|
|
真空自耗电弧熔炼铸锭凝固行为多尺度模拟研究进展 |
李俊杰1( ), 李盼悦1, 黄立清1,2, 郭杰1, 吴京洋1, 樊凯2, 王锦程1 |
1 西北工业大学 凝固技术国家重点实验室 西安 710072 2 湖南湘投金天钛业科技股份有限公司 常德 415001 |
|
Progress in Multiscale Simulation of Solidification Behavior in Vacuum Arc Remelted Ingot |
LI Junjie1( ), LI Panyue1, HUANG Liqing1,2, GUO Jie1, WU Jingyang1, FAN Kai2, WANG Jincheng1 |
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China 2 Hunan Xiangtou Goldsky Titanium Industry Technology Co. Ltd., Changde 415001, China |
引用本文:
李俊杰, 李盼悦, 黄立清, 郭杰, 吴京洋, 樊凯, 王锦程. 真空自耗电弧熔炼铸锭凝固行为多尺度模拟研究进展[J]. 金属学报, 2025, 61(1): 12-28.
Junjie LI,
Panyue LI,
Liqing HUANG,
Jie GUO,
Jingyang WU,
Kai FAN,
Jincheng WANG.
Progress in Multiscale Simulation of Solidification Behavior in Vacuum Arc Remelted Ingot[J]. Acta Metall Sin, 2025, 61(1): 12-28.
1 |
Bennon W D, Incropera F P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I. Model formulation[J]. Int. J. Heat Mass Transfer, 1987, 30: 2161
|
2 |
Pericleous K, Djambazov G, Ward M, et al. A multiscale 3D model of the vacuum arc remelting process[J]. Metall. Mater. Trans., 2013, 44A: 5365
|
3 |
Launder B E, Spalding D B. The numerical computation of turbulent flows[J]. Comput. Methods Appl. Mech. Eng., 1974, 3: 269
|
4 |
Reiter G, Maronnier V, Sommitsch C, et al. Numerical simulation of the VAR process with calcosoft-2D and its validation[A]. International Symposium on Liquid Metal Processing and Casting[C]. Nancy, France: LMPC, 2003: 77
|
5 |
Guan J, Miao Y Y, Chen Z Z, et al. Modeling of macrosegregation formation and the effect of enhanced cooling during vacuum arc remelting solidification of NbTi alloy ingot[J]. Metall. Mater. Trans., 2022, 53B: 4048
|
6 |
Cui J J, Li B K, Liu Z Q, et al. Comparative investigation on ingot evolution and product quality under different arc distributions during vacuum arc remelting process[J]. J. Mater. Res. Technol., 2022, 18: 3991
|
7 |
Cui J J, Li B K, Liu Z Q, et al. Numerical investigation on the effect of axial magnetic field on metallurgical quality of ingots during vacuum arc remelting process[J]. J. Mater. Res. Technol., 2022, 20: 1912
|
8 |
Yang S L, Tian Q, Yu P, et al. Numerical simulation and experimental study of vacuum arc remelting (VAR) process for large-size GH4742 superalloy[J]. J. Mater. Res. Technol., 2023, 24: 2828
|
9 |
Xu X, Zhang W, Lee P D. Tree-ring formation during vacuum arc remelting of Inconel 718: part II. Mathematical modeling[J]. Metall. Mater. Trans., 2002, 33A: 1805
|
10 |
Zagrebelnyy D, Krane M J M. Segregation development in multiple melt vacuum arc remelting[J]. Metall. Mater. Trans., 2009, 40B: 281
|
11 |
Guo J, Huang L Q, Wu J Y, et al. Evolution of macrosegregation during three-stage vacuum arc remelting of titanium alloys[J]. Acta Metall. Sin., 2024, 59: 1531
|
11 |
郭 杰, 黄立清, 吴京洋 等. 钛合金三次真空自耗电弧熔炼过程中的宏观偏析传递行为[J]. 金属学报, 2024, 59: 1531
|
12 |
Guan J, Liu D R, Cao Y F, et al. Macro and micro segregations and prediction of carbide equivalent size in vacuum arc remelting of M50 steel via simulations and experiments[J]. Metall. Mater. Trans., 2024, 55A: 1081
|
13 |
Revil-Baudard M, Jardy A, Combeau H, et al. Solidification of a vacuum arc-remelted zirconium ingot[J]. Metall. Mater. Trans., 2014, 45B: 51
|
14 |
Mramor K, Quatravaux T, Combeau H, et al. On the prediction of macrosegregation in vacuum arc remelted ingots[J]. Metall. Mater. Trans., 2022, 53B: 2953
|
15 |
Han J J, Ren N, Zhou Y, et al. Melt convection and macrosegregation in the vacuum arc remelted Ti2AlNb ingot: Numerical methods and experimental verification[J]. J. Mater. Process. Technol., 2022, 308: 117729
|
16 |
Chapelle P, Jardy A, Bellot J P, et al. Effect of electromagnetic stirring on melt pool free surface dynamics during vacuum arc remelting[J]. J. Mater. Sci., 2008, 43: 5734
|
17 |
Karimi-Sibaki E, Kharicha A, Wu M, et al. A parametric study of the vacuum arc remelting (VAR) process: Effects of arc radius, side-arcing, and gas cooling[J]. Metall. Mater. Trans., 2020, 51B: 222
|
18 |
Karimi-Sibaki E, Kharicha A, Abdi M, et al. A Numerical study on the influence of an axial magnetic field (AMF) on vacuum arc remelting (VAR) process[J]. Metall. Mater. Trans., 2021, 52B: 3354
|
19 |
Karimi-Sibaki E, Kharicha A, Vakhrushev A, et al. Numerical modeling and experimental validation of the effect of arc distribution on the as-solidified Ti64 ingot in vacuum arc remelting (VAR) process[J]. J. Mater. Res. Technol., 2022, 19: 183
|
20 |
Gandin C A, Rappaz M. A 3D cellular automaton algorithm for the prediction of dendritic grain growth[J]. Acta Mater., 1997, 45: 2187
|
21 |
Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification[J]. Acta Metall., 1986, 34: 823
|
22 |
Nastac L. Multiscale modelling approach for predicting solidification structure evolution in vacuum arc remelted superalloy ingots[J]. Mater. Sci. Technol., 2012, 28: 1006
|
23 |
Nastac L. A multiscale transient modeling approach for predicting the solidification structure in VAR-processed alloy 718 ingots[J]. Metall. Mater. Trans., 2014, 45B: 44
|
24 |
Wang W, Lee P D, McLean M. A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection[J]. Acta Mater., 2003, 51: 2971
|
25 |
Zhao Y H, Xing H, Zhang L J, et al. Development of phase-field modeling in materials science in China: A review[J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 1749
|
26 |
Tourret D, Liu H, LLorca J. Phase-field modeling of microstructure evolution: Recent applications, perspectives and challenges[J]. Prog. Mater. Sci., 2022, 123: 100810
|
27 |
Yuan L, Djambazov G, Lee P D, et al. Multiscale modeling of the vacuum arc remelting process for the prediction on microstructure formation[J]. Int. J. Mod. Phys., 2009, 23B: 1584
|
28 |
Guo J. Multi-scale simulation of segregation and solidfication structure during the vacuum arc remelting of TC17 alloy[D]. Xi'an: Northwestern Polytechnical University, 2023
|
28 |
郭 杰. TC17合金VAR铸锭宏/微观偏析及组织演化模拟[D]. 西安: 西北工业大学, 2023
|
29 |
Cui J J, Li B K, Liu Z Q, et al. Numerical investigation of grain structure under the rotating arc based on cellular automata-finite element method during vacuum arc remelting process[J]. Metall. Mater. Trans., 2023, 54B: 661
|
30 |
Sun X Y, Lv G L, Li X M, et al. Numerical simulation of VAR for large-scale TC4 alloy during the solidification process[J]. Int. J. Cast Met. Res., 2024, 37: 1
|
31 |
Wang Y D, Zhang L F, Zhang J, et al. Simulation of solidification structure during vacuum arc remelting using cellular automaton-finite element method[J]. Steel Res. Int., 2022, 93: 2100408
|
32 |
Zhu M M, Lv G L, Li X M, et al. Numerical simulation of cellular automaton in vacuum arc remelting during the solidification process[J]. Mater. Res. Express, 2023, 10: 046518
|
33 |
Kermanpur A, Lee P D, McLean M, et al. Integrated modeling for the manufacture of aerospace discs: Grain structure evolution[J]. JOM, 2004, 56: 72
|
34 |
Bellet M, Combeau H, Fautrelle Y, et al. Call for contributions to a numerical benchmark problem for 2D columnar solidification of binary alloys[J]. Int. J. Therm. Sci., 2009, 48: 2013
|
35 |
Ren N, Li J, Zhang R Y, et al. Solute trapping and non-equilibrium microstructure during rapid solidification of additive manufacturing[J]. Nat. Commun., 2023, 14: 7990
doi: 10.1038/s41467-023-43563-x
pmid: 38042908
|
36 |
Lopez L F, Beaman J J, Williamson R L. A reduced-order model for dynamic vacuum arc remelting pool depth estimation and control[A]. ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control[C]. Arlington: ASME, 2011: 517
|
37 |
Kondrashov E N, Musatov M I, Maksimov A Y, et al. Calculation of the molten pool depth in vacuum arc remelting of alloy Vt3-1[J]. J. Eng. Thermophys., 2007, 16: 19
|
38 |
Leder M O, Gorina A V, Kornilova M A, et al. Determination of the thermophysical properties of titanium alloys from liquid bath profiles[J]. Russ. Metall., 2015, 2015: 964
|
39 |
Kondrashov E N, Leder M O, Maksimov A Y. Simulation of the VT3-1 alloy ingot solidification during VAR[J]. Russ. Metall., 2018, 2018: 1114
|
40 |
Quatravaux T, Ryberon S, Hans S, et al. Transient VAR ingot growth modelling: Application to specialty steels[J]. J. Mater. Sci., 2004, 39: 7183
|
41 |
Delzant P O, Baqué B, Chapelle P, et al. On the modeling of thermal radiation at the top surface of a vacuum arc remelting ingot[J]. Metall. Mater. Trans., 2018, 49B: 958
|
42 |
Zhao X H, Li J S, Yang Z J, et al. Numerical simulation of temperature field in vacuum arc remelting Ti alloy[J]. Spec. Cast. Nonferrous Alloys, 2010, 30: 1001
|
42 |
赵小花, 李金山, 杨治军 等. 钛合金真空自耗电弧熔炼过程中温度场的数值模拟[J]. 特种铸造及有色合金, 2010, 30: 1001
|
43 |
Yang Z J, Zhao X H, Kou H C, et al. Numerical simulation of temperature distribution and heat transfer during solidification of titanium alloy ingots in vacuum arc remelting process[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1957
|
44 |
Wang J L, Hao M Y, Tan Q M, et al. Numerical simulation and crack prediction of TD3 Alloy during vacuum arc remelting[J]. Spec. Cast. Nonferrous Alloys, 2024, 44: 916
|
44 |
王建磊, 郝孟一, 谭启明 等. TD3真空自耗熔炼过程数值模拟及裂纹预测[J]. 特种铸造及有色合金, 2024, 44: 916
|
45 |
Huang Y S, Yang M S, Li J S, et al. Vacuum arc remelting process of high-alloy bearing steel and multi-scale control of solidification structure[J]. Mater. Sci. Forum, 2015, 817: 826
|
46 |
Pan T, Zhu H C, Jiang Z H, et al. Mechanism of local solidification time variations with melt rate during vacuum arc remelting process of 8Cr4Mo4V high-strength steel[J]. J. Iron Steel Res. Int., 2024, 31: 377
|
47 |
Wang Y Y, Liu X H, Xia Y, et al. Effect of cooling conditions on the temperature field and macrosegregation of Cr element of TC6 alloy ingot[J]. Rare Met. Mater. Eng., 2023, 52: 4245
|
47 |
王阳阳, 刘向宏, 夏 勇 等. 冷却条件对TC6合金温度场和Cr偏析的影响[J]. 稀有金属材料与工程, 2023, 52: 4245
|
48 |
Spitans S, Franz H, Scholz H, et al. Numerical simulation of the ingot growth during the vacuum arc remelting (VAR) process[J]. Magnetohydrodynamics, 2017, 53: 557
|
49 |
Davidson P A, He X, Lowe A J. Flow transitions in vacuum arc remelting[J]. Mater. Sci. Technol., 2000, 16: 699
|
50 |
Pickering E J. Macrosegregation in steel ingots: The applicability of modelling and characterisation techniques[J]. ISIJ Int., 2013, 53: 935
|
51 |
Yu K O, Domingue J A, Maurer G E, et al. Macrosegregation in ESR and VAR processes[J]. JOM, 1986, 38: 46
|
52 |
Kondrashov E N, Tarenkova N Y, Maksimov A Y, et al. Study of the crystallization morphology of VT3-1 alloy during VAR[J]. J. Eng. Thermophys., 2009, 18: 80
|
53 |
Kermanpur A, Evans D G, Siddall R J, et al. Effect of process parameters on grain structure formation during VAR of Inconel alloy 718[J]. J. Mater. Sci., 2004, 39: 7175
|
54 |
Davidson P A, Kinnear D, Lingwood R J, et al. The role of Ekman pumping and the dominance of swirl in confined flows driven by Lorentz forces[J]. Eur. J. Mech., 1999, 18B: 693
|
55 |
Fan K, Wu L C, Li J J, et al. Numerical simulation of macrosegregation caused by buoyancy driven flow during VAR process for titanium alloys[J]. Rare Met. Mater. Eng., 2020, 49: 871
|
55 |
樊 凯, 吴林财, 李俊杰 等. 钛合金VAR过程中自然对流下的宏观偏析行为模拟[J]. 稀有金属材料与工程, 2020, 49: 871
|
56 |
Zhao X H, Li J S, Yang Z J, et al. Numerical simulation of fluid flow caused by buoyancy forces during vacuum arc remelting process[J]. J. Shanghai Jiaotong Univ. (Sci.), 2011, 16: 272
|
57 |
Zagrebelnyy D V. Modeling macrosegregation during the vacuum arc remelting of Ti-10V-2Fe-3Al alloy[D]. West Lafayette: Purdue University, 2007
|
58 |
Wu J Y. Thesis submitted in partial fulfillment of the requirements for the degree of master of science[D]. Xi'an: Northwestern Polytechnical University, 2021
|
58 |
吴京洋. 钛合金VAR过程中熔体流动及宏观偏析行为的数值模拟[D]. 西安: 西北工业大学, 2021
|
59 |
Huang L Q, Wu J Y, Guo J, et al. Effect of self-induced magnetic field on liquid flow and segregation during VAR process for titanium alloys[J]. Iron Steel Vanadium Titanium, 2023, 44(4): 55
|
59 |
黄立清, 吴京洋, 郭 杰 等. 钛合金VAR过程中自感电磁场对流场与偏析行为的影响[J]. 钢铁钒钛, 2023, 44(4): 55
|
60 |
Kou H, Zhang Y J, Yang Z J, et al. Liquid metal flow behavior during vacuum consumable arc remelting process for titanium[J]. Int. J. Eng. Technol., 2014, 12: 50
|
61 |
Huang L Q, Fan K, Guo J, et al. Simulation study on the effect of VAR magnetic stirring process on the melt flow[J]. Iron Steel Vanadium Titanium, 2024, 45(1): 65
|
61 |
黄立清, 樊 凯, 郭 杰 等. VAR电磁搅拌工艺对熔体流动影响的模拟研究[J]. 钢铁钒钛, 2024, 45(1): 65
|
62 |
Shevchenko D M, Ward R M. Liquid metal pool behavior during the vacuum arc remelting of Inconel 718[J]. Metall. Mater. Trans., 2009, 40B: 263
|
63 |
Delzant P O, Chapelle P, Jardy A, et al. Investigation of arc dynamics during vacuum arc remelting of a Ti64 alloy using a photodiode based instrumentation[J]. J. Mater. Process. Technol., 2019, 266: 10
|
64 |
Woodside C R, King P E, Nordlund C. Arc distribution during the vacuum arc remelting of Ti-6Al-4V[J]. Metall. Mater. Trans., 2013, 44B: 154
|
65 |
Delzant P O, Chapelle P, Jardy A, et al. Impact of a transient and asymmetrical distribution of the electric arc on the solidification conditions of the ingot in the VAR process[J]. Metals, 2022, 12: 500
|
66 |
Dobatkin V I, Anoshkin N F. Comparison of macrosegregation in titanium and aluminium alloy ingots[J]. Mater. Sci. Eng., 1999, A263: 224
|
67 |
Zhao Y Q, Liu J L, Zhou L. Analysis on the segregation of typical β alloying elements of Cu, Fe and Cr in Ti alloys[J]. Rare Met. Mater. Eng., 2005, 34: 531
|
67 |
赵永庆, 刘军林, 周 廉. 典型β型钛合金元素Cu, Fe和Cr的偏析规律[J]. 稀有金属材料与工程, 2005, 34: 531
|
68 |
Dai Y, Cao J H, Qin Y M, et al. Numerical simulation of melt convection and macrosegregation of Ti60 alloy ingot during the vacuum arc remelting[J]. Rare Met. Mater. Eng., 2024, 53: 701
|
68 |
戴 毅, 曹江海, 秦羽满 等. Ti60合金VAR熔炼过程熔体流动与宏观偏析的数值模拟研究[J]. 稀有金属材料与工程, 2024, 53: 701
|
69 |
Zhao X H, Wang J C, Liu P, et al. Effect of electrode block’s mixing uniformity on titanium alloy ingot’s composition[J]. Titanium Ind. Prog., 2021, 38(4): 1
|
69 |
赵小花, 王锦程, 刘 鹏 等. 钛合金电极块混料均匀性对铸锭成分的影响[J]. 钛工业进展, 2021, 38(4): 1
|
70 |
Jiang D B, Yang F Z, Zhang J, et al. Effect of feeding parameters on ingot segregation and shrinkage pore in vacuum arc remelting[J]. J. Iron Steel Res. Int., 2023, 30: 1268
|
71 |
Jing Z Q, Liu R, Geng N T, et al. Simulation of solidification structure in the vacuum arc remelting process of titanium alloy TC4 based on 3D CAFE method[J]. Processes, 2024, 12: 802
|
72 |
Atwood R C, Lee P D, Minisandram R S, et al. Multiscale modelling of microstructure formation during vacuum arc remelting of titanium 6-4[J]. J. Mater. Sci., 2004, 39: 7193
|
73 |
Li X, Zhang T, Jiang H, et al. Predicting the three-dimensional grain structure of superalloys during vacuum arc remelting process[J]. J. Mater. Res. Technol., 2023, 25: 5938
|
74 |
Kou H C, Zhang Y J, Li P F, et al. Numerical simulation of titanium alloy ingot solidification structure during VAR process based on three-dimensional CAFE method[J]. Rare Met. Mater. Eng., 2014, 43: 1537
|
75 |
Zhao X H, Wang J C, Wang K X, et al. Numerical simulation and experimental validation on the effect of stirring coils' parameters on TC17 ingot during vacuum arc remelting process[J]. Rare Met. Mater. Eng., 2023, 52: 2676
|
76 |
Wang X H, Ward R M, Jacobs M H, et al. Effect of variation in process parameters on the formation of freckle in Inconel 718 by vacuum arc remelting[J]. Metall. Mater. Trans., 2008, 39A: 2981
|
77 |
Beckermann C, Gu J P, Boettinger W J. Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings[J]. Metall. Mater. Trans., 2000, 31A: 2545
|
78 |
Yang W H, Chang K M, Chen W, et al. Freckle criteria for the upward directional solidification of alloys[J]. Metall. Mater. Trans., 2001, 32A: 397
|
79 |
Jardy A, Ablitzer D. Mathematical modelling of superalloy remelting operations[J]. Mater. Sci. Technol., 2009, 25: 163
|
80 |
Patel A D, Minisandram R S, Evans D G. Modeling of vacuum arc remelting of alloy 718 ingots[A]. Superalloys 2004[C]. Charlotte, NC: TMS, 2004: 917
|
81 |
Jackman L A, Maurer G E, Widge S. New knowledge about ‘white spots’ in superalloys[J]. Adv. Mater. Processes, 1993, 143: 18
|
82 |
Zhang W, Lee P D, McLean M. Numerical simulation of dendrite white spot formation during vacuum arc remelting of Inconel 718[J]. Metall. Mater. Trans., 2002, 33A: 443
|
83 |
Jiang D B, Zhang L F. Operation parameters on white spot formation in vacuum arc remelting[J]. JOM, 2023, 75: 1505
|
84 |
Jiang D B, Ren Y, Zhang L F. Numerical simulation of inclusion distribution in vacuum arc remelting ingot[J]. Metall. Mater. Trans., 2023, 54B: 1342
|
85 |
Ghazal G, Jardy A, Chapelle P, et al. On the dissolution of nitrided titanium defects during vacuum arc remelting of Ti alloys[J]. Metall. Mater. Trans., 2010, 41B: 646
|
86 |
Bellot J P, Ablitzer D, Foster B, et al. Dissolution of hard-alpha inclusions in liquid titanium alloys[J]. Metall. Mater. Trans., 1997, 28B: 1001
|
87 |
Li M Y, Yang S F, Liu W, et al. Research process on segregation and control of titanium alloy during vacuum arc remelting[J]. China Metall., 2023, 33(9): 1
|
87 |
李明宇, 杨树峰, 刘 威 等. 真空自耗熔炼钛合金的偏析缺陷及控制研究进展[J]. 中国冶金, 2023, 33(9): 1
|
88 |
Shamblen C E. Minimizing beta flecks in the Ti-17 alloy[J]. Metall. Mater. Trans., 1997, 28B: 899
|
89 |
Zeng W D, Zhou Y G, Yu H Q. Effect of beta flecks on low-cycle fatigue properties of Ti-10V-2Fe-3Al[J]. J. Mater. Eng. Perform., 2000, 9: 222
|
90 |
Kawakami A. Study on segregation behavior of alloying elements in titanium alloys during solidification[D]. Vancouver: University of British Columbia, 2002
|
91 |
Mitchell A, Kawakami A, Cockcroft S L. Beta fleck and segregation in titanium alloy ingots[J]. High Temp. Mater. Processes, 2006, 25: 337
|
92 |
Yin X C. Study on beta flecks and formation mechanisms in TC17 alloy[D]. Hefei: University of Science and Technology of China, 2020
|
92 |
尹续臣. TC17合金中的β斑及其形成机制研究[D]. 合肥: 中国科学技术大学, 2020
|
93 |
Yin X C, Liu J R, Wang Q J, et al. Investigation of beta fleck formation in Ti-17 alloy by directional solidification method[J]. J. Mater. Sci. Technol., 2020, 48: 36
doi: 10.1016/j.jmst.2019.12.018
|
94 |
Ji Q T, Yu J, Ning J, et al. Numerical simulation of vacuum arc remelting process of USS122G ingot[J]. Iron Steel, 2022, 57(10): 127
|
94 |
汲庆涛, 于 杰, 宁 静 等. USS122G钢锭真空电弧重熔工艺的数值模拟[J]. 钢铁, 2022, 57(10): 127
doi: 10.13228/j.boyuan.issn0449-749x.20220188
|
95 |
Wang Y, Ma D S, Yang M S, et al. Numerical simulation of vacuum consumable arc melting optimization for high alloy stainless bearing steel[J]. China Metall., 2023, 33(9): 35
|
95 |
王 杨, 马党参, 杨卯生 等. 高合金不锈轴承钢真空自耗熔炼数值模拟优化[J]. 中国冶金, 2023, 33(9): 35
|
96 |
Wang Y D, Zhang L F, Zhang J, et al. Numerical simulation of macrosegregation in vacuum arc remelting process[J]. J. Iron Steel Res. Int., 2021, 33: 718
|
96 |
王亚栋, 张立峰, 张 健 等. 真空自耗熔炼过程宏观偏析的数值模拟[J]. 钢铁研究学报, 2021, 33: 718
doi: 10.13228/j.boyuan.issn1001-0963.20210110
|
97 |
Wen H, Zheng Y B, Chen F, et al. Research on melting technology of TC2 titanium alloy ingot depend on MeltFlow-VAR[J]. World Nonferrous Met., 2022, (14): 12
|
97 |
文 豪, 郑亚波, 陈 峰 等. 基于MeltFlow-VAR的TC2钛合金铸锭熔炼工艺研究[J]. 世界有色金属, 2022, (14): 12
|
98 |
Jing Z Q, Sun Y H, Liu R, et al. Effect of vacuum arc remelting process parameters on macrosegregation in TC4 titanium alloy[J]. Rare Met. Mater. Eng., 2023, 52: 815
|
99 |
Patel A, Fiore D. On the modeling of vacuum arc remelting process in titanium alloys[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2016, 143: 012017
|
100 |
Luo W Z, Zhao X H, Liu P, et al. Computational simulation of factors affecting surface quality of titanium alloy ingot in VAR process[J]. Rare Met. Mater. Eng., 2020, 49: 927
|
100 |
罗文忠, 赵小花, 刘 鹏 等. 采用数值模拟方法分析影响VAR熔炼钛合金铸锭表面质量的因素[J]. 稀有金属材料与工程, 2020, 49: 927
|
101 |
Li T, Hua Q, Liu H, et al. Research on the melting process of TC17 titanium alloy ingots based on MeltFlow VAR[J]. Spec. Steel Technol., 2024, 30(2): 12
|
101 |
李 彤, 华 倩, 刘 华 等. 基于MeltFlow-VAR的TC17钛合金铸锭熔炼工艺研究[J]. 特钢技术, 2024, 30(2): 12
|
102 |
Ward R M, Jacobs M H. Electrical and magnetic techniques for monitoring arc behaviour during VAR of Inconel1 718: Results from different operating conditions[J]. J. Mater. Sci., 2004, 39: 7135
|
103 |
Zhang W B, Sun D K, Chen W, et al. Lattice Boltzmann modeling of convective heat and solute transfer in additive manufacturing of multi-component alloys[J]. Addit. Manuf., 2024, 84: 104089
|
104 |
Liu Y L, Sun D K, Zhang Z X, et al. A lattice Boltzmann model for incompressible gas and liquid two-phase flows combined with free-surface method[J]. Phys. Fluids, 2024, 36: 032124
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|