|
|
非平衡界面动力学理论 |
王海丰( ), 蒲振新, 张建宝 |
西北工业大学 凝固技术国家重点实验室 先进润滑与密封材料研究中心 西安 710072 |
|
Non-Equilibrium Interface Dynamics Theory |
WANG Haifeng( ), PU Zhenxin, ZHANG Jianbao |
Advanced Lubrication and Sealing Materials Research Center, State Key Laboratory of Solidification Technology, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
王海丰, 蒲振新, 张建宝. 非平衡界面动力学理论[J]. 金属学报, 2025, 61(1): 29-42.
Haifeng WANG,
Zhenxin PU,
Jianbao ZHANG.
Non-Equilibrium Interface Dynamics Theory[J]. Acta Metall Sin, 2025, 61(1): 29-42.
1 |
Li Q, Li X R, Dong B X, et al. Metallurgy and solidification microstructure control of fusion-based additive manufacturing fabricated metallic alloys: A review[J]. Acta Metall. Sin. (Eng. Lett.), 2024, 37: 29
|
2 |
Ren S, Wu J Z, Zhang Y, et al. Numerical simulation on effects of spatial laser beam profiles on heat transport during laser directed energy deposition of 316L stainless steel[J]. Acta Metall. Sin., 2024, 60: 1678
doi: 10.11900/0412.1961.2022.00509
|
2 |
任 松, 吴家柱, 张 屹 等. 激光束空域形态对激光定向能量沉积316L不锈钢热输运影响的数值模拟[J]. 金属学报, 2024, 60: 1678
|
3 |
Wang Y Q, Fu K, Zhao Y Z, et al. Non-equilibrium solidification behavior and microstructure evolution of undercooled Fe7(CoNi-Mn)80B13 eutectic high-entropy alloy[J]. Acta Metall. Sin., 2025, 61: 143
|
3 |
王叶青, 付 珂, 赵永柱 等. Fe7(CoNiMn)80B13共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61: 143
|
4 |
Hu B, Zhang H Q, Zhang J, et al. Progress in interfacial thermodynamics and grain boundary complexion diagram[J]. Acta Metall. Sin., 2021, 57: 1199
doi: 10.11900/0412.1961.2021.00036
|
4 |
胡 标, 张华清, 张 金 等. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57: 1199
|
5 |
Zhu J L, Wang Q, Wang H P. Thermophysical properties and atomic distribution of undercooled liquid Cu[J]. Acta. Metall. Sin., 2017, 53: 1018
doi: 10.11900/0412.1961.2017.00053
|
5 |
朱姜蕾, 王 庆, 王海鹏. 深过冷液态金属Cu的热物理性质和原子分布[J]. 金属学报, 2017, 53: 1018
doi: 10.11900/0412.1961.2017.00053
|
6 |
Zener C. Theory of growth of spherical precipitates from solid solution[J]. J. Appl. Phys., 1949, 20: 950
|
7 |
Wert C, Zener C. Interference of growing spherical precipitate particles[J]. J. Appl. Phys., 1950, 21: 5
|
8 |
Christian J W. The Theory of Transformations in Metals and Alloys: An Advanced Textbook in Physical Metallurgy[M]. 3rd Ed., New York: Pergamon, 2002: 1
|
9 |
Sietsma J, van der Zwaag S. A concise model for mixed-mode phase transformations in the solid state[J]. Acta Mater., 2004, 52: 4143
|
10 |
Galenko P K, Jou D. Rapid solidification as non-ergodic phenomenon[J]. Phys. Rep., 2019, 818: 1
doi: 10.1016/j.physrep.2019.06.002
|
11 |
Sobolev S L. Local-nonequilibrium model for rapid solidification of undercooled melts[J]. Phys. Lett., 1995, 199A: 383
|
12 |
Liang C, Wang X J, Wang H P. Formation mechanism of B2 phase and micro-mechanical property of rapidly solidified Ti-Al-Nb alloy[J]. Acta Metall. Sin., 2022, 58: 1169
|
12 |
梁 琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58: 1169
|
13 |
Zhai B, Zhou K, Lv P, et al. Rapid solidification of Ti-6Al-4V alloy micro-droplets under free fall condition[J]. Acta Metall. Sin., 2018, 54: 824
doi: 10.11900/0412.1961.2017.00312
|
13 |
翟 斌, 周 凯, 吕 鹏 等. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54: 824
|
14 |
Wang H F, Wang K, Kuang W W, et al. The development of non-equilibrium theories[J]. Sci. Sin. Technol., 2015, 45: 358
|
14 |
王海丰, 王 慷, 况望望 等. 非平衡凝固理论的发展[J]. 中国科学: 技术科学, 2015, 45: 358
|
15 |
Aziz M J. Model for solute redistribution during rapid solidification[J]. J. Appl. Phys., 1982, 53: 1158
|
16 |
Baker J C, Cahn J W. Solute trapping by rapid solidification[J]. Acta Metall., 1969, 17: 575
|
17 |
Lücke K, Detert K. A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities[J]. Acta Metall., 1957, 5: 628
|
18 |
Baker J C. Interfacial partitioning during solidification[D]. Cambridge: Massachusetts Institute of Technology, 1965
|
19 |
Hillert M, Rettenmayr M. Deviation from local equilibrium at migrating phase interfaces[J]. Acta Mater., 2003, 51: 2803
|
20 |
Hillert M, Odqvist J, Ågren J. Interface conditions during diffusion-controlled phase transformations[J]. Scr. Mater., 2004, 50: 547
|
21 |
Wang H F, Liu F, Zhai H M, et al. Application of the maximal entropy production principle to rapid solidification: A sharp interface model[J]. Acta Mater., 2012, 60: 1444
|
22 |
Kuang W W, Wang H F, Zhang J B, et al. Application of the thermodynamic extremal principle to diffusion-controlled phase-transformations in multi-component substitutional alloys: Modeling and applications[J]. Acta Mater., 2016, 120: 415
|
23 |
Kuang W W, Wang H F, Li X, et al. Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe-C-X alloys: Modeling and applications[J]. Acta Mater., 2018, 159: 16
|
24 |
Onsager L. Reciprocal relations in irreversible processes. I[J]. Phys. Rev., 1931, 37: 405
|
25 |
Onsager L. Reciprocal relations in irreversible processes. II[J]. Phys. Rev., 1931, 38: 2265
|
26 |
Hillert M. An application of irreversible thermodynamics to diffusional phase transformations[J]. Acta Mater., 2006, 54: 99
|
27 |
Aziz M J, Kaplan T. Continuous growth model for interface motion during alloy solidification[J]. Acta Metall., 1988, 36: 2335
|
28 |
Jackson K A, Beatty K M, Gudgel K A. An analytical model for non-equilibrium segregation during crystallization[J]. J. Cryst. Growth, 2004, 271: 481
|
29 |
Buchmann M, Rettenmayr M. Non-equilibrium transients during solidification—A numerical study[J]. Scr. Mater., 2008, 58: 106
|
30 |
Hareland C A, Guillemot G, Gandin C A, et al. The thermodynamics of non-equilibrium interfaces during phase transformations in concentrated multicomponent alloys[J]. Acta Mater., 2022, 241: 118407
|
31 |
Wang H F, Galenko P K, Zhang X, et al. Phase-field modeling of an abrupt disappearance of solute drag in rapid solidification[J]. Acta Mater., 2015, 90: 282
|
32 |
Galenko P. Solute trapping and diffusionless solidification in a binary system[J]. Phys. Rev., 2007, 76E: 031606
|
33 |
Galenko P. Extended thermodynamical analysis of a motion of the solid-liquid interface in a rapidly solidifying alloy[J]. Phys. Rev., 2002, 65B: 144103
|
34 |
Kittl J A, Sanders P G, Aziz M J, et al. Complete experimental test of kinetic models for rapid alloy solidification[J]. Acta Mater., 2000, 48: 4797
|
35 |
Eckler K, Herlach D M, Aziz M J. Search for a solute-drag effect in dendritic solidification[J]. Acta Metall. Mater., 1994, 42: 975
|
36 |
Hillert M. Solute drag, solute trapping and diffusional dissipation of Gibbs energy[J]. Acta Mater., 1999, 47: 4481
|
37 |
Yang Y, Humadi H, Buta D, et al. Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts[J]. Phys. Rev. Lett., 2011, 107: 025505
|
38 |
Aziz M J, Boettinger W J. On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification[J]. Acta Metall. Mater., 1994, 42: 527
|
39 |
Wang K, Wang H F, Liu F, et al. Modeling dendrite growth in undercooled concentrated multi-component alloys[J]. Acta Mater., 2013, 61: 4254
|
40 |
Wang K, Wang H F, Liu F, et al. Modeling rapid solidification of multi-component concentrated alloys[J]. Acta Mater., 2013, 61: 1359
|
41 |
Wang K, Wang H F, Liu F, et al. Morphological stability analysis for planar interface during rapidly directional solidification of concentrated multi-component alloys[J]. Acta Mater., 2014, 67:220
|
42 |
Zhang J B, Cui D X, Li X, et al. Revealing the phase-transformation path in a FeCoNiSn x eutectic high entropy alloy system by crystallographic orientation relationships[J]. J. Mater. Sci. Technol., 2023, 156: 92
|
43 |
Zhou Y H, Zhang J Y, Zhang J, et al. A strong-yet-ductile high-entropy alloy in a broad temperature range from cryogenic to elevated temperatures[J]. Acta Mater., 2024, 268: 119770
|
44 |
Zhou Y H, Zhang Z H, Wang Y P, et al. Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis[J]. Addit. Manuf., 2019, 25: 204
doi: 10.1016/j.addma.2018.10.046
|
45 |
Gu J, Ju J, Wang R, et al. Effects of laser scanning rate and Ti content on wear of novel Fe-Cr-B-Al-Ti coating prepared via laser cladding[J]. J. Therm. Spray Technol., 2022, 31: 2609
|
46 |
Ju J, Yu H Y, Zhao Y L, et al. Understanding the oxidation behaviors of a Ni-Co-based superalloy at elevated temperatures through multiscale characterization[J]. Corros. Sci., 2024, 227: 111800
|
47 |
Yang T, Zhao Y L, Fan L, et al. Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in multicomponent high-entropy alloys[J]. Acta Mater., 2020, 189: 47
doi: 10.1016/j.actamat.2020.02.059
|
48 |
Zhang J B, Wang H F, Kuang W W, et al. Rapid solidification of non-stoichiometric intermetallic compounds: Modeling and experimental verification[J]. Acta Mater., 2018, 148: 86
|
49 |
Zhang J B, Wang H F, Zhang F, et al. Growth kinetics and grain refinement mechanisms in an undercooled melt of a CoSi intermetallic compound[J]. J. Alloys Compd., 2019, 781: 13
|
50 |
Zhao J F, Li M X, Wang H P, et al. A kinetic transition from peritectic crystallization to amorphous solidification of rapidly quenched refractory Nb-Ni alloy[J]. Acta Mater., 237, 2022: 118127
|
51 |
Wang H P, Liao H, Hu L, et al. Freezing shrinkage dynamics and surface dendritic growth of floating refractory alloy droplets in outer space[J]. Adv. Mater., 2024, 36: 2313162
|
52 |
Wang H P, Liao H, Chang J, et al. Decoupling effect stimulated independent dendrite growth of eutectic phases under microgravity and containerless states[J]. Mater. Today, 2024, 75: 386
|
53 |
Zhang J B, Zhang F, Luo X, et al. Rapid solidification of a FeSi intermetallic compound in undercooled melts: Dendrite growth and microstructure transitions[J]. J. Mater. Sci., 2020, 55: 4094
|
54 |
Zhang J B, Hua D P, Cui D X, et al. Subgrain-assisted spontaneous grain refinement in rapid solidification of undercooled melts[J]. J. Mater. Sci. Technol., 2024, 174: 234
doi: 10.1016/j.jmst.2023.06.068
|
55 |
Cui D X, Zhang J B, Li X, et al. Atomistic insights into sluggish crystal growth in an undercooled CoNiCrFe multi-principal element alloy[J]. J. Alloys Compd., 2023, 941: 168881
|
56 |
Cui D X, Qu J R, Zhang J B, et al. Atomistic insights into sluggish crystal growth in CoNi-containing multi-principal element alloys[J]. J. Mater. Res. Technol., 2024, 29: 109
|
57 |
Antillon E A, Hareland C A, Voorhees P W. Solute trapping and solute drag during non-equilibrium solidification of Fe-Cr alloys[J]. Acta Mater., 2023, 248: 118769
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|