electromigration reliability of ball grid array devices [J]. J. Mater. Sci.: Mater. Electron., 2022, 33: 17877
|
27 |
Wang Y, Wang Y S, Ma L M, et al. Effect of Sn grain c-axis on Cu atomic motion in Cu reinforced composite solder joints under electromigration [J]. J. Electron. Mater., 2020, 49: 2159
|
28 |
Bashir M N, Butt S U, Mansoor M A, et al. Role of crystallographic orientation of β-Sn grain on electromigration failures in lead-free solder joint: An overview [J]. Coatings, 2022, 12: 1752
|
29 |
Shen Y A, Wu J A. Effect of Sn grain orientation on reliability issues of Sn-rich solder joints [J]. Materials, 2022, 15: 5086
|
30 |
Yuan H Y, Li C, Zhang H Z, et al. Revealing evolutions of intermetallics in a solder joint under electromigration: A quasi-in situ study combining 3D microstructural characterization and numerical simulation [J]. Appl. Phys. Lett., 2023, 123: 231904
|
31 |
Mohanram H, Kim Y, Ni G, et al. Control of solder microstructure stimulated by interface condition of the UBM/solder and enhancement of electromigration reliability [A]. 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC) [C]. Orlando: IEEE, 2023: 1060
|
32 |
Tsai C P, Chiu C Y, Huang W C, et al. Single-grain Sn-rich micro-bump by reducing Sn undercooling with heterogeneous nucleation [J]. Mater. Lett., 2024, 357: 135729
|
33 |
Yuan H Y, Li C, Ma Z L, et al. A case study of intermetallic evolutions in a solder joint under electromigration using a novel experiment-simulation combined approach [A]. 24th International Conference on Electronic Packaging Technology (ICEPT) [C]. Shihezi City: IEEE, 2023: 1
|
34 |
Wang S B, Liu P, Cong S, et al. The Evolution of micro-voids in Sn37Pb solder joints under electromechanical coupling loading [J]. J. Electron. Mater., 2024, 53: 6448
|
35 |
Zhang Q K, An C W, Song Z L. Thermal cycling-electric current coupling damage mechanisms of SnAgCu/Cu solder joints under different temperature ranges [J]. J. Electron. Mater., 2024, 53: 2544
|
36 |
Li S L, Hang C J, Zhang W, et al. Current-induced solder evolution and mechanical property of Sn-3.0Ag-0.5Cu solder joints under thermal shock condition [J]. J. Alloys Compd., 2024, 970: 172519
|
37 |
Huang M L, Zhou S M, Chen L D, et al. Effect of electroless Ni-P consumption on the failure mechanism of solder joints during electromigration [J]. Acta Metall. Sin., 2013, 49: 81
doi: 10.3724/SP.J.1037.2012.00401
|
37 |
黄明亮, 周少明, 陈雷达 等. Ni-P消耗对焊点电迁移失效机理的影响 [J]. 金属学报, 2013, 49: 81
doi: 10.3724/SP.J.1037.2012.00401
|
38 |
Fu Z W, Wei Q R, Guo X T, et al. Influence of temperature and current stressing on Cu-Sn intermetallic compound growth characteristics of lead-free microbump [J]. Adv. Theory Simul., 2023, 6: 2200881
|
39 |
Huang J Q, Zhu Y H, Pan K H, et al. Polarity effect of interfacial intermetallic compounds of BGA structure Cu/Sn-52In/Cu solder joints during electromigration [J]. Intermetallics, 2024, 168: 108252
|
40 |
Chen L D, Huang M L, Zhou S M. Effect of electromigration on intermetallic compound formation in line-type Cu/Sn/Cu interconnect [J]. J. Alloys Compd., 2010, 504: 535
|
41 |
Zhang X F, Guo J D, Shang J K. Reverse polarity effect from effective charge disparity during electromigration in eutectic Sn-Zn solder interconnect [J]. J. Mater. Res., 2008, 23: 3370
|
42 |
Tu K N. Solder Joint Technology: Materials, Properties, and Reliability [M]. New York: Springer, 2007: 1
|
43 |
Liang S B, Jiang H, Huang J Q. Study on phase electromigration and segregation behavior of Cu-cored Sn-58Bi solder interconnects under electric current stressing [J]. J. Electron. Mater., 2024, 53: 1192
|
44 |
Chen W M, Zhang K K, Fan Y C, et al. Effect of electromigration on microstructure and properties of CeO2 nanopartical-reinforced Sn58Bi/Cu solder joints [J]. Sci. Rep., 2024, 14: 15693
|
45 |
Daghfal J P, Shang J K. Current-induced phase partitioning in eutectic indium-tin Pb-free solder interconnect [J]. J. Electron. Mater., 2007, 36: 1372
|
46 |
Huang M L, Zhang Z J, Zhao N, et al. Migration behavior of indium atoms in Cu/Sn-52In/Cu interconnects during electromigration [J]. J. Mater. Res., 2015, 30: 3316
|
47 |
Zhang Z J, Huang M L. Liquid-solid electromigration behavior of Cu/Sn-52In/Cu micro-interconnect [J]. Acta Metall. Sin., 2017, 53: 592
doi: 10.11900/0412.1961.2016.00499
|
47 |
张志杰, 黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究 [J]. 金属学报, 2017, 53: 592
doi: 10.11900/0412.1961.2016.00499
|
48 |
Zhang Z J, Huang M L. In situ study on liquid-solid electromigration behavior in Cu/Sn-37Pb/Cu micro-interconnect [J]. Acta Metall. Sin., 2020, 56: 1386
doi: 10.11900/0412.1961.2020.00009
|
48 |
张志杰, 黄明亮. 原位研究Cu/Sn-37Pb/Cu微焊点液-固电迁移行为 [J]. 金属学报, 2020, 56: 1386
doi: 10.11900/0412.1961.2020.00009
|
49 |
Huang M L, Zhang Z J, Yang F, et al. Novel growth of whole preferred orientation intermetallic compound interconnects for 3D IC packaging [A]. 2016 IEEE 66th Electronic Components and Technology Conference (ECTC) [C]. Las Vegas: IEEE, 2016: 1216
|
50 |
Huang M L, Zou L, Yin S Q. Electromigration behavior and mechanical properties of the whole preferred orientation intermetallic compound interconnects for 3D packaging [A]. 2018 IEEE 68th Electronic Components and Technology Conference (ECTC) [C]. San Diego: IEEE, 2018: 2041
|
51 |
Huang M L, Zou L. Effects of electromigration on microstructural evolution and mechanical properties of preferential growth intermetallic compound interconnects for 3D packaging [A]. 2019 IEEE 69th Electronic Components and Technology Conference (ECTC) [C]. Las Vegas: IEEE, 2019: 1774
|
52 |
Huang M L, Zhao N, Zhang Z J, et al. A preparation method and structure of full intermetallic compound (IMC) interconnects [P]. Chin Pat, 201510069883.6, 2016
|
52 |
黄明亮, 赵 宁, 张志杰 等. 一种全金属间化合物互连焊点的制备方法及结构 [P]. 中国专利, 201510069883.6, 2016)
|
53 |
Huang M L, Wu Y, Zhang S N, et al. A method to control crystal orientation and microstructure of full intermetallic compound (IMC) interconnects [P]. Chin Pat, 202010964080.8, 2020
|
53 |
黄明亮, 武 洋, 张诗楠 等. 一种控制全金属间化合物微互连焊点晶体取向及微观组织的方法 [P]. 中国专利, 202010964080.8, 2020)
|
54 |
Black J R. Electromigration failure modes in aluminum metallization for semiconductor devices [J]. Proc. IEEE, 1969, 57: 1587
|
55 |
Yao Y F, Gusak A M, Chen C, et al. Influence of Sn grain orientation on mean-time-to-failure equation for microbumps in 3D IC technology [J]. Scr. Mater., 2024, 250: 116175
|
56 |
Flores J, Panta S, Hadian F, et al. Changes in the microstructure and electrical resistance of SnBi-based solder joints during current stressing [J]. J. Electron. Mater., 2024, 53: 1299
|
57 |
Chen S, Wu Q S, Fu Z W, et al. Black equation of the electromigration lifetime for ceramic package with lead bumps and plastic package with lead-free bump [A]. 2020 21st International Conference on Electronic Packaging Technology (ICEPT) [C]. Guangzhou: IEEE, 2020: 1
|
58 |
Li Y R Y, Fu G C, Wan B, et al. A study on the effects of electrical and thermal stresses on void formation and migration lifetime of Sn3.0Ag0.5Cu solder joints [J]. Soldering Surf. Mount Technol., 2021, 34: 162
|
59 |
Ting L M, May J S, Hunter W R, et al. AC electromigration characterization and modeling of multilayered interconnects [A]. 31st Annual Proceedings Reliability Physics 1993 [C]. Atlanta: IEEE, 1993: 311
|
60 |
Liang S B, Kunwar A, Wei C, et al. Insight into the preferential grain growth of intermetallics under electric current stressing—A phase field modeling [J]. Scr. Mater., 2021, 203: 114071
|
61 |
Liang S B, Wei C, Kunwar A, et al. Phase field modelling combined with data-driven approach to unravel the orientation influenced growth of interfacial Cu6Sn5 intermetallics under electric current stressing [J]. Surf. Interfaces, 2023, 37: 102728
|
62 |
Zhao Z P, Zhang X M, Wu Z Z, et al. Competitive failure mechanism and load tolerance of solder joint under thermo-mechano-electrical coupling [J]. Mech. Mater., 2021, 163: 104104
|
63 |
Guo F, Wen T Y, Ma L M, et al. Electromigration damage analysis of BGA solder joint under high temperature and high current density [J]. J. Beijing Univ. Technol., 2021, 47: 1264
|
63 |
郭 福, 文廷玉, 马立民 等. 高温高电流密度下BGA焊点电迁移损伤 [J]. 北京工业大学学报, 2021, 47: 1264
|
64 |
Hu S H, Lin T C, Kao C L, et al. Effects of bismuth additions on mechanical property and microstructure of SAC-Bi solder joint under current stressing [J]. Microelectron. Reliab., 2021, 117: 114041
|
65 |
Mokhtar N Z M, Salleh M A A M, Zhang G M, et al. Tin whiskers formation in Sn0.7Cu0.05Ni1.5Bi under electro-migration stressing [J]. Acta Phys. Pol., 2020, 138A: 261
|
66 |
Lin Y X, Wang J Y, Chen C Y, et al. Effect of Ag additives on the consumption of a cathode Cu pad in a Cu/Sn3.5Ag/Cu flip-chip structure under electromigration [J]. J. Electron. Mater., 2021, 50: 6584
|
67 |
Liu H Y, Zhu Q S, Wang Z G, et al. Effects of Zn addition on electromigration behavior of Sn-1Ag-0.5Cu solder interconnect [J]. J. Mater. Sci.: Mater. Electron., 2013, 24: 211
|
68 |
Li M Y, Han J, Guo F, et al. Electromigration behavior of low-silver Sn-0.3Ag-0.7Cu-1.6Bi-0.2In solder joints [J]. J. Electron. Mater., 2020, 49: 4237
|
69 |
Kelly M B, Antoniswamy A, Mahajan R, et al. Effect of trace addition of In on Sn-Cu solder joint microstructure under electromigration [J]. J. Electron. Mater., 2021, 50: 893
|
70 |
Liu S F, Liu Z Y, Liu L, et al. Electromigration behavior of Cu/Sn-58Bi-1Ag/Cu solder joints by ultrasonic soldering process [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 11997
|
71 |
Zhao X, Saka M, Muraoka M, et al. Electromigration behaviors and effects of addition elements on the formation of a Bi-rich layer in Sn58Bi-based solders [J]. J. Electron. Mater., 2014, 43: 4179
|
72 |
Wu X F, Hou Z Z, Xie X C, et al. Microstructural evolution of joints with and without Sb, Ni in Sn58Bi solder under electro-thermal-force coupling [J]. J. Mater. Res. Technol., 2023, 26: 1382
|
73 |
Wu X F, Hou Z Z, Xie X C, et al. Mechanical properties and microstructure evolution of Sn-Bi-based solder joints by microalloying regulation mechanism [J]. J. Mater. Res. Technol., 2024, 31: 3226
|
74 |
Bashir M N, Khan N B, Bashir S, et al. Effect of Zn nanoparticle-doped flux on mechanical properties of SAC305 solder joint after electromigration [J]. J. Mater. Sci.: Mater. Electron., 2023, 34: 321
|
75 |
Bashir M N, Haseeb A S M A. Grain size stability of interfacial intermetallic compound in Ni and Co nanoparticle-doped SAC305 solder joints under electromigration [J]. J. Mater. Sci.: Mater. Electron., 2022, 33: 14240
|
76 |
Bashir M N, Haseeb A S M A, Rahman A Z M S, et al. Effect of cobalt doping on the microstructure and tensile properties of lead free solder joint subjected to electromigration [J]. J. Mater. Sci. Technol., 2016, 32: 1129
doi: 10.1016/j.jmst.2016.09.007
|
77 |
Li Y, Luo K M, Lim A B Y, et al. Improving the mechanical performance of Sn57.6Bi0.4Ag solder joints on Au/Ni/Cu pads during aging and electromigration through the addition of tungsten (W) nanoparticle reinforcement [J]. Mater. Sci. Eng., 2016, A669: 291
|
78 |
Shafiq I, Chan Y C, Xu S, et al. Electro-migration study of nano Al doped lead-free Sn-58Bi on Cu and Au/Ni/Cu ball grid array (BGA) packages [A]. 18th European Microelectronics & Packaging Conference [C]. Brighton: IEEE, 2011: 1
|
79 |
Shafiq I, Chan Y C. Improved electro-migration resistance in nano Ag modified Sn-58Bi solder joints under current stressing [A]. 2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering [C]. Xi'an: IEEE, 2011: 374
|
80 |
Kim Y, Nagao S, Sugahara T, et al. Refinement of the microstructure of Sn-Ag-Bi-In solder, by addition of SiC nanoparticles, to reduce electromigration damage under high electric current [J]. J. Electron. Mater., 2014, 43: 4428
|
81 |
Yang L, Ge J G, Zhang Y C, et al. Electromigration reliability for Al2O3-reinforced Cu/Sn-58Bi/Cu composite solder joints [J]. J. Mater. Sci.: Mater. Electron., 2017, 28: 3004
|
82 |
Xu S, Chan Y C, Zhang K L, et al. Interfacial intermetallic growth and mechanical properties of carbon nanotubes reinforced Sn3.5Ag0.5Cu solder joint under current stressing [J]. J. Alloys Compd., 2014, 595: 92
|
83 |
Chen G, Li J Q, Kuang X W, et al. The study on reliability of Ni-coated graphene doped SAC305 lead-free composite solders under high current-density stressing [J]. Soldering Surf. Mount Technol., 2019, 31: 261
|
84 |
Kim J, Jung K H, Kim J H, et al. Electromigration behaviors of Sn58%Bi solder containing Ag-coated MWCNTs with OSP surface finished PCB [J]. J. Alloys Compd., 2019, 775: 581
|
85 |
Dai J J, Zhang Y X, Li Z K, et al. Research on reliability of Ni/Sn/Cu(Ni) copper pillar bump under thermoelectric loading [J]. J. Electron. Packag., 2022, 144: 031014
|
86 |
Chiu M C, Tsai M Y, Wang S B, et al. Applications of Ni and Ag metallizations at the solder/Cu interfaces in advanced high-power automobile interconnects: An electromigration study [J]. Surf. Coat. Technol., 2024, 484: 130828
|
87 |
Kim J, Jung S B, Yoon J W. Effect of Ni(P) thickness in Au/Pd/Ni(P) surface finish on the electrical reliability of Sn-3.0Ag-0.5Cu solder joints during current-stressing [J]. J. Alloys Compd., 2021, 850: 156729
|
88 |
Huang M L, Chen L D, Zhou S M, et al. Effect of surface finish (OSP and ENEPIG) on failure mechanism induced by electromigration in Sn-3.0Ag-0.5Cu flip chip solder interconnect [A]. 2011 International Symposium on Advanced Packaging Materials (APM) [C]. Xiamen: IEEE, 2011: 297
|
89 |
Wang F J, Liu L T, Zhou L L, et al. Microstructural evolution of Sn-58Bi/Cu joints through minor Zn alloying substrate during electromigration [J]. Mater. Trans., 2017, 58: 1593
|
90 |
Zhang S N, Ren J, Huang F F, et al. In-situ observation on liquid-solid electromigration behavior of (111) nt-Cu/Sn/Cu interconnects [A]. 25th International Conference on Electronic Packaging Technology (ICEPT) [C]. Tianjin: IEEE, 2024: 1
|
91 |
Zhang J Q, Huang X M, Wang X J, et al. Effect of (111) oriented nanotwinned Cu substrate on the electromigration of Sn58Bi solder joint at high current density [J]. J. Mater. Sci.: Mater. Electron., 2024, 35: 1293
|
92 |
Chen C N, Chen B Z, Wu W H, et al. Correlation between Ag content and Cu pad consumption in lead-free solder joints under electron current stressing [A]. 12th International Conference on Electronic Packaging Technology and High Density Packaging [C]. Shanghai: IEEE, 2011: 1
|
93 |
Yamanaka K, Nishikawa H, Taguchi H, et al. Effect of magnetic flux density on Sn crystallographic orientation in a solder joint system [J]. J. Mater. Sci.: Mater. Electron., 2016, 27: 3710
|
94 |
Chen J Q, Guo J D, Ma H C, et al. Magnetic-field induced anisotropy in electromigration behavior of Sn-Ag-Cu solder interconnects [J]. J. Mater. Res., 2015, 30: 1065
|
95 |
Ma Z L, Belyakov S A, Sweatman K, et al. Harnessing heterogeneous nucleation to control tin orientations in electronic interconnections [J]. Nat. Commun., 2017, 8: 1916
doi: 10.1038/s41467-017-01727-6
pmid: 29203763
|
96 |
Huang M L, Yang F. Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate [J]. Sci. Rep., 2014, 4: 7117
doi: 10.1038/srep07117
pmid: 25408359
|
97 |
Liu Y X, Chu Y C, Tu K N. Scaling effect of interfacial reaction on intermetallic compound formation in Sn/Cu pillar down to 1 μm diameter [J]. Acta Mater., 2016, 117: 146
|
98 |
Ouyang F Y, Hsu H, Su Y P, et al. Electromigration induced failure on lead-free micro bumps in three-dimensional integrated circuits packaging [J]. J. Appl. Phys., 2012, 112: 023505
|
99 |
Shen Y A, Chen C. Effect of Sn grain orientation on formation of Cu6Sn5 intermetallic compounds during electromigration [J]. Scr. Mater., 2017, 128: 6
|
100 |
Chang Y W, Hu C C, Peng H Y, et al. A new failure mechanism of electromigration by surface diffusion of Sn on Ni and Cu metallization in microbumps [J]. Sci. Rep., 2018, 8: 5935
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|