Please wait a minute...
金属学报  2025, Vol. 61 Issue (1): 29-42    DOI: 10.11900/0412.1961.2024.00306
  综述 本期目录 | 过刊浏览 |
非平衡界面动力学理论
王海丰(), 蒲振新, 张建宝
西北工业大学 凝固技术国家重点实验室 先进润滑与密封材料研究中心 西安 710072
Non-Equilibrium Interface Dynamics Theory
WANG Haifeng(), PU Zhenxin, ZHANG Jianbao
Advanced Lubrication and Sealing Materials Research Center, State Key Laboratory of Solidification Technology, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

王海丰, 蒲振新, 张建宝. 非平衡界面动力学理论[J]. 金属学报, 2025, 61(1): 29-42.
Haifeng WANG, Zhenxin PU, Jianbao ZHANG. Non-Equilibrium Interface Dynamics Theory[J]. Acta Metall Sin, 2025, 61(1): 29-42.

全文: PDF(2033 KB)   HTML
摘要: 

界面是材料加工过程中组织控制的关键所在,故对其动力学过程的准确理论描述非常重要。本文从熔化过程中液/固界面、凝固过程中固/液界面和固态相变过程中固/固界面的共性之处出发,对基于尖锐界面的非平衡界面动力学发展历史和现状进行了总结与分析。以二元合金凝固为例,本文首先介绍了局域非平衡条件下的界面动力学理论,包括界面动力学过程、稳态界面动力学理论和非稳态界面动力学理论。分析了一步跨界面溶质扩散和两步跨界面溶质扩散的物理本质。其次,介绍了完全非平衡条件下的界面动力学理论。对比分析了动力学能量方法和有效移动性方法在引入体积相非平衡扩散效应方面的应用情况。随后,简要介绍了部分溶质拖曳界面动力学理论。分析了当前引入部分溶质拖曳效应方法的不足。本文有望深化人们对非平衡界面动力学的认识与理解,同时为相关领域组织调控提供借鉴。最后,本文也对后续非平衡界面动力学理论的发展进行了展望。

关键词 界面动力学非平衡界面非平衡溶质扩散溶质拖曳效应    
Abstract

Recently, the rapid advancement of extreme non-equilibrium material processing and fabrication techniques, such as 3D printing and rapid die-casting, has led to the continuous development of new materials with exceptional properties. However, current non-equilibrium processing technologies face technical challenges, such as the lack of clear guidelines for process optimization, which considerably limits the advancement and application of advanced materials. The solidification and solid phase transformations involved in materials prepared through non-equilibrium processing pertain to a non-equilibrium dissipative system and manifest throughout the entire dynamic process of material fabrication. By investigating key scientific issues such as non-equilibrium phase transformation dynamics, non-equilibrium solute diffusion, and solute-drag effects, developing a theoretical framework for the entire non-equilibrium material processing, from solidification to solid phase transformation is possible. This not only provides theoretical support for the design and fabrication of non-equilibrium materials but also introduces novel concepts for optimizing process parameters in non-equilibrium processing technologies. This review is crucial for advancing non-equilibrium phase transformation theory and deepening our understanding of fundamental theoretical research. Interfaces play a critical role in microstructure control during material processing, thereby making an accurate theoretical description of their kinetics is especially important. This review focuses on the common characteristics of liquid/solid interfaces during melting, solid/liquid interfaces during solidification, and solid/solid interfaces during solid state phase transformations and summarizes and analyzes the history and current state of sharp-interface models for interface kinetics. Using the solidification of binary alloys as an example, the review first introduces interface kinetic theories under local non-equilibrium conditions, covering descriptions of interface kinetic processes and interface kinetic models for steady-state and non-steady-state conditions. The physical nature of one-step and two-step trans-interface diffusion is demonstrated. Next, the review describes interface kinetic theories under full non-equilibrium conditions by comparing the applications of the kinetic energy method and the effective mobility method for non-equilibrium solute diffusion in bulk phases. Thereafter, it introduces interface kinetic theories incorporating the partial solute drag effect present and discusses limitations in current methods for addressing partial solute drag. This study aims to enhance understanding of interface kinetics, offering insights into microstructure control. Finally, an outlook on the future of non-equilibrium interface kinetic theories is provided, which outlines directions for future research.

Key wordsinterface kinetics    non-equilibrium interface    non-equilibrium solute diffusion    solute-drag effect
收稿日期: 2024-09-03     
ZTFLH:  TG111  
基金资助:国家自然科学基金项目(51975474);中央高校基本科研业务费项目(3102019JC001)
通讯作者: 王海丰,haifengw81@nwpu.edu.cn,主要从事亚稳金属材料相变理论及金属材料开发应用研究
Corresponding author: WANG Haifeng, professor, Tel: (029)88460311, E-mail: haifengw81@nwpu.edu.cn
作者简介: 王海丰,男,1981年生,教授,博士
图1  不同相变类型中的界面动力学过程示意图
图2  液相直接凝固出目标固相成分的固/液界面动力学过程示意图
图3  稳态固/液界面动力学过程的摩尔Gibbs自由能示意图
图4  非稳态固/液界面动力学过程的摩尔Gibbs自由能示意
图5  跨界面溶质扩散示意图
图6  非稳态部分拖曳固/液界面动力学过程的摩尔Gibbs自由能示意图
1 Li Q, Li X R, Dong B X, et al. Metallurgy and solidification microstructure control of fusion-based additive manufacturing fabricated metallic alloys: A review[J]. Acta Metall. Sin. (Eng. Lett.), 2024, 37: 29
2 Ren S, Wu J Z, Zhang Y, et al. Numerical simulation on effects of spatial laser beam profiles on heat transport during laser directed energy deposition of 316L stainless steel[J]. Acta Metall. Sin., 2024, 60: 1678
doi: 10.11900/0412.1961.2022.00509
2 任 松, 吴家柱, 张 屹 等. 激光束空域形态对激光定向能量沉积316L不锈钢热输运影响的数值模拟[J]. 金属学报, 2024, 60: 1678
3 Wang Y Q, Fu K, Zhao Y Z, et al. Non-equilibrium solidification behavior and microstructure evolution of undercooled Fe7(CoNi-Mn)80B13 eutectic high-entropy alloy[J]. Acta Metall. Sin., 2025, 61: 143
3 王叶青, 付 珂, 赵永柱 等. Fe7(CoNiMn)80B13共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61: 143
4 Hu B, Zhang H Q, Zhang J, et al. Progress in interfacial thermodynamics and grain boundary complexion diagram[J]. Acta Metall. Sin., 2021, 57: 1199
doi: 10.11900/0412.1961.2021.00036
4 胡 标, 张华清, 张 金 等. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57: 1199
5 Zhu J L, Wang Q, Wang H P. Thermophysical properties and atomic distribution of undercooled liquid Cu[J]. Acta. Metall. Sin., 2017, 53: 1018
doi: 10.11900/0412.1961.2017.00053
5 朱姜蕾, 王 庆, 王海鹏. 深过冷液态金属Cu的热物理性质和原子分布[J]. 金属学报, 2017, 53: 1018
doi: 10.11900/0412.1961.2017.00053
6 Zener C. Theory of growth of spherical precipitates from solid solution[J]. J. Appl. Phys., 1949, 20: 950
7 Wert C, Zener C. Interference of growing spherical precipitate particles[J]. J. Appl. Phys., 1950, 21: 5
8 Christian J W. The Theory of Transformations in Metals and Alloys: An Advanced Textbook in Physical Metallurgy[M]. 3rd Ed., New York: Pergamon, 2002: 1
9 Sietsma J, van der Zwaag S. A concise model for mixed-mode phase transformations in the solid state[J]. Acta Mater., 2004, 52: 4143
10 Galenko P K, Jou D. Rapid solidification as non-ergodic phenomenon[J]. Phys. Rep., 2019, 818: 1
doi: 10.1016/j.physrep.2019.06.002
11 Sobolev S L. Local-nonequilibrium model for rapid solidification of undercooled melts[J]. Phys. Lett., 1995, 199A: 383
12 Liang C, Wang X J, Wang H P. Formation mechanism of B2 phase and micro-mechanical property of rapidly solidified Ti-Al-Nb alloy[J]. Acta Metall. Sin., 2022, 58: 1169
12 梁 琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58: 1169
13 Zhai B, Zhou K, Lv P, et al. Rapid solidification of Ti-6Al-4V alloy micro-droplets under free fall condition[J]. Acta Metall. Sin., 2018, 54: 824
doi: 10.11900/0412.1961.2017.00312
13 翟 斌, 周 凯, 吕 鹏 等. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54: 824
14 Wang H F, Wang K, Kuang W W, et al. The development of non-equilibrium theories[J]. Sci. Sin. Technol., 2015, 45: 358
14 王海丰, 王 慷, 况望望 等. 非平衡凝固理论的发展[J]. 中国科学: 技术科学, 2015, 45: 358
15 Aziz M J. Model for solute redistribution during rapid solidification[J]. J. Appl. Phys., 1982, 53: 1158
16 Baker J C, Cahn J W. Solute trapping by rapid solidification[J]. Acta Metall., 1969, 17: 575
17 Lücke K, Detert K. A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities[J]. Acta Metall., 1957, 5: 628
18 Baker J C. Interfacial partitioning during solidification[D]. Cambridge: Massachusetts Institute of Technology, 1965
19 Hillert M, Rettenmayr M. Deviation from local equilibrium at migrating phase interfaces[J]. Acta Mater., 2003, 51: 2803
20 Hillert M, Odqvist J, Ågren J. Interface conditions during diffusion-controlled phase transformations[J]. Scr. Mater., 2004, 50: 547
21 Wang H F, Liu F, Zhai H M, et al. Application of the maximal entropy production principle to rapid solidification: A sharp interface model[J]. Acta Mater., 2012, 60: 1444
22 Kuang W W, Wang H F, Zhang J B, et al. Application of the thermodynamic extremal principle to diffusion-controlled phase-transformations in multi-component substitutional alloys: Modeling and applications[J]. Acta Mater., 2016, 120: 415
23 Kuang W W, Wang H F, Li X, et al. Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe-C-X alloys: Modeling and applications[J]. Acta Mater., 2018, 159: 16
24 Onsager L. Reciprocal relations in irreversible processes. I[J]. Phys. Rev., 1931, 37: 405
25 Onsager L. Reciprocal relations in irreversible processes. II[J]. Phys. Rev., 1931, 38: 2265
26 Hillert M. An application of irreversible thermodynamics to diffusional phase transformations[J]. Acta Mater., 2006, 54: 99
27 Aziz M J, Kaplan T. Continuous growth model for interface motion during alloy solidification[J]. Acta Metall., 1988, 36: 2335
28 Jackson K A, Beatty K M, Gudgel K A. An analytical model for non-equilibrium segregation during crystallization[J]. J. Cryst. Growth, 2004, 271: 481
29 Buchmann M, Rettenmayr M. Non-equilibrium transients during solidification—A numerical study[J]. Scr. Mater., 2008, 58: 106
30 Hareland C A, Guillemot G, Gandin C A, et al. The thermodynamics of non-equilibrium interfaces during phase transformations in concentrated multicomponent alloys[J]. Acta Mater., 2022, 241: 118407
31 Wang H F, Galenko P K, Zhang X, et al. Phase-field modeling of an abrupt disappearance of solute drag in rapid solidification[J]. Acta Mater., 2015, 90: 282
32 Galenko P. Solute trapping and diffusionless solidification in a binary system[J]. Phys. Rev., 2007, 76E: 031606
33 Galenko P. Extended thermodynamical analysis of a motion of the solid-liquid interface in a rapidly solidifying alloy[J]. Phys. Rev., 2002, 65B: 144103
34 Kittl J A, Sanders P G, Aziz M J, et al. Complete experimental test of kinetic models for rapid alloy solidification[J]. Acta Mater., 2000, 48: 4797
35 Eckler K, Herlach D M, Aziz M J. Search for a solute-drag effect in dendritic solidification[J]. Acta Metall. Mater., 1994, 42: 975
36 Hillert M. Solute drag, solute trapping and diffusional dissipation of Gibbs energy[J]. Acta Mater., 1999, 47: 4481
37 Yang Y, Humadi H, Buta D, et al. Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts[J]. Phys. Rev. Lett., 2011, 107: 025505
38 Aziz M J, Boettinger W J. On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification[J]. Acta Metall. Mater., 1994, 42: 527
39 Wang K, Wang H F, Liu F, et al. Modeling dendrite growth in undercooled concentrated multi-component alloys[J]. Acta Mater., 2013, 61: 4254
40 Wang K, Wang H F, Liu F, et al. Modeling rapid solidification of multi-component concentrated alloys[J]. Acta Mater., 2013, 61: 1359
41 Wang K, Wang H F, Liu F, et al. Morphological stability analysis for planar interface during rapidly directional solidification of concentrated multi-component alloys[J]. Acta Mater., 2014, 67:220
42 Zhang J B, Cui D X, Li X, et al. Revealing the phase-transformation path in a FeCoNiSn x eutectic high entropy alloy system by crystallographic orientation relationships[J]. J. Mater. Sci. Technol., 2023, 156: 92
43 Zhou Y H, Zhang J Y, Zhang J, et al. A strong-yet-ductile high-entropy alloy in a broad temperature range from cryogenic to elevated temperatures[J]. Acta Mater., 2024, 268: 119770
44 Zhou Y H, Zhang Z H, Wang Y P, et al. Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis[J]. Addit. Manuf., 2019, 25: 204
doi: 10.1016/j.addma.2018.10.046
45 Gu J, Ju J, Wang R, et al. Effects of laser scanning rate and Ti content on wear of novel Fe-Cr-B-Al-Ti coating prepared via laser cladding[J]. J. Therm. Spray Technol., 2022, 31: 2609
46 Ju J, Yu H Y, Zhao Y L, et al. Understanding the oxidation behaviors of a Ni-Co-based superalloy at elevated temperatures through multiscale characterization[J]. Corros. Sci., 2024, 227: 111800
47 Yang T, Zhao Y L, Fan L, et al. Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in multicomponent high-entropy alloys[J]. Acta Mater., 2020, 189: 47
doi: 10.1016/j.actamat.2020.02.059
48 Zhang J B, Wang H F, Kuang W W, et al. Rapid solidification of non-stoichiometric intermetallic compounds: Modeling and experimental verification[J]. Acta Mater., 2018, 148: 86
49 Zhang J B, Wang H F, Zhang F, et al. Growth kinetics and grain refinement mechanisms in an undercooled melt of a CoSi intermetallic compound[J]. J. Alloys Compd., 2019, 781: 13
50 Zhao J F, Li M X, Wang H P, et al. A kinetic transition from peritectic crystallization to amorphous solidification of rapidly quenched refractory Nb-Ni alloy[J]. Acta Mater., 237, 2022: 118127
51 Wang H P, Liao H, Hu L, et al. Freezing shrinkage dynamics and surface dendritic growth of floating refractory alloy droplets in outer space[J]. Adv. Mater., 2024, 36: 2313162
52 Wang H P, Liao H, Chang J, et al. Decoupling effect stimulated independent dendrite growth of eutectic phases under microgravity and containerless states[J]. Mater. Today, 2024, 75: 386
53 Zhang J B, Zhang F, Luo X, et al. Rapid solidification of a FeSi intermetallic compound in undercooled melts: Dendrite growth and microstructure transitions[J]. J. Mater. Sci., 2020, 55: 4094
54 Zhang J B, Hua D P, Cui D X, et al. Subgrain-assisted spontaneous grain refinement in rapid solidification of undercooled melts[J]. J. Mater. Sci. Technol., 2024, 174: 234
doi: 10.1016/j.jmst.2023.06.068
55 Cui D X, Zhang J B, Li X, et al. Atomistic insights into sluggish crystal growth in an undercooled CoNiCrFe multi-principal element alloy[J]. J. Alloys Compd., 2023, 941: 168881
56 Cui D X, Qu J R, Zhang J B, et al. Atomistic insights into sluggish crystal growth in CoNi-containing multi-principal element alloys[J]. J. Mater. Res. Technol., 2024, 29: 109
57 Antillon E A, Hareland C A, Voorhees P W. Solute trapping and solute drag during non-equilibrium solidification of Fe-Cr alloys[J]. Acta Mater., 2023, 248: 118769
[1] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
[2] 杨林, 马长松, 刘连杰, 李金富. 过冷(Fe1 -x Co x)79.3B20.7 合金的凝固[J]. 金属学报, 2025, 61(1): 99-108.
[3] 李彦强, 赵九洲, 江鸿翔, 张丽丽, 何杰. 脉冲电流作用下Pb-Al合金的液-固分相过程[J]. 金属学报, 2024, 60(12): 1710-1720.
[4] 郭松源, 柳文波, 杨庆成, 戚晓勇, 恽迪. 黏性烧结过程的相场模拟[J]. 金属学报, 2024, 60(12): 1691-1700.
[5] 陈名毅, 胡俊伟, 余耀辰, 牛海洋. 机器学习分子动力学辅助材料凝固形核研究进展[J]. 金属学报, 2024, 60(10): 1329-1344.
[6] 黄曾鑫, 蒋逸航, 赖春明, 吴庆捷, 刘大海, 杨亮. 基于原子模拟的金属Fe晶界能与晶界取向相关性分析[J]. 金属学报, 2024, 60(9): 1289-1298.
[7] 蔡宣明, 张伟, 范志强, 高玉波, 王俊元, 张柱军. AlSi10Mg多孔结构在不同加载应变率下的损伤模式及响应机制[J]. 金属学报, 2024, 60(7): 857-868.
[8] 周彦余, 李江旭, 刘晨, 赖俊文, 高强, 马会, 孙岩, 陈星秋. 金属间化合物Pt7Sb投影Berry相位与析氢催化关联的第一性原理计算[J]. 金属学报, 2024, 60(6): 837-847.
[9] 申洋, 谷征满, 王聪. 铁素体系耐热钢焊接热影响区相变行为的CSLM原位观察[J]. 金属学报, 2024, 60(6): 802-816.
[10] 杨平, 马丹丹, 顾晨, 顾新福. 初始组织及冷轧压下量对工业低牌号电工钢相变织构及磁性能的影响[J]. 金属学报, 2024, 60(3): 377-387.
[11] 董士虎, 张红伟, 吕文朋, 雷洪, 王强. 基于界面追踪-动网格技术模拟凝固收缩下Fe-C合金宏观偏析[J]. 金属学报, 2024, 60(3): 388-404.
[12] 沈盟凯 董太宁 葛鸿浩 石新升 张群莉 刘云峰 姚建华. 316L激光粉末床熔覆IN718偏析带形成过程的模拟[J]. 金属学报, 0, (): 0-0.
[13] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[14] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[15] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.