金属学报, 2025, 61(3): 475-487 DOI: 10.11900/0412.1961.2024.00366

综述

高性能超高压镁合金研究进展

付辉1, 孙勇2, 邹国栋2, 张帆1, 杨许生3, 张涛1, 彭秋明,2

1 广州大学 物理与材料科学学院 广州 510006

2 燕山大学 亚稳材料制备与技术国家重点实验室 秦皇岛 066004

3 香港理工大学 工业及系统工程学系 香港 999077

Research Progress in High-Performance Ultrahigh-Pressure Treated Magnesium Alloys

FU Hui1, SUN Yong2, ZOU Guodong2, ZHANG Fan1, YANG Xusheng3, ZHANG Tao1, PENG Qiuming,2

1 School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China

2 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

3 Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China

通讯作者: 彭秋明,pengqiuming@ysu.edu.cn,主要从事轻质合金研究

责任编辑: 梁烨

收稿日期: 2024-11-04   修回日期: 2025-01-02  

基金资助: 教育部长江学者教授计划项目(T2020124)
国家自然科学基金项目(52371104)
国家自然科学基金项目(52171126)
国家自然科学基金项目(52202374)
国家自然科学基金项目(52331003)
广东省基础与应用基础研究基金项目(2024A1515013052)
广州市基础与应用基础研究专题项目(2024A04J4289)
香港理工大学项目(1-YXB4)

Corresponding authors: PENG Qiuming, professor, Tel:(0335)8057047, E-mail:pengqiuming@ysu.edu.cn

Received: 2024-11-04   Revised: 2025-01-02  

Fund supported: Ministry of Education Yangtze River Scholar Professor Program(T2020124)
National Natural Science Foundation of China(52371104)
National Natural Science Foundation of China(52171126)
National Natural Science Foundation of China(52202374)
National Natural Science Foundation of China(52331003)
Guangdong Basic and Applied Basic Research Foundation(2024A1515013052)
Guangzhou Basic and Applied Basic Research Special Project(2024A04J4289)
HK PolyU grant(1-YXB4)

作者简介 About authors

付 辉,男,1988年生,博士孙 勇(共同第一作者),男,1987年生,博士

付 辉,男,1988年生,博士孙 勇(共同第一作者),男,1987年生,博士

摘要

镁合金作为最轻的金属结构材料,在减重领域具有广阔的应用前景。但镁合金的强度偏低、塑性较差、耐腐蚀性能不佳,这些缺点限制了镁合金的广泛应用。超高压处理技术能够使镁合金获得在常压条件下无法制备的微观结构和新相,压力和温度的结合为调控镁合金的微观结构提供了巨大潜力,为打破镁合金综合性能之间的瓶颈提供了新途径。本工作聚焦于高性能镁合金超高压研究进展,概述了超高压处理制备工艺和技术特点;重点阐述了超高压处理调控对镁合金的微观结构、力学性能、耐腐蚀性能和储氢性能的影响;最后展望了未来镁合金超高压处理研究的发展方向。

关键词: 镁合金; 超高压; 强韧化; 耐腐蚀性能; 储氢性能

Abstract

Magnesium alloys are the lightest metallic structural materials. The density of magnesium alloys is ~1.7 g/cm3, which is ~2/3 of the aluminum alloy, ~2/5 of titanium alloys, and ~1/4 of steel. Magnesium alloys possess high specific strength, excellent casting performance, excellent biocompatibility, good electromagnetic shielding performance, remarkable damping performance, and ease of recovery. They have broad application potential in aerospace, defense, automobile transportation, biomedical, electronic 3C, construction, and energy fields. China has substantial Mg resources. The development of low-cost and high-performance magnesium alloys in the lightweight field can transform resource advantages into industrial benefits while promoting energy conservation and emission reduction in production and daily life. This is strategically significant for the enhancement of the country's technology industry and the achievement of the objectives of “carbon peak and carbon neutrality”. However, commercial magnesium alloys currently possess relatively low strength, poor ductility, and corrosion resistance compared with common metallic structural materials like steel and aluminum alloys, significantly hindering the large-scale industrial application of magnesium alloys as structural materials. Many methods exist to enhance the comprehensive mechanical properties of magnesium alloys. Conventionally, the microstructure of magnesium alloys can be modified by adding alloying elements, plastic deformation, and heat treatment. The strength of magnesium alloys can be improved through grain refinement, work hardening, solid solution strengthening, and precipitation strengthening. Nevertheless, magnesium alloys prepared through these traditional methods can achieve excellent strength but at the expense of ductility, leading to the strength-ductility tradeoff in the magnesium alloy. At present, ultrahigh-pressure (UHP) treatment technology can achieve novel phases and modified microstructures that cannot be prepared under atmospheric pressure. The pressure significantly impacts the thermodynamics and dynamic parameters of metallic materials, such as the equilibrium temperature, critical radius for nucleation, interfacial free energy, chemical potential, entropy, enthalpy and heat capacity, and nucleation rate. Thus, the solid solubility, grain size, morphologies, dislocation density and types, twin types and morphologies, as well as the distribution and morphologies of the intermetallic phases of the magnesium alloys, can be modified using UHP treatment combined with temperature. It offers significant potential for altering the microstructure of magnesium alloys, providing new paths to break the bottlenecks between the comprehensive properties. This paper summarizes the progress of the research on the UHP treatment of high-performance magnesium alloys, the fabrication technology, and the technical characteristics of the UHP treatment. Moreover, the effects of UHP treatment on the mechanical properties, corrosion resistance, and hydrogen storage properties of magnesium alloys by modifying the microstructures of magnesium alloys are emphasized. Finally, the future development directions of the UHP magnesium alloys are explored.

Keywords: magnesium alloy; ultrahigh-pressure; strength-ductility synergy; corrosion resistance; hydrogen storage property

PDF (2946KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

付辉, 孙勇, 邹国栋, 张帆, 杨许生, 张涛, 彭秋明. 高性能超高压镁合金研究进展[J]. 金属学报, 2025, 61(3): 475-487 DOI:10.11900/0412.1961.2024.00366

FU Hui, SUN Yong, ZOU Guodong, ZHANG Fan, YANG Xusheng, ZHANG Tao, PENG Qiuming. Research Progress in High-Performance Ultrahigh-Pressure Treated Magnesium Alloys[J]. Acta Metallurgica Sinica, 2025, 61(3): 475-487 DOI:10.11900/0412.1961.2024.00366

镁合金作为最轻的金属结构材料(密度为1.7~2.0 g/cm3),具有高比强度、优良的铸造性能、优秀的生物相容性、良好的电磁屏蔽性能、优秀的阻尼性能和易于回收等优点,在航空航天、国防军工、汽车交通、生物医用、电子3C、建筑以及能源等领域具有广阔的应用前景[1]。然而相比于主流金属结构材料(如钢铁和铝合金),目前商用镁合金材料的绝对强度相对偏低、塑性较差、耐腐蚀性能不佳,还不能作为主流的承力件使用,这大大限制了镁合金结构材料的大规模产业化应用[2]

提高镁合金综合力学性能的途径较为多样。通常通过在镁合金中添加合金化元素,或者对镁合金进行轧制、挤压或剧烈塑性变形(如高压扭转、等通道径角挤压和表面机械研磨)等加工手段,并结合热处理工艺,从而调控镁合金的微观结构。通过上述方法,可充分利用细晶强化、加工硬化、固溶强化、析出强化以及织构弱化等机制,进一步提升镁合金的强度。然而,采用传统工艺制备的镁合金材料,其主要通过阻碍位错运动来增加塑性流变所需的应力,因此在强度提高的同时会伴随塑性的损失和耐腐蚀性能的降低,最终导致镁合金的综合性能失衡[3]。目前,超高压(ultrahigh-pressure,UHP)技术已被广泛应用于改善超硬材料的极端性能,如通过UHP工艺制备的纳米金刚石的断裂韧性是传统合成金刚石的5倍,其断裂韧性甚至可以与铝合金材料相媲美[4]。该纳米金刚石的增韧效应主要归因于通过UHP处理在金刚石中引入了共格多型体、交织纳米孪晶和互锁纳米晶粒等复合界面,从而引发纳米孪晶增韧、层叠复合增韧和相变增韧等多种机制协同作用。由此可见,UHP处理在结构材料的微观结构调控方面展现出了巨大潜力。目前,利用超高压技术,可以突破常压条件下溶质元素(如Al[5]和Li[6]元素等)在Mg基体中的极限固溶度,提升固溶强化效果;同时,超高压处理还可以细化Mg基体的晶粒尺寸[7]和形成纳米孪晶[8],提升细晶强化效果;此外,超高压处理也可以调控析出相形貌[9]和形成稳定的新相[10],提升析出强化效果。另一方面,超高压处理镁合金中溶质元素固溶度的增加,可以提高Mg基体电位,减弱Mg基体的负差异效应和点蚀效应[11];超高压诱导产生的弥散析出相在腐蚀介质中能够形成致密的保护膜,提高镁合金的耐腐蚀性能[12]。综上所述,超高压处理可以有效调控镁合金微观结构,显著改善合金的力学性能和耐腐蚀性能,为高性能镁合金材料的开发研究与工业应用开辟新的途径。此外,镁基合金也是一种理想的固态储氢材料,其储氢介质MgH2储氢容量较大(110 kg/m3),重量氢密度(gravimetric hydrogen density)可达7.6% (质量分数)[13]。然而,由于镁基储氢合金的氢吸收/脱附动力学性能不佳,严重制约了镁基储氢合金的储氢性能和循环寿命[14]。Wu等[15]研究表明,超高压处理可以有效改善金属固态储氢材料的微观结构,甚至产生新相,从而显著提高储氢合金的循环稳定性。因此,超高压处理在改善镁基储氢材料的储氢性能方面也具有远大的前景。

综上所述,利用超高压处理技术,对Mg基体的固溶度、晶粒形貌和尺寸、孪晶种类和形貌、位错(层错)结构、析出相形貌和分布进行调控,可以改善镁合金的硬度、强度、塑性、耐腐蚀性能和储氢性能。本工作综述了超高压处理制备工艺和超高压处理对镁合金相变行为的影响,重点阐述超高压处理对不同体系镁合金微观结构的影响以及相应力学性能、耐腐蚀性能和储氢性能方面的变化,并对高性能超高压镁合金未来的发展方向进行展望,以期为超高压镁合金技术体系提供理论指导。

1 超高压处理技术概述

1.1 常见的超高压处理装置

目前实验室中常见的超高压装置为金刚石压腔(diamond anvil cell,DAC)和多面砧压机(multi-anvil press,MAP)。如图1a[16]所示,DAC的核心部件由2颗平行对置的金刚石顶砧构成,位于2个金刚石顶砧尖端之间的是一个微小的金属垫片,中间打孔用于容纳待加压的样品。为了保证样品能够均匀地受压,通常需要加入液体或气体作为压力传递介质(pressure transmitting medium,PTM)。当2个相对的顶砧被推到一起时,样品被流体静力压缩,挤压它们之间的垫片并压缩压力介质,压力介质将力传递给样品。红宝石晶体因其荧光能量在压力作用下产生位移的特性,通常被用作压力指示材料[16]。DAC通过施加机械力使2颗金刚石顶砧相互挤压,从而在样品区域内产生极高的压力,可以轻松产生高达数十万个大气压级别的压力。MAP是从多个方向施压(通常为六面或八面)的高压装置,顶砧的材料通常为硬质合金或耐高温陶瓷。图1b[17]为常见的六面顶砧压机及其样品装配示意图,通过液压系统施加外力导向块进行压缩,使得6个顶砧向中心运动,最终形成一个由6个顶砧包围的立方体压缩空间,对样品施加均匀的超高压。与DAC相比,MAP能够处理更大体积的样品,并在较大体积的样品中产生均匀的高压环境。通过在超高压装置中集成加热元件,实现样品在高压条件下同步受热,模拟多种极端条件下的物质行为,对于特定材料合成和相变研究具有至关重要的意义。

图1

图1   常见超高压(UHP)处理装置示意图[16,17]

(a) diamond anvil cell (DAC)[16] (PTM—pressure transmitting medium) (b) multi-anvil press (MAP)[17]

Fig.1   Schematics of the common ultrahigh-pressure (UHP) treatment equipments


1.2 超高压处理对镁合金相变热力学和动力学行为的影响

关于压力对物质结构和性质影响的研究可以追溯到美国物理学家Bridgman[18]开创性的工作,他开发出了压力能达到10 GPa的超高压设备,并研究了压力对材料多项关键性质和现象(包括导热性和导电性、熔化性、反应动力学行为、黏度、可压缩性、抗拉强度等)的影响。Bridgman[18]的工作证明了压力对于研究物质结构和性质的连续和不连续变化的重要性。压力可以通过有效地缩短材料的原子间距和增加相邻电子的轨道重叠进一步改变材料的电子结构、晶体结构和原子/分子的相互作用。此外,压力可与温度协同作用,加速化学反应进程并诱导晶体结构发生相转变。对于一个封闭的均相系统而言,Gibbs自由能的变化量(dG)与温度和压力变化量之间的关系可以表示为:

dG=-SdT+VdP

式中,S为熵,V为体积,dT为温度变化量,dP为压力变化量。当温度恒定时,即dT = 0, 式(1)可表示为:

GPT=V

式(2)表明,在恒定温度下,相的Gibbs自由能随压力的增加而成比例的增加。因此,利用超高压可以促进摩尔体积较小的新相的形成。目前,超高压处理技术已在材料科学领域得到广泛应用,涵盖合成难以通过其他技术手段获取的新材料、促使特定材料发生相变以及验证基础理论的正确性[19]

大气压条件下,在镁合金凝固过程和相变等过程中,温度和化学成分对其微观结构的影响已得到较为系统的研究[20]。然而,在超高压(即吉帕级压力)条件下,关于温度和化学成分对镁合金微观结构的演变机制及其强化机制的研究尚显匮乏。在超高压条件下,金属材料的熔点会发生改变。金属材料的熔化/凝固属于一级相变,涉及到不同相的比焓,压力对熔点的影响可以通过Clausius-Clapeyron方程来表示[21]

dPdT=ll2TmΔv

式中,l1→2为相转变(1、2表示熔化或凝固过程中不同的相状态:熔化时,1表示固态,2表示液态;凝固时,1表示液态,2表示固态)时的比焓,Tm为常压下的熔点,Δv为相变时改变的比体积。 式(3)描述了在特定的压力和温度下,相变过程中压力-温度边界的斜率与相变时的比焓及改变的比体积之间的关系。通过 式(3)可以从相变的热力学参数中定量计算出压力对材料熔点的影响。具体到镁合金,合金熔化(凝固)时会吸收(放出)结晶潜热,此时l1→2 > 0 (< 0),同时熔化(凝固)时镁合金的体积会发生膨胀(收缩),因此Δv > 0 (< 0)。因此,镁合金发生熔化(凝固)时,始终有dP / dT > 0,这意味着在高压条件下镁合金的熔点随着压力的增加而增加,使常压下镁合金的平衡相图结构和相组成发生改变,影响镁合金相变过程中的热力学和动力学参数,从而在镁合金中产生常压下无法形成的一些特殊微观结构。对于镁合金相变过程中的热力学参数,压力的增加降低了新相/基体界面的界面自由能,使新相成核临界半径减小,从而使单位体积内的形核数增加,使合金的微观结构细化;对于镁合金相变过程中的动力学参数,增加压力使扩散活化能增大,成核速率显著(指数)增加,扩散系数呈指数下降,新相长大受到抑制,新相组织得到细化[21]

2 超高压处理对镁合金力学性能的影响

在镁合金超高压处理过程中,通常伴随着高温保载处理。通过计算并对比加载压力下镁合金的熔点和当下的加载温度,可以将镁合金超高压处理分为2类:一类为超高压固态热处理(加载温度低于熔点),此时镁合金体系发生的是固-固相变;另一类为超高压重熔再凝固处理(加载温度超过熔点),此时镁合金体系发生的是液-固相变。此外,各类镁合金体系在经超高压处理时,其微观结构演变机制具有不同规律,进而对合金的力学性能产生不同的影响。以下为对Mg-Al、Mg-Li和Mg-RE合金在超高压下的组织演变规律及其相应力学性能的总结综述。

2.1 Mg-Al合金

Mg-Al系合金是目前使用范围最广的商用镁合金。Mg-Al系合金主要由α-Mg基体相和β-Mg17Al12金属间化合物相组成。在常压下,通过固溶处理和人工时效的方法可在Mg-Al合金中得到连续和不连续析出的β-Mg17Al12相。这2种析出相均为粗大的片状相,对合金不能起到有效的析出强化效果[22]。超高压不仅能有效提升Mg-Al合金中Al元素在α-Mg基体中的固溶度,而且会显著增大Mg-Al合金熔体凝固时的过冷度。与此同时,相比于常压条件,高压条件下Al溶质的扩散系数呈指数级下降,使得Mg-Al合金在超高压凝固过程中发生溶质元素再分配,进而促使α-Mg基体和共晶组织得到显著细化。

Ge等[5]研究了超高压固态热处理条件下,Al元素在α-Mg基体中的极限固溶度。常压下,Al在α-Mg基体中的极限固溶度为12.7% (质量分数,下同)。Mg-11Al合金经常压固溶处理后,铸态合金中弥散分布的β-Mg17Al12共晶相发生了固溶分解,大量Al元素固溶到α-Mg基体中,但晶界处仍存在残余的共晶组织。Mg-27Al铸态合金中弥散分布着过量的β-Mg17Al12共晶相,经过超高压固态热处理后,β-Mg17Al12共晶相发生了完全固溶,固溶到α-Mg基体中的Al含量达到27%,是常压极限固溶度的2.1倍。此时,超高压固溶Mg-27Al合金展现出超高的显微硬度(约117 HV)。这主要归因于超高压固态热处理中,过饱和的Al原子固溶到Mg晶格中,导致Mg晶格畸变和内应力增加,进而更有效地阻碍位错运动。超高压处理能够显著提高Mg-Al合金的强度,但是超高压处理过程中引入的过高残余应力会导致Mg-Al合金的塑性出现显著的降低[5]

Wang等[7]研究了超高压重熔条件下AZ91D合金的凝固组织。结果表明,超高压凝固AZ91D合金由等轴α-Mg枝晶和纳米级β-Mg17Al12组成,在4 GPa超高压条件下,α-Mg晶粒的平均尺寸从(395 ± 5) µm (常压凝固)细化到(12 ± 3) µm,Al在α-Mg中的固溶度也增加到6.25%。4 GPa超高压处理样品的抗压强度和相对压缩比分别为402 MPa和27%,与常压铸态AZ91D相比,分别提高了50%和93%。Zhao等[9]研究了Mg-30Al合金在超高压下的凝固行为。如图2[9]所示,与铸态试样相比,超高压条件下凝固的α-Mg基体组织更加均匀,网状共晶组织更加细化。随着超高压处理压力和温度的升高,网状共晶相的面积分数降低,而α-Mg基体和β-Mg17Al12共晶相中的Al含量均升高。Mg基体中Al含量的增加使Mg基体的a减小,c / a增大(a、c均为晶格参数)。纳米压痕结果表明,高压高温处理后,Mg-30Al合金的硬度和Young's模量提高,这主要是由于β-Mg17Al12相和α-Mg基体中Al元素的固溶强化所导致的。Lin等[23]进一步研究了压力和成分对Mg-Al合金微观结构的影响。结果表明,在吉帕级高压下凝固时,Al元素在α-Mg基体中的固溶度增加。此外,随着压力增加,α-Mg枝晶之间共晶转变所需的Al含量从5% (常压)增加到7% (3 GPa),再增加到9% (4 GPa)以上。共晶点处Al含量由32% (常压)增加到36% (3 GPa)和38% (4 GPa)。在4 GPa时,相同Al含量的Mg-Al合金中α-Mg晶粒数量是常压铸态合金的5~11倍。α-Mg晶粒数量随合金中Al含量的增加而增加,α-Mg晶粒尺寸随原合金中Al含量的增加而逐渐减小。超高压凝固条件下,Mg-Al合金组织细化归因于高压下α-Mg晶体的成核速率增加,同时Al含量的增加使本构过冷性增强,进一步提高了成核速率,抑制了α-Mg晶体和共晶β-Mg17Al12相的生长。

图2

图2   不同状态Mg-30Al合金的OM像[9]

Fig.2   OM images of Mg-30Al samples under different states[9] (A—snowflake-like Mg matrix, B—eutectic phase, SHP—super-high pressure. 800, 950, 1050, and 1150 represent 800, 950, 1050 and 1150 oC, respectively)

(a) as-cast (b) SHP-2 GPa-800 (c) SHP-2 GPa-950 (d) SHP-4 GPa-1050 (e) SHP-4 GPa-1150


综上所述,超高压条件下,Mg-Al合金的微观结构发生了显著的变化。一方面,超高压固态热处理可显著提高Al元素在Mg基体中的固溶度,甚至突破了常压下的极限固溶度,表现出极强的固溶强化效应[5]。另一方面,超高压重熔处理可显著细化镁合金的微观结构,通过液-固相变过程中的溶质元素再分配,同时细化α-Mg晶体和β-Mg17Al12相,从而实现细晶强化作用[9]

2.2 Mg-Li合金

Mg-Li合金是密度最低的镁合金材料。在常压下,当Li含量低于5.7%时,Li元素固溶在Mg基体中,合金由hcp结构的α-Mg单相构成。Li含量高于10.3%时,所有Mg原子以固溶体的形式溶解在Li基体中,合金中形成bcc结构的β-Li单相结构。当Li含量在5.7%~10.3%之间时,Mg-Li合金主要由hcp结构的α-Mg相和bcc结构的β-Li相组成。随着Li含量增加,Mg-Li合金中β-Li相的体积分数增加,合金塑性变形能力增加,但强度也明显下降[24]。超高压处理可增加Li元素在Mg基体中的固溶度,促使β-Li相向α-Mg相转变。同时,超高压处理导致α-Mg相细化,并易于在α-Mg相中诱导形成{101¯1}压缩孪晶。

Fu等[6]研究了双相Mg-8Li合金经过超高压处理后的微观结构演化规律及其相应的力学性能。结果表明,常压下Mg-8Li合金具有α-Mg + β-Li双相结构;经过超高压处理后,双相组织中β-Li相的质量分数减少,且该减少趋势随着压力增大而愈发显著。此外,在同一压力下,随着超高压处理温度增加,β-Li相的质量分数先减少后增加,如图3a[6]所示。这是由于在Mg-Li合金体系中,随着超高压处理温度升高,β-Li相发生固溶分解,导致其质量分数的减少;随后,Mg-Li合金发生超高压重熔再凝固,β-Li相以枝晶形态重新析出,并与α-Mg相共存(图3a[6])。在超高压处理样品中,6 GPa-1000 (N GPa-M表示载荷为N GPa,热处理温度为M ℃的样品,下同)样品中β-Li相质量分数最少。此外,超高压固态热处理在α-Mg相中引入了纳米尺度的层状{101¯1}-{101¯1}双压缩孪晶(contraction twin,CTW) (图3b[6])。如图3c[6]所示,大量共格富Li纳米析出相在孪晶界处有序聚集。该超高压Mg-8Li合金显示出了优异的比屈服强度(约160 kN·m/kg)和良好的塑性(约23.6%)。这归因于该合金通过超高压固态热处理获得了纳米尺度的{101¯1}-{101¯1}双压缩孪晶组织,该组织的层状结构具有稳定的界面特性,通过形成交错的连续网格,有效地阻碍了位错的运动,从而同时提高合金的强度和塑性[8]。分子动力学模拟和实验结果均表明,共格富Li纳米析出相倾向于占据{101¯1}压缩孪晶边界的界面空位,并优先沿孪晶边界生长。塑性变形过程中,共格富Li纳米析出相具有双重作用:一方面,共格富Li纳米析出相可以产生类似沉淀强化的钉扎作用,有效阻碍位错的运动;另一方面,其可提高{101¯1}压缩孪晶界的临界剪切应变,抑制孪晶界的变形以及退孪生过程中的宽化现象,进而同时提高合金的强度和塑性[25]

图3

图3   超高压处理后双相Mg-8Li合金中β-Li相的质量分数及微观结构[6]

Fig.3   Phase fraction of β-Li phase (a) and typical TEM (b) and scanning transmission electron microscopy (STEM) (c) images of dual-phase Mg-8Li alloys treated at 1000 oC under 6 GPa[6] (LAGB—low angle grain boundary, MTB—macrotwin boundary, NTB—nanotwin boundary)


Peng等[26,27]进一步研究了Mg-13Li合金在超高压处理下的微观组织演化规律及其强化机制。选取铸态和冷轧态Mg-13Li合金为原始样品,这2种材料在常压下的微观结构为单相组织,由bcc结构的β-Li相构成。经6 GPa超高压处理后,铸态和轧制态Mg-13Li合金中部分β-Li相转变为α-Mg相,且α-Mg相中均出现了纳米尺度的{101¯1}压缩孪晶和层错(stacking faults,SFs),构成了CTW-SFs的层状结构。超高压处理后,铸态和冷轧态Mg-13Li合金在室温下均表现出优异的比屈服强度和良好的塑性,分别为约179 kN·m/kg和约25% (铸态合金超高压)以及约182 kN·m/kg和约21% (轧制态合金超高压),该性能可与商业铝合金和钢相媲美。结合分子动力学模拟和透射电镜(TEM)分析,可以看出基面层错是在压缩孪晶的成核过程中形成的,且基面层错的存在进一步阻碍了压缩孪晶的宽化。这种纳米尺寸的共格CTW-SFs具有与孪晶界低能界面相似的层状结构,能够有效阻碍位错运动,进而显著提高超高压样品的强韧性。

此外,部分研究人员通过向Mg-Li合金中添加其他合金化元素,探究了具有复杂组分的Mg-Li-x合金经超高压处理后的微观结构演化机制及其相应力学行为。Zhang等[28]对Mg-8Li-1Y-0.5Zn合金进行了6 GPa的超高压处理。结果表明,6 GPa-900样品中α-Mg相存在大量的纳米尺度的{101¯1}压缩孪晶和纳米析出相YZn5;而在6 GPa-1200样品中,α-Mg相含有大量的基面位错。这2种超高压样品均表现出优异的力学性能,其中6 GPa-1200样品的屈服强度和塑性可分别达到约270 MPa和约19%,其强度是原始样品的3倍且没有塑性损失。该样品力学性能的显著提升主要归因于密集分布的纳米级基面层错对位错运动的有效阻碍。Wang等[29]研究了Mg-8Li-4Y-2Er-2Zn-0.6Zr合金经超高压处理后的微观结构演化机制及其相应的力学行为。结果表明,超高压处理后,合金的晶粒尺寸发生明显细化,α-Mg相形貌由块状转变为针状。6 GPa-1000样品中存在纳米级{101¯1}压缩孪晶和球状富RE (Y、Er、Zn)纳米析出相,该样品表现出优异的极限抗拉强度(约277 MPa)和良好的塑性(约24%),以及优良的阻尼性能(Q-1 = 0.05,Q表示品质因数)。该合金优良的力学性能主要归因于晶粒细化、纳米孪晶强化以及纳米级球状第二相的析出强化。

综上所述,与Mg-Li-x合金相比,超高压处理后二元Mg-Li合金的力学性能更为优异,如图4[6,26,28,29]所示,二元Mg-Li合金的屈服强度和塑性均高于Mg-Li-x合金。这是由于超高压处理后二元Mg-Li合金中容易形成双压缩孪晶和CTW-SFs层状结构,与Mg-Li-x合金中形成纳米第二相相比,这些层状结构对合金强度具有更好的贡献[27]

图4

图4   Mg-Li基合金超高压力学性能比较[6,26,28,29]

Fig.4   Comparisons of the yield strength and fracture ductility of UHPed Mg-Li-x alloys[6,26,28,29]


2.3 Mg-RE合金

Mg-RE合金中元素种类较多,其常压相图较复杂,析出相种类繁多,在室温下和高温下表现出优异的力学性能,在航空航天和国防工业领域具有巨大的应用潜力。常压下Mg-RE合金主要有4种强化机制:固溶强化、晶粒细化、亚稳β系列析出相的细化和长周期有序堆垛(long period stacking ordered,LPSO)相的形成[30]。Mg-RE合金经过超高压处理后,其微观结构发生显著变化,α-Mg基体组织得以细化,同时RE元素在α-Mg基体中的固溶度增大,且第二相形貌得到进一步优化,进而显著提升Mg-RE合金的力学性能。

Zhao等[31]利用超高压固态热处理工艺对Mg-10Y合金进行了超高压时效处理(6 GPa、300 ℃),得到纳米尺度的Mg24Y5球形析出相。相比于传统常压时效镁合金,该合金表现出更高的峰值硬度、强度和塑性。这是由于相比于常压时效获得的片状强化相,超高压时效获得的球形析出相能够更加有效地降低塑性变形过程中的应力集中,从而提高超高压时效合金的强度和塑性。Fu等[10]通过超高压渗硼处理在Mg-7Y合金中得到了YB12纳米析出相,该高熔点(超过2000 ℃)纳米YB12析出相呈弥散分布,显著提高了Mg-Y合金的强度和热力学稳定性。Fu等[32]对该超高压渗硼合金进行后续半固态挤压处理,成功得到具有粗晶+细晶双峰结构的合金,该合金室温下的塑性达到约38.5%,在117 ℃可获得约108.0%的超塑性。该合金优异的力学性能归因于其独特的双峰结构。其中,细晶粒具有较好的强度,粗晶粒有利于位错积累,同时结合拉伸孪晶、大角度晶界和稳定的高熔点纳米级YB12析出相的共同作用,使得合金具有优异的力学性能[33]

Fu等[33]利用超高压处理技术对Mg-2.5Zn-6.8Y合金进行了研究。结果表明,铸态合金由α-Mg等轴晶和连续片层的LPSO相组成;经过超高压处理后,随着温度的升高,LPSO相逐渐被(Mg, Zn)3Y共晶相取代。超高压样品相比于铸态样品表现出更高的硬度和强度。超高压样品力学性能的提高主要归因于大量细小(Mg, Zn)3Y第二相的析出强化。Matsushita等[34~36]研究了Mg-6Zn-9Y合金在超高压处理后的微观结构演化机制及其相应的力学行为。结果表明,常压铸态合金的相组成为10H和18R的LPSO结构。经3 GPa超高压处理后,随着保载温度的升高,LPSO相逐渐向D03相和α-Mg相转变(600 ℃),当温度达到700 ℃后,D03相和α-Mg相发生了熔化[35]。超高压处理压力增至20 GPa,保载温度在700 ℃时,合金的微观组织由D03相和α-Mg相构成[36]。在这些超高压样品中,10 GPa-1000合金具有独特的超细球晶双相组织,其抗压屈服强度高达780 MPa。在镁合金中,此类独特的球晶结构极为罕见。通常情况下,其在共晶合金中以非等效凝固形式存在,而在超高压条件下,溶质元素低扩散速率和主动成核的特性使得球晶的形成成为可能[34,37]。Zhou等[38]通过超高压处理和退火工艺在Mg-0.5Zn-2.2Y合金中引入了宽度约为4层的原子,平均间距约为27.2 nm的准LPSO相。该合金具有优异的屈服强度(约205 MPa)和伸长率(约23%)。通过TEM分析和分子动力学模拟可以看出,该合金在塑性变形过程中容易在准LPSO相附近形成{101¯2}拉伸孪晶,该拉伸孪晶与准LPSO相构成了改性的∠86.3°准LPSO相-孪晶界和∠3.7°准LPSO相-孪晶界这2种交互界面。超高压合金强度的提高主要与∠86.3°准LPSO相-孪晶界有关,该交互界面能有效地抑制位错运动。而合金塑性的提高与∠3.7°准LPSO相-孪晶界交互界面和纳米尺度准LPSO相的微扭结有关,这些结构为塑性变形提供了通道。

上述研究表明,超高压处理能够显著改善Mg-RE合金的微观结构,包括对第二相和LPSO相形貌的调控。LPSO相在高压条件下并不稳定,易分解成α-Mg相和Mg-RE金属间化合物[36]。在超高压条件下产生的具有特殊形貌的LPSO相,其强化效果较为有限,需与孪晶等界面协同作用才能提供较好的强化效果[37,38]。与之相比,Mg-RE金属间化合物在超高压条件下能够被优化为球状纳米析出相。球状纳米析出相具有优异的热力学稳定性,可更加显著地提高Mg-RE合金的力学性能[10,31]

综上所述,在超高压条件下,镁合金的相变动力学和热力学参数会发生显著的改变,从而会改变合金的微观结构。如图5所示,对于不同的镁合金体系,超高压处理对合金微观结构的影响具有不同的特点。超高压处理会增加Al元素在Mg-Al合金中的基体固溶度,细化Mg基体的晶粒尺寸,从而提高合金的强度;Mg-Li合金经过超高压处理后会形成纳米孪晶、层错组织和纳米析出相,从而提高合金的强度和塑性;超高压会使Mg-RE合金发生相转变,诱导形成Mg-RE金属间化合物和纳米孪晶,从而提高合金的室温和高温强度。

图5

图5   超高压处理对Mg-Al、Mg-Li及Mg-RE合金微观结构的影响

Fig.5   Summary of effects of the UHP on the microstructure of the Mg-Al, Mg-Li, and Mg-RE alloys


3 超高压处理对镁合金耐腐蚀性能的影响

镁合金耐腐蚀性能较差,这主要因为Mg的电化学电位较低、化学活性较高,易于发生氧化反应,进而导致腐蚀发生。此外,镁合金中的合金化元素,如Al、Zn等,在腐蚀环境中可能引发电偶腐蚀,从而加速镁合金的腐蚀。合金表面腐蚀后形成的氧化膜不够稳定或致密,难以阻碍腐蚀进程的进一步深入[39]。提高镁合金的耐腐蚀性能主要有以下2种途径:(1) 通过表面非晶化、阳极氧化、化学转化膜和有机涂层等表面处理方法在合金表面形成致密的保护层,防止腐蚀介质的侵入[40];(2) 通过添加合金化元素和改进合金加工工艺对镁合金的微观结构进行调控,使合金在腐蚀介质中自发地形成致密的保护膜,从而避免受腐蚀介质的进一步侵蚀[41]。超高压处理对镁合金耐腐蚀性能的提升主要基于第二种途径,即通过调控镁合金的基体相组织和微观结构来改善合金的耐腐蚀性能。

Feng等[11]尝试采用超高压固态热处理提升Mg-Al合金的耐腐蚀性能,通过对Mg-25Al合金进行高压固态热处理,获得了单相的α-Mg超固溶组织。随后结合时效处理,使合金中析出了大量弥散分布的Mg17Al12纳米颗粒。该超高压合金具有优异的耐腐蚀性能,可与高纯Mg相媲美,这主要归因于富Al氧化膜的存在。合金表面的富Al氧化膜显著降低了点蚀、负差效应和残余应力。Peng等[42]研究了超高压凝固处理Mg-Y基合金的腐蚀行为。结果表明,随着加载压力和保温温度的升高,Y元素在α-Mg基体中的固溶度增加,α-Mg枝晶组织得到细化,次级枝晶臂间距减小。超高压合金的耐腐蚀性能相比于原始铸态合金得到明显改善,这主要归因于在腐蚀过程中,超高压合金中形成了稳定的枝晶/电解质双电层,且腐蚀产物在表面偏析积累形成了有效的氧化物保护膜。此外,Feng等[12]研究了Mg-13Li合金超高压处理后的腐蚀行为。结果表明,合金在超高压处理后由单相β-Li相(bcc结构)向α-Mg (hcp结构)和β-Li (bcc结构)双相结构组织转变。其中,4 GPa-900超高压处理Mg-13Li合金晶粒尺寸最大,但晶内结构最均匀,在3.5%NaCl (质量分数)溶液中的平均腐蚀速率为~1.81 mm/a。如图6[12]所示,随着浸泡时间增加,合金表面逐渐形成一层平整且致密的氧化膜,没有发生明显的局部腐蚀。该超高压合金耐腐蚀性能提升归因于腐蚀过程中表面膜上Mg(OH)2和Li2CO3的共存机制。其中前者不溶于水,后者会增强复合膜的致密性,防止腐蚀性Cl-的进一步渗透。Yang等[43]利用超高压技术制备了具有优异耐腐蚀性能的双相Mg-8Li-1Y合金,其在3.5%NaCl (质量分数)浸泡溶液中平均腐蚀速率低至约0.47 mm/a,该数值低于迄今为止报道的大多数镁合金。该超高压合金优异的耐腐蚀性能归因于以下3个方面:致密的Mg(OH)2 + Li2CO3复合氧化膜、富Li2CO3相的动态溶解/再生、复合膜的自修复特性。即当合金表面膜出现裂纹时,再生的Li2CO3迅速填充表面膜的裂纹,直至完全修复,从而有效地阻止了腐蚀溶液的渗透。

图6

图6   在3.5%NaCl (质量分数)溶液中浸泡不同时间后4 GPa-900 Mg-13Li样品表面的准原位SEM像[12]

Fig.6   Near-in-situ SEM images of surfaces of 4 GPa-900 Mg-13Li sample immersed in 3.5%NaCl (mass fraction) solution for 5 min (a), 15 min (b), 30 min (c), 60 min (d), 90 min (e), and 120 min (f)[12]


综上所述,超高压处理镁合金耐腐蚀性能的提升在本质上与传统工艺制备的镁合金耐腐蚀机制是相同的,都是在合金表面形成保护膜来提高耐腐蚀性能。通常,镁合金通过添加大量的合金化元素如Al、Ca、Nd和Y等,使镁合金在腐蚀过程中在合金表面形成氧化膜保护层来提高合金的耐腐蚀性能[41,44]。然而大量合金化元素的添加会使镁合金的力学性能发生恶化。超高压处理镁合金通过提高元素溶质元素固溶度,突破常压下极限固溶度的瓶颈,不仅利用固溶强化提高了镁合金的力学性能;而且可以提高Mg基体电位,减弱合金的点蚀效应,在腐蚀过程中将合金化元素析出从而形成致密的Al2O3[11]和Y2O3[42]氧化物保护膜,提升合金的耐腐蚀性能。另一方面,bcc结构的Mg-11Li-3Al-0.6Y-0.2Zr合金经过变形加工和热处理后,在腐蚀过程中合金表面可以形成均匀的Li2CO3保护性薄膜[45]。该纳米级的Li2CO3薄膜能够抵抗环境的腐蚀,当合金表面受到破坏时能够自然再生。而超高压处理的Mg-13Li合金具有hcp和bcc双相结构,在腐蚀过程中合金表面不仅形成了具有再生性的Li2CO3膜,而且形成了Mg(OH)2膜,从而增强了合金表面膜的致密度,提升了Mg-Li合金的耐腐蚀性能[12]。通过降低Li含量和加入合金化元素Y,超高压处理的Mg-8Li-1Y合金得到了具有α-Mg、β-Li和富Y相共存的微观结构。该合金在腐蚀过程中也能形成Mg(OH)2 + Li2CO3复合氧化膜,同样Li2CO3膜的动态再生特性保证了表面保护膜的完整性和致密性,显著提升合金的耐腐蚀性能。

4 超高压处理对镁合金储氢性能的影响

氢能作为一种理想的绿色能源,具有来源广泛、燃烧热高以及环境友好等优点。然而,由于缺乏适宜的储存手段,H作为能量载体的应用在很大程度上受到限制。理想储氢方法应具有以下特点:较高的体积和重量氢密度、完全可逆的吸放氢过程、足够的安全性以及可在大气环境条件下操作。相比于压缩气体储存和液态储存,固态存储有望实现高体积氢密度和出色的安全性,被视作极具潜力的氢存储途径之一。镁合金凭借其高吸氢容量,成为最理想的新型固态储氢材料之一[46]。镁合金作为储氢材料时面对的主要问题包括:较高的热力学稳定性、较差的氢化/脱氢动力学特性以及循环过程中储氢材料团聚和粉化等问题。过渡金属(TM)元素因其具备的特殊结构、电学和磁性能,通常被用作镁合金的改性添加元素。许多TM元素(如Fe、Co、Ni等)还能作为催化剂加速吸/放氢过程,从而提高反应速率。此外,TM元素还可以与Mg形成固溶体或合金,从而改善镁基合金在吸/放氢循环使用中的相稳定性,减少结构变化带来的性能衰减。超高压技术可以使Mg与TM元素形成常压下不能形成的金属间化合物,或者进一步调控Mg-TM储氢合金材料的微观结构和物相组成,提升镁基固态储氢合金的热力学/动力学性能,同时抑制性能衰减,增强吸放氢循环的稳定性。

Mg与Ni会形成Mg2Ni和MgNi2 2种金属间化合物。在350 ℃和4 MPa的压力条件下,Mg2Ni易与H反应形成Mg2NiH4,但该氢化物吸氢温度高,储氢容量低,导致MgNi2不易吸氢。Chen等[47]将MgH2和Ni按照2∶1的化学计量比混合,在6 GPa超高压条件下制备出一种新型Mg1.0Ni1.02H2氢化物,发现该Mg1.0Ni1.02H2氢化物具有非晶结构,可以降低Mg和H之间的结合能,使其脱氢温度范围降低至80~200 ℃。同时,该氢化物在3.3 MPa和150 ℃左右的温度能够实现可逆的吸/放氢过程。Takamura等[48]在超高压条件下合成了新型的Mg2Ni3H3.4三元氢化物。该氢化物具有正交结构,在227 ℃即可实现析氢。Kataoka等[49~51]也利用超高压处理技术对Mg-Ni合金进行了改性研究。结果表明,在超高压条件下,合金中析出MgNi2H3.2、MgNi2H y 、和Mg(Ni1 - x Cu x )2H y 等氢化物。Mg2Ni2H3.2具有bcc结构,储氢量为2.23% (质量分数),在187 ℃即可实现析氢;MgNi2H y 具有正交结构,在173 ℃下可实现析氢;Mg(Ni1 - x Cu x )2H y 具有出正交结构(x = 0~0.1)和体心四方结构(x = 0.15~0.2),储氢量为2.23%~2.32% (质量分数)。随着Cu含量增加,最低析氢温度可降至156 ℃。Kamata等[52]利用超高压处理技术制备了MgNi1 - x Cu x (x = 0.2或0.5)和MgNi0.9Ti0.1 2种储氢合金,上述2种氢化物均具有CsCl晶体结构,脱氢温度随着Cu或Ti取代Ni量的增加而降低,吸氢量由1.65%提高到2.06% (质量分数)。Peng等[53]研究了超高压对LaMg4Ni合金的相组成、相形貌和储氢性能的影响。结果表明,经过超高压处理后,LaMg4Ni合金微观结构明显细化,合金相组成由La2Mg17、LaMg2Ni和Mg2Ni相转变为LaMg2Ni、Mg2Ni和LaMg3相。与原始铸态合金相比,超高压LaMg4Ni合金均表现出更好的活化性能,其脱氢温度约为217 ℃,明显低于铸态合金。超高压合金的脱氢量为2.69% (质量分数),相当于原始铸态合金的1.54倍。Fu等[54]研究了超高压处理对Mg-5Ni合金储氢性能的影响。结果表明,合金经过超高压处理后Mg2Ni相分布更加均匀,而且形成了致密细化的枝晶界面,如图7[54]所示。超高压Mg-5Ni合金的脱氢起始温度降低至约262 ℃,且低温下的氢脱附动力学和结构完整性得到改善。该超高压合金储氢性能的提升主要归因于均匀分布的Mg2Ni相界面和枝晶内部存在的大量{112¯0}棱柱晶面为H+的迁移提供了更多通道,同时,大量均匀的网状树枝晶消除了在吸/放氢过程中产生的应力集中,保证了良好的循环稳定性。Sun等[55]研究了超高压处理Mg-Ni-Y合金的储氢性能。结果表明,超高压Mg-Ni-Y合金的初始放氢温度比铸态Mg-Ni-Y合金低41 ℃,在250 ℃条件下,1500 s时超高压Mg-Ni-Y合金的吸氢量即可达到5.12% (质量分数),是铸态合金的1.22倍。在210 ℃条件下,1500 s时其析氢量达到4.53% (质量分数),而铸态Mg-Ni-Y合金在此温度下无法析氢。该超高压Mg-Ni-Y合金储氢性能高的原因主要与以下3个方面有关:LPSO相与基体高角界面体积分数的增加、H扩散距离的减小以及超细LPSO结构内部氢扩散的低能垒。

图7

图7   铸态和超高压处理Mg-5Ni合金的微观结构[54]

Fig.7   OM (a, c, e, f) and SEM (b, d) images of Mg-5Ni alloys with different states (1100, 1400, and 1600 represent 1100, 1400, and 1600 oC, respectively)[54]

(a, b) as-cast sample (c, d) 6 GPa-1100 (e) 6 GPa-1400 (f) 6 GPa-1600


Cu元素可以与MgH2中的Mg元素形成稳定的Mg2Cu化合物,有助于增强合金结构稳定性,减少性能衰减。Torres等[56]通过高压合成方法使Mg-Cu-H体系中析出一种新型Mg3CuH0.6三元氢化物,该氢化物的晶体结构为立方结构。Cu的引入使MgH2氢化物的放氢温度降低至约240 ℃。这表明Cu掺杂MgH2对其脱氢动力学具有明显的积极影响。V元素具有较好的催化性质,可以显著提升MgH2的吸放氢速率。Kyoi等[57]首次在超高压条件下制备出具有fcc超结构的新型镁基V掺杂氢化物Mg6VH14。该氢化物在-113 ℃的低温下就可进行放氢。Moser等[58]使用类似的超高压处理方法获得了另一种具有萤石型亚晶格的Mg6VH14氢化物,该氢化物在吸/放氢循环过程中可以长期保持稳定。Pd元素能够调节Mg-H体系的相结构,优化反应热力学性能,有助于实现更低温度下的高效储氢。Goto等[59]研究了Mg-Pd体系中高压合成的新化合物Mg0.2Pd的热稳定性。该化合物具有bcc结构,在390 ℃以下稳定存在。吸氢后形成的Mg2PdH x 氢化物的放氢温度为313 ℃,比商业MgH2的放氢温度要低约100 ℃。Fe成本低,有一定催化性能,可以通过调节成分比改善反应热力学,实现更低温度下的吸/放氢过程。Retuerto等[60]将MgH2和Fe均匀混合物进行直接高压反应,得到一种新型的三元金属氢化物Mg2FeH6。该产物具有K2PtCl6型晶体结构,平均粒径为1~2 μm。与球磨制备方式相比,该微晶生长良好,形状和尺寸高度均匀,制备周期短,产率高达83%且不会形成MgO,因此具有优异的循环性和吸氢动力学特性。YH3可以促进MgH2的吸/放氢过程,与MgH2结合还可提高材料整体的热稳定性。Goto等[61]在超高压下成功合成了一种淡黄色的氢化物。该新型氢化物的化学成分为MgH2(YH3)0.67,具有fcc结构,可在327 ℃以下稳定存在,在高压下可以可逆地吸氢。在327 ℃温度下放氢量为1.4% (质量分数),在脱氢后仍保持bcc晶体结构。

综上所述,超高压处理能够有效优化镁合金的微观结构、促进新相形成,并降低杂质对储氢性能的影响,进而提高合金的吸/放氢能力。经超高压处理后,镁合金最低析氢温度可低至156 ℃[50],最高析氢量可达4.53% (质量分数)[55],且吸/放氢循环稳定性得以增强。此外,高压环境促进了H原子与镁合金之间的相互作用,使得H原子更容易嵌入到晶格中,从而形成常压下难以获得的氢化物。因此,超高压处理技术成为显著提高Mg-TM合金材料储氢性能的有效途径之一。

5 总结与展望

本工作主要综述了超高压处理镁合金在力学性能、耐腐蚀性能和储氢性能方面的相关研究进展。通过超高压处理,可以显著改善镁合金的微观结构,包括增加合金元素在Mg基体中的固溶度,细化Mg基体组织,在Mg基体中引入大量的孪晶和层错(位错)结构,调控第二相的形貌和形成常压下难以形成的新相,进而提高镁合金的力学性能,改善合金的耐腐蚀性能和储氢性能。高性能超高压镁合金的未来研究方向主要涵盖以下几个方面。

(1) 在超高压处理工艺优化方面:现阶段超高压处理在应用过程中,通常对样品的尺寸和形状有严格限制,使得该技术难以应用于处理较大或复杂形状的样品。此外,在超高压处理过程中,由于样品内部不同区域承受的压力和温度存在差异,导致超高压处理后的镁合金展现出微观结构的不均匀性,进而影响合金的整体性能。因此,后续应对超高压设备和实验方法进行改进,例如进行模块化设计,开发可扩展的模具,使其适用于处理不同尺寸和形状的样品。此外,应选取均匀加压的装置或方法,并使用传感器监测处理过程中的温度和压力分布,及时调整参数,以确保样品各部分受到一致的压力和温度。

(2) 在超高压精准调控镁合金微观结构方面:超高压处理过程中,由于极端的压力和温度的存在,镁合金的微观组织演化过程极为多变且复杂。目前,镁合金的微观结构表征大多都是在卸压、降温后进行观察,其微观结构的演变机制通常需要借助分子动力学模拟来重现,这种方式准确性欠佳。因此,在未来研究中应加入原位表征手段,对超高压处理过程中涉及到的非平衡界面的异常动力学和热力学行为进行准确捕捉,更加精准地解释和预测超高压处理过程中镁合金的微观组织演化机制。

(3) 在开发更广泛的高性能超高压镁合金体系方面:目前超高压镁合金主要集中在Mg-Al、Mg-Li和Mg-RE体系,一方面,可以探索Mg-Ca、Mg-Zn和Mg-Sn等合金体系超高压处理后的微观结构和综合性能表现;另一方面,可以考虑引入更多的合金化元素,拓展三元或四元镁合金在超高压条件下的微观组织演变规律。

(4) 在超高压处理高性能镁合金应用方面:目前,超高压处理镁合金展现出了优良的力学性能、耐腐蚀性能和储氢性能。在未来的研究中,应当继续研究超高压镁合金的结构性能,如疲劳性能、阻尼性能及超弹性等,拓展超高压镁合金在结构材料领域的应用范围;此外应该扩展研究超高压镁合金的功能性能,如导热性、导电性、磁性等,将具有新奇微观结构的超高压镁合金应用到电磁屏蔽和镁电池等领域。

参考文献

Peng L M, Deng Q C, Wu Y J, et al.

Additive manufacturing of magnesium alloys by selective laser melting technology: A review

[J]. Acta Metall. Sin., 2023, 59: 31

DOI      [本文引用: 1]

Selective laser melting (SLM) additive manufacturing technology holds the broad prospect for the preparation of high-performance complex metal components owing to its high processing accuracy, short manufacturing cycle, and high material usage. Magnesium (Mg) alloys are the lightest metal structural material and provide the benefits of low density, substantial specific strength and specific stiffness, good damping and shock absorption performance, and good biodegradability. Thus, it is worthwhile to employ SLM to manufacture Mg alloys, which is predicted to widen the application scope of Mg alloys. In this study, a comprehensive review on SLM of Mg alloys focusing on the preparation of Mg alloy powders, SLM process parameters, metallurgical defects, microstructure and mechanical properties of the as-built state, post-processing, and special equipment developed for SLM of Mg alloys is given. Finally, the future development trends of the SLM of Mg alloys are explored.

彭立明, 邓庆琛, 吴玉娟 .

镁合金选区激光熔化增材制造技术研究现状与展望

[J]. 金属学报, 2023, 59: 31

DOI      [本文引用: 1]

选区激光熔化(SLM)增材制造技术由于其加工精度高、制造周期短、材料利用率高等优点,在制备高性能复杂金属构件方面具有广阔的应用前景。镁合金是最轻的金属结构材料,具有密度低、比强度和比刚度高、阻尼减震性能好、生物降解性良好等优点。因此,采用SLM技术制备镁合金具有重要的研究价值,有望拓宽镁合金的应用范围。本文针对镁合金SLM增材制造技术,详细介绍了镁合金粉末制备、SLM工艺参数、冶金缺陷、SLM态的显微组织和力学性能、后处理、镁合金专用SLM设备方面的研究进展,并展望了未来镁合金SLM研究的发展方向。

Peng X, Liu W C, Wu G H.

Strengthening-toughening methods and mechanisms of Mg-Li alloy: A review

[J]. Rare Met., 2022, 41: 1176

[本文引用: 1]

Nie J F, Shin K S, Zeng Z R.

Microstructure, deformation, and property of wrought magnesium alloys

[J]. Metall. Mater. Trans., 2020, 51A: 6045

[本文引用: 1]

Yue Y H, Gao Y F, Hu W T, et al.

Hierarchically structured diamond composite with exceptional toughness

[J]. Nature, 2020, 582: 370

[本文引用: 1]

Ge B C, Fu H, Deng K K, et al.

Unique strengthening mechanisms of ultrahigh pressure Mg alloys

[J]. Bioact. Mater., 2018, 3: 250

DOI      PMID      [本文引用: 4]

Ultrahigh pressure technique remarkably extends solid solubility limitation of Al alloying element (∼25 at.%) in Mg alloys, resulting in unique solid-solution strengthening and age hardening response. Microhardness, yield strength and ultimate compressive strength are improved simultaneously without degrading plasticity by forming homogeneous and globular-shaped MgAl precipitates of 10-30 nm. In addition, thermal resistance is enhanced by eliminating the dominant growth of (101) plane and anchoring dense stacking faults in phase interface.

Fu H, Ge B C, Xin Y C, et al.

Achieving high strength and ductility in magnesium alloys via densely hierarchical double contraction nanotwins

[J]. Nano Lett., 2017, 17: 6117

DOI      PMID      [本文引用: 11]

Light-weight magnesium alloys with high strength are especially desirable for the applications in transportation, aerospace, electronic components, and implants owing to their high stiffness, abundant raw materials, and environmental friendliness. Unfortunately, conventional strengthening methods mainly involve the formation of internal defects, in which particles and grain boundaries prohibit dislocation motion as well as compromise ductility invariably. Herein, we report a novel strategy for simultaneously achieving high specific yield strength (∼160 kN m kg) and good elongation (∼23.6%) in a duplex magnesium alloy containing 8 wt % lithium at room temperature, based on the introduction of densely hierarchical {101̅1}-{101̅1} double contraction nanotwins (DCTWs) and full-coherent hexagonal close-packed (hcp) particles in twin boundaries by ultrahigh pressure technique. These hierarchical nanoscaled DCTWs with stable interface characteristics not only bestow a large fraction of twin interface but also form interlaced continuous grids, hindering possible dislocation motions. Meanwhile, orderly aggregated particles offer supplemental pinning effect for overcoming latent softening roles of twin interface movement and detwinning process. The processes lead to a concomitant but unusual situation where double contraction twinning strengthens rather than weakens magnesium alloys. Those cutting-edge results provide underlying insights toward designing alternative and more innovative hcp-type structural materials with superior mechanical properties.

Wang L, Lin X P, Xu C, et al.

The microstructure and the mechanical property of AZ91D solidified under GPa-grade high-pressure

[J]. Mater. Sci. Technol., 2019, 35: 1690

[本文引用: 2]

Peng Q M, Sun Y, Wang J, et al.

Structural characteristics of $\left\{ 10\bar{1}1 \right\}$ contraction twin-twin interaction in magnesium

[J]. Acta Mater., 2020, 192: 60

[本文引用: 2]

Zhao S S, Peng Q M, Li H, et al.

Effects of super-high pressure on microstructures, nano-mechanical behaviors and corrosion properties of Mg-Al alloys

[J]. J. Alloys Compd., 2014, 584: 56

[本文引用: 6]

Fu H, Peng Q M, Guo J X, et al.

High-pressure synthesis of a nanoscale YB12 strengthening precipitate in Mg-Y alloys

[J]. Scr. Mater., 2014, 76: 33

[本文引用: 3]

Feng J W, Li H N, Deng K K, et al.

Unique corrosion resistance of ultrahigh pressure Mg-25Al binary alloys

[J]. Corros. Sci., 2018, 143: 229

[本文引用: 3]

Feng J W, Zhang H, Zhang L, et al.

Microstructure and corrosion properties for ultrahigh-pressure Mg-Li alloys

[J]. Corros. Sci., 2022, 206: 110519

[本文引用: 6]

Yang H, Ding Z, Li Y T, et al.

Recent advances in kinetic and thermodynamic regulation of magnesium hydride for hydrogen storage

[J]. Rare Met., 2023, 42: 2906

[本文引用: 1]

Ouyang L Z, Liu F, Wang H, et al.

Magnesium-based hydrogen storage compounds: A review

[J]. J. Alloys Compd., 2020, 832: 154865

[本文引用: 1]

Wu C, Yang S Q, Li Y, et al.

Microstructural evolution and electrochemical properties of the ultra-high pressure treated La0.70Mg0.30Ni3.3 hydrogen storage alloy

[J]. J. Alloys Compd., 2016, 665: 231

[本文引用: 1]

Pimenta Martins L G, Comin R, Matos M J S, et al.

High-pressure studies of atomically thin van der Waals materials

[J]. Appl. Phys. Rev., 2023, 10: 011313

[本文引用: 4]

Tang Y, Wang H K, Ouyang X P, et al.

Overcoming strength-ductility tradeoff with high pressure thermal treatment

[J]. Nat. Commun., 2024, 15: 3932

DOI      PMID      [本文引用: 3]

Conventional material processing approaches often achieve strengthening of materials at the cost of reduced ductility. Here, we show that high-pressure and high-temperature (HPHT) treatment can help overcome the strength-ductility trade-off in structural materials. We report an initially strong-yet-brittle eutectic high entropy alloy simultaneously doubling its strength to 1150 MPa and its tensile ductility to 36% after the HPHT treatment. Such strength-ductility synergy is attributed to the HPHT-induced formation of a hierarchically patterned microstructure with coherent interfaces, which promotes multiple deformation mechanisms, including dislocations, stacking faults, microbands and deformation twins, at multiple length scales. More importantly, the HPHT-induced microstructure helps relieve stress concentration at the interfaces, thereby arresting interfacial cracking commonly observed in traditional eutectic high entropy alloys. These findings suggest a new direction of research in employing HPHT techniques to help develop next generation structural materials.© 2024. The Author(s).

Bridgman P W.

Recent work in the field of high pressures

[J]. Rev. Mod. Phys., 1946, 18: 1

[本文引用: 2]

Schilling J S.

The use of high pressure in basic and materials science

[J]. J. Phys. Chem. Solids, 1998, 59: 553

[本文引用: 1]

Wu B L, Chen B, Wang C W, et al.

Corrosion behavior of a novel Mg-13Li-X alloy with different grain sizes by rapid solidification rate

[J]. Rare Met., 2022, 41: 3197

[本文引用: 1]

Sobczak J J, Drenchev L, Asthana R.

Effect of pressure on solidification of metallic materials

[J]. Int. J. Cast Met. Res., 2012, 25: 1

[本文引用: 2]

Nie J F.

Precipitation and hardening in magnesium alloys

[J]. Metall. Mater. Trans., 2012, 43A: 3891

[本文引用: 1]

Lin X P, Dai P L, Xu C, et al.

Solute redistribution and mechanism of structure refinement of Mg-Al alloy during solidification under high pressure

[J]. J. Alloys Compd., 2022, 910: 164777

[本文引用: 1]

Peng X, Liu W C, Wu G H, et al.

Plastic deformation and heat treatment of Mg-Li alloys: A review

[J]. J. Mater. Sci. Technol., 2022, 99: 193

DOI      [本文引用: 1]

As the lightest structural metallic materials, Mg-Li alloys have a bright development prospect in the fields of aerospace, weapon equipment, electronic technology and transportation. In this paper, the research progress of deformation processing and heat treatment of Mg-Li alloys is reviewed, with particular emphasis on the factors affecting the plastic deformation, the effects of plastic deformation on microstructural evolution and mechanical properties, and the heat treatment behavior of Mg-Li alloys. The problems existing in the scale application of Mg-Li alloys are pointed out, and the research focus of Mg-Li alloys in the future are also prospected.

Ge B C, Yang M, Zu Q, et al.

Lithium cluster segregation in coherent contraction twin boundaries of magnesium alloys

[J]. Acta Mater., 2020, 201: 477

[本文引用: 1]

Peng Q M, Ge B C, Fu H, et al.

Nanoscale coherent interface strengthening of Mg alloys

[J]. Nanoscale, 2018, 10: 18028

DOI      PMID      [本文引用: 4]

Structural materials with higher strength and ductility could reduce weight and improve energy efficiency from the ecological and economical viewpoints. However, most classical strengthening strategies, such as refining grain size and forming secondary particles, can effectively hinder dislocation motion but remarkably decrease ductility. In this research, a nanoscale contraction twins-stacking faults (CTWSFs) hierarchical structure was achieved in a model sample of magnesium-lithium (Mg-Li) alloy using an industrial ultrahigh pressure technique. The specific yield strength and elongation of the treated Mg-Li alloy were ∼179 kN m kg-1 and ∼25% at room temperature, respectively. Both of these are the highest values reported so far, even compared to commercial aluminum alloys and steel. Depending on molecular dynamics simulations, it was demonstrated that the basal-plane stacking faults (SFs) attribute to the nucleation of contraction twins (CTWs), but prevented the broadening of the CTWs. The results were confirmed using ex situ transmission electron microscopy. The models also verified that the unique structure of nanoscale coherent boundaries-basal-plane SFs were effective in preventing dislocation motion in a single Mg crystal, which was analogous to twin boundaries. Finding this new CTWSFs structure might provide an alternative perspective for designing more innovative hexagonal close packed (hcp)-type structural materials with superior mechanical properties.

Peng Q M, Sun Y, Ge B C, et al.

Interactive contraction nanotwins-stacking faults strengthening mechanism of Mg alloys

[J]. Acta Mater., 2019, 169: 36

[本文引用: 2]

Zhang S, Sun Y, Wu R Z, et al.

Coherent interface strengthening of ultrahigh pressure heat-treated Mg-Li-Y alloys

[J]. J. Mater. Sci. Technol., 2020, 51: 79

DOI      [本文引用: 4]

Achieving good strength-ductility of Mg alloys has always been a crucial issue for the widespread applications of Mg-based structural materials. Herein, an unexpected double-stage strengthening phenomenon was discovered in Mg-8Li-1Y(wt.%) alloys through high pressure (6 GPa) heat treatments over a range of 700-1300?°C. Attractively, the yield strength values are improved remarkably without losing their ductility. The low temperature strengthening mechanism is mainly driven by the formation of large-volume nanoscale contraction twins. In contrast, the high-temperature strengthening reason is ascribed to the presence of densely nano-sized stacking faults. Both coherent interfaces contribute effectively to high mechanical strength without any tradeoff in ductility.

Wang D, Huang P Z, Wu R Z, et al.

Synergistically improved strength and damping capacity of Mg-Li-Y-Er-Zn-Zr alloy by ultra-high pressure treatment

[J]. Mater. Sci. Eng, 2024, A915: 147205

[本文引用: 4]

Meier J M, Caris J, Luo A A.

Towards high strength cast Mg-RE based alloys: Phase diagrams and strengthening mechanisms

[J]. J. Magnes. Alloy., 2022, 10: 1401

[本文引用: 1]

Zhao H G, Pan J L, Li H, et al.

Spherical strengthening precipitate in a Mg-10wt%Y alloy with superhigh pressure aging

[J]. Mater. Lett., 2013, 96: 16

[本文引用: 2]

Fu H, Li H, Fang D Q, et al.

High ductility of a bi-modal Mg-7wt.%Y alloy at low temperature prepared by high pressure boriding and semi-solid extrusion

[J]. Mater. Des., 2016, 92: 240

[本文引用: 1]

Fu H, Liu N, Zhang Z W, et al.

Effect of super-high pressure on microstructure and mechanical properties of Mg97Zn1Y2 alloys

[J]. J. Magnes. Alloy., 2016, 4: 302

[本文引用: 2]

Matsushita M, Masuda K, Waki R, et al.

Ultrafine spherulite Mg alloy with high yield strength

[J]. J. Alloys Compd., 2019, 784: 1284

[本文引用: 2]

Matsushita M, Sakata Y, Senzaki T, et al.

Phase relations among D03, α-Mg, and long-period stacking orders in Mg85Zn6Y9 alloy under 3 GPa

[J]. Mater. Trans., 2015, 56: 910

[本文引用: 1]

Matsushita M, Yamamoto S, Nishiyama N, et al.

D03 + hcp mixed phase with nanostructures in Mg85Zn6Y9 alloy obtained by high-pressure and high-temperature treatments

[J]. Mater. Lett., 2015, 155: 11

[本文引用: 3]

Haque N, Cochrane R F, Mullis A M.

Rapid solidification morphologies in Ni3Ge: Spherulites, dendrites and dense-branched fractal structures

[J]. Intermetallics, 2016, 76: 70

[本文引用: 2]

Zhou L T, Niu T T, Zou G D, et al.

High-strong-ductile magnesium alloys by interactions of nanoscale quasi-long period stacking order unit with twin

[J]. J. Magnes. Alloy., 2024, 12: 4953

[本文引用: 2]

Atrens A, Shi Z M, Mehreen S U, et al.

Review of Mg alloy corrosion rates

[J]. J. Magnes. Alloy., 2020, 8: 989

[本文引用: 1]

Feng J W, Pan Y K, Yang M, et al.

A lactoglobulin-composite self-healing coating for Mg alloys

[J]. ACS Appl. Bio Mater., 2021, 4: 6843

DOI      PMID      [本文引用: 1]

Corrosion issue is one of the most crucial bottlenecks for extensive employment of Mg alloys, in particular under harsh engineering conditions. Differing from traditional approaches, a self-healing protective coating composed of lactoglobulin is proposed herein to offer sustainable protection to the underlying Mg parts. Corrosion resistance, evaluated by electrochemical measurements and hydrogen evolution tests, indicates that the lactoglobulin composite film exhibits nobler corrosion potential (-1.28 V), smaller corrosion current density (8.4 × 10 A/cm), and lower average corrosion rate (∼0.03 mm/y) than those of its bare counterparts. Moreover, the pre-made cracks in the film were evidently self-healed within 24 h of exposure to corrosive media. The proposed self-healing lactoglobulin composite film provides opportunities to tackle the corrosion challenges of Mg alloys.

Zhu Q C, Li Y X, Cao F Y, et al.

Towards development of a high-strength stainless Mg alloy with Al-assisted growth of passive film

[J]. Nat. Commun., 2022, 13: 5838

DOI      PMID      [本文引用: 2]

Magnesium alloys with high strength and excellent corrosion resistance are always sought-after in light-weighting structural components for automotive and aerospace applications. However, for most magnesium alloys that have a high specific strength, they usually have an inferior corrosion resistance and vice versa. In this work, we successfully develop a Mg-11Y-1Al (wt. %) alloy through conventional casting, solution treatment followed by extrusion. The overall properties of this alloy feature with a corrosion rate lower than 0.2 mm y, high yield strength of 350 MPa and moderate tensile elongation of 8%, the combination of which shows competitive advantage over other comparative magnesium alloys in the literature. It is found that a thin and dense protective film of YO/Y(OH) can be fast developed with the aid of AlO/Al(OH) deposition to isolate this alloy from further attack of corrosion medium. Meanwhile, the refined grains, weak texture and activation of non-basal slip systems co-contribute to the high strength and good ductility. Our findings are expected to inspire the design of next-generation high performance magnesium alloys.© 2022. The Author(s).

Peng Q M, Zhao S S, Li H, et al.

High pressure solidification: An effective approach to improve the corrosion properties of Mg-Y based implants

[J]. Int. J. Electrochem. Sci., 2012, 7: 5581

[本文引用: 2]

Yang M, Feng J W, Hu H D, et al.

Microstructure and corrosion resistance of ultrahigh pressure Mg-8Li based alloys

[J]. J. Alloys Compd., 2023, 966: 171543

[本文引用: 1]

Deng M, Wang L Q, Höche D, et al.

Approaching “stainless magnesium” by Ca micro-alloying

[J]. Mater. Horiz., 2021, 8: 589

DOI      PMID      [本文引用: 1]

Severe corrosion of Mg and Mg alloys is a major issue hindering their wider application in transportation industry, medical implants and aqueous batteries. Previously, no Mg-based material has been found with a significantly lower corrosion rate than that of ultra-high-purity Mg, i.e. 0.25 mm y in concentrated NaCl solution. In this work for the first time, highly corrosion-resistant Mg is found to be accomplishable by Ca micro-alloying, bringing "stainless Mg" closer. The designed Mg-Ca lean alloys possess incredibly low corrosion rates, less than 0.1 mm y in 3.5 wt% NaCl solution, which are significantly lower than that of ultra-high-purity Mg and all Mg alloys reported thus far. The outstanding corrosion resistance is attributed to inhibition of cathodic water reduction kinetics, impurities stabilizing and a protective surface film induced by Ca micro-alloying. Combined with the environmental benignity and economic viability, Ca micro-alloying renders huge feasibility on developing advanced Mg-based materials for diverse applications.

Xu W Q, Birbilis N, Sha G, et al.

A high-specific-strength and corrosion-resistant magnesium alloy

[J]. Nat. Mater., 2015, 14: 1229

DOI      PMID      [本文引用: 1]

Ultra-lightweight alloys with high strength, ductility and corrosion resistance are desirable for applications in the automotive, aerospace, defence, biomedical, sporting and electronic goods sectors. Ductility and corrosion resistance are generally inversely correlated with strength, making it difficult to optimize all three simultaneously. Here we design an ultralow density (1.4 g cm(-3)) Mg-Li-based alloy that is strong, ductile, and more corrosion resistant than Mg-based alloys reported so far. The alloy is Li-rich and a solute nanostructure within a body-centred cubic matrix is achieved by a series of extrusion, heat-treatment and rolling processes. Corrosion resistance from the environment is believed to occur by a uniform lithium carbonate film in which surface coverage is much greater than in traditional hexagonal close-packed Mg-based alloys, explaining the superior corrosion resistance of the alloy.

Shang Y Y, Pistidda C, Gizer G, et al.

Mg-based materials for hydrogen storage

[J]. J. Magnes. Alloy., 2021, 9: 1837

[本文引用: 1]

Chen J, Sakai T, Kitamura N, et al.

High-pressure synthesis of amorphous MgNi1.02H2.2

[J]. J. Am. Chem. Soc., 2001, 123: 6193

PMID      [本文引用: 1]

Takamura H, Kakuta H, Kamegawa A, et al.

Crystal structure of novel hydrides in a Mg-Ni-H system prepared under an ultra high pressure

[J]. J. Alloys Compd., 2002, 330-332: 157

[本文引用: 1]

Kataoka R, Goto Y, Kamegawa A, et al.

High-pressure synthesis of novel hydride in Mg-Ni-H and Mg-Ni-Cu-H systems

[J]. J. Alloys Compd., 2007, 446-447: 142

[本文引用: 1]

Kataoka R, Kamegawa A, Takamura H, et al.

High pressure synthesis of novel Mg (Ni1 - x Cu x )2 hydrides (x = 0-0.2)

[J]. Mater. Trans., 2009, 50: 1179

[本文引用: 1]

Kataoka R, Goto Y, Kamegawa A, et al.

High-pressure synthesis of novel hydride in Mg-Ni(-H) system

[J]. Mater. Trans., 2006, 47: 1957

[本文引用: 1]

Kamata Y, Kuriiwa T, Kamegawa A, et al.

Effect of Cu or Ti substitution in MgNi on crystal structure and hydrogen absorption-desorption properties

[J]. Mater. Trans., 2009, 50: 2064

[本文引用: 1]

Peng X Y, Liu B Z, Zhao X, et al.

Effects of ultra-high pressure on phase compositions, phase configurations and hydrogen storage properties of LaMg4Ni alloys

[J]. Int. J. Hydrogen Energy, 2013, 38: 14661

[本文引用: 1]

Fu H, Wu W S, Dou Y, et al.

Hydrogen diffusion kinetics and structural integrity of superhigh pressure Mg-5wt%Ni alloys with dendrite interface

[J]. J. Power Sources, 2016, 320: 212

[本文引用: 4]

Sun Y, Wang D B, Wang J M, et al.

Hydrogen storage properties of ultrahigh pressure Mg12NiY alloys with a superfine LPSO structure

[J]. Int. J. Hydrogen Energy, 2019, 44: 23179

[本文引用: 2]

Torres B, Martínez-Lope M J, Alonso J A, et al.

Short communication: High-pressure synthesis and crystal structure of a novel Mg3CuH x ternary hydride

[J]. Int. J. Hydrogen Energy, 2013, 38: 15264

[本文引用: 1]

Kyoi D, Sato T, Rönnebro E, et al.

A novel magnesium-vanadium hydride synthesized by a gigapascal-high-pressure technique

[J]. J. Alloys Compd., 2004, 375: 253

[本文引用: 1]

Moser D, Bull D J, Sato T, et al.

Structure and stability of high pressure synthesized Mg-TM hydrides (TM = Ti, Zr, Hf, V, Nb and Ta) as possible new hydrogen rich hydrides for hydrogen storage

[J]. J. Mater. Chem., 2009, 19: 8150

[本文引用: 1]

Goto Y, Kakuta H, Kamegawa A, et al.

High-pressure synthesis of novel hydride in Mg-M systems (M = Li, Pd)

[J]. J. Alloys Compd., 2005, 404-406: 448

[本文引用: 1]

Retuerto M, Sánchez-Benítez J, Rodríguez-Cañas E, et al.

High-pressure synthesis of Mg2FeH6 complex hydride

[J]. Int. J. Hydrogen Energy, 2010, 35: 7835

[本文引用: 1]

Goto Y, Kamegawa A, Takamura H, et al.

Synthesis of new hydrides in Mg-Y systems by using high pressure

[J]. Mater. Trans., 2002, 43: 2717

[本文引用: 1]

/