金属学报, 2025, 61(1): 29-42 DOI: 10.11900/0412.1961.2024.00306

综述

非平衡界面动力学理论

王海丰,, 蒲振新, 张建宝

西北工业大学 凝固技术国家重点实验室 先进润滑与密封材料研究中心 西安 710072

Non-Equilibrium Interface Dynamics Theory

WANG Haifeng,, PU Zhenxin, ZHANG Jianbao

Advanced Lubrication and Sealing Materials Research Center, State Key Laboratory of Solidification Technology, Northwestern Polytechnical University, Xi'an 710072, China

通讯作者: 王海丰,haifengw81@nwpu.edu.cn,主要从事亚稳金属材料相变理论及金属材料开发应用研究

责任编辑: 梁烨

收稿日期: 2024-09-03   修回日期: 2024-11-01  

基金资助: 国家自然科学基金项目(51975474)
中央高校基本科研业务费项目(3102019JC001)

Corresponding authors: WANG Haifeng, professor, Tel:(029)88460311, E-mail:haifengw81@nwpu.edu.cn

Received: 2024-09-03   Revised: 2024-11-01  

Fund supported: National Natural Science Foundation of China(51975474)
Fundamental Research Funds for the Central Universities(3102019JC001)

作者简介 About authors

王海丰,男,1981年生,教授,博士

摘要

界面是材料加工过程中组织控制的关键所在,故对其动力学过程的准确理论描述非常重要。本文从熔化过程中液/固界面、凝固过程中固/液界面和固态相变过程中固/固界面的共性之处出发,对基于尖锐界面的非平衡界面动力学发展历史和现状进行了总结与分析。以二元合金凝固为例,本文首先介绍了局域非平衡条件下的界面动力学理论,包括界面动力学过程、稳态界面动力学理论和非稳态界面动力学理论。分析了一步跨界面溶质扩散和两步跨界面溶质扩散的物理本质。其次,介绍了完全非平衡条件下的界面动力学理论。对比分析了动力学能量方法和有效移动性方法在引入体积相非平衡扩散效应方面的应用情况。随后,简要介绍了部分溶质拖曳界面动力学理论。分析了当前引入部分溶质拖曳效应方法的不足。本文有望深化人们对非平衡界面动力学的认识与理解,同时为相关领域组织调控提供借鉴。最后,本文也对后续非平衡界面动力学理论的发展进行了展望。

关键词: 界面动力学; 非平衡界面; 非平衡溶质扩散; 溶质拖曳效应

Abstract

Recently, the rapid advancement of extreme non-equilibrium material processing and fabrication techniques, such as 3D printing and rapid die-casting, has led to the continuous development of new materials with exceptional properties. However, current non-equilibrium processing technologies face technical challenges, such as the lack of clear guidelines for process optimization, which considerably limits the advancement and application of advanced materials. The solidification and solid phase transformations involved in materials prepared through non-equilibrium processing pertain to a non-equilibrium dissipative system and manifest throughout the entire dynamic process of material fabrication. By investigating key scientific issues such as non-equilibrium phase transformation dynamics, non-equilibrium solute diffusion, and solute-drag effects, developing a theoretical framework for the entire non-equilibrium material processing, from solidification to solid phase transformation is possible. This not only provides theoretical support for the design and fabrication of non-equilibrium materials but also introduces novel concepts for optimizing process parameters in non-equilibrium processing technologies. This review is crucial for advancing non-equilibrium phase transformation theory and deepening our understanding of fundamental theoretical research. Interfaces play a critical role in microstructure control during material processing, thereby making an accurate theoretical description of their kinetics is especially important. This review focuses on the common characteristics of liquid/solid interfaces during melting, solid/liquid interfaces during solidification, and solid/solid interfaces during solid state phase transformations and summarizes and analyzes the history and current state of sharp-interface models for interface kinetics. Using the solidification of binary alloys as an example, the review first introduces interface kinetic theories under local non-equilibrium conditions, covering descriptions of interface kinetic processes and interface kinetic models for steady-state and non-steady-state conditions. The physical nature of one-step and two-step trans-interface diffusion is demonstrated. Next, the review describes interface kinetic theories under full non-equilibrium conditions by comparing the applications of the kinetic energy method and the effective mobility method for non-equilibrium solute diffusion in bulk phases. Thereafter, it introduces interface kinetic theories incorporating the partial solute drag effect present and discusses limitations in current methods for addressing partial solute drag. This study aims to enhance understanding of interface kinetics, offering insights into microstructure control. Finally, an outlook on the future of non-equilibrium interface kinetic theories is provided, which outlines directions for future research.

Keywords: interface kinetics; non-equilibrium interface; non-equilibrium solute diffusion; solute-drag effect

PDF (2033KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王海丰, 蒲振新, 张建宝. 非平衡界面动力学理论[J]. 金属学报, 2025, 61(1): 29-42 DOI:10.11900/0412.1961.2024.00306

WANG Haifeng, PU Zhenxin, ZHANG Jianbao. Non-Equilibrium Interface Dynamics Theory[J]. Acta Metallurgica Sinica, 2025, 61(1): 29-42 DOI:10.11900/0412.1961.2024.00306

界面是相与相间的分界面,是材料加工过程中组织控制的关键所在[1~4]。对于纯物质:熔化过程中的液/固界面迁移伴随着固相原子的无序化,也即固相原子转变为液相原子;凝固过程中的固/液界面迁移伴随着液相原子的有序化,也即液相原子转变为固相原子;固态相变过程中的固/固界面迁移伴随着固态晶格的重新排布,也即从一种固相转变成另一种固相。对于合金而言,母相和生长相往往存在成分差异,因此界面迁移过程同时也伴随着界面处溶质的再分配过程,或者说溶质的跨界面扩散过程,如图1所示。图1a代表熔化过程中的液/固界面,图1b为凝固过程中的固/液界面,图1c表示固态相变过程中的固/固(α/β)界面。以二元合金凝固过程中的固/液界面为例,其界面参量包括界面迁移速率(V)、界面温度(TI)、界面处固相成分(CS*)和液相成分(CL*)。因此,界面动力学理论的主要任务是建立上述4个界面参变量之间的关系。当然,这与界面的动力学状态紧密相关。

图1

图1   不同相变类型中的界面动力学过程示意图

Fig.1   Schematics for the interface kinetic processes in different phase transformation types (L—liquid, S—solid, I—interface, A—solvent atom A, B—solute atom B, α—solid phase α, β—solid phase β, the same below)

(a) liquid/solid interface during melting

(b) solid/liquid interface during solidification

(c) solid/solid (α/β) interface during solid-state phase-transformation


从字面上看,界面动力学状态关注的是界面所处的动力学状态,即平衡或非平衡[5]。在实际的科学问题中,平衡或非平衡界面对凝固过程的影响十分广泛。例如,非平衡成分梯度可对凝固过程的温度梯度和浓度梯度产生重要影响,其不仅影响凝固过程中的温度分布,还影响晶体的生长方式和生长形态。通过控制凝固过程中的成分梯度,可有效改变组织形貌和相分布,进而影响材料的力学性能。从凝固理论的角度来看,界面状态与体积相的扩散动力学紧密相关,故在对界面动力学状态描述时,需同时考虑界面和体积相的动力学状态。同样以二元合金凝固为例,依据界面迁移速率的大小,界面状态可分为如下4类。

(1) 完全平衡。当界面速率趋近于零时,界面处固相和液相成分均为平衡成分,且液相和固相成分均一[6]。此时,界面处于完全平衡状态,即:

CS*=CS=CSeq, CL*=CL=CLeq

式中,CSeqCLeq分别为固相和液相的平衡成分,CSCL分别为固相和液相成分。

(2) 局域平衡。当界面迁移速率较小时,界面处固相和液相成分均为平衡成分,但液相和固相中存在成分梯度。此时,界面迁移速率仅由界面处固相和液相溶质扩散决定(也即扩散控制生长机制[6,7]):

JBL*-JBS*=VVmCL*-CS*=-DLVmCL*Z+DSVmCS*Z

(CS*=CSeq, CL*=CLeq)

式中,JBS*JBL*分别为界面处固相和液相的溶质通量,Vm是摩尔体积(本文假设A和B 2种组成元素分别为溶剂和溶质中的置换组元,且其摩尔体积相等),DSDL分别为固相和液相中的溶质扩散系数,Z是坐标轴。需要说明的是,经典Zener扩散控制生长机制[6,7]忽略了生长相中的溶质扩散(即式(2)中JBS* = 0且CS* / Z = 0)[6,7]

(3) 局域非平衡。当界面迁移速率较大但仍远小于液相中溶质扩散速率(VDL)时,界面处固相和液相成分偏离平衡成分,且液相和固相中存在成分梯度。此时,界面迁移速率由界面处固相和液相溶质扩散以及界面迁移驱动力共同决定:

JBL*-JBS*=VVmCL*-CS*=-DLVmCL*Z+DSVmCS*Z

V=-MΔGm

式中,ΔGm为界面迁移驱动力,M为界面移动性系数。式(4)即为经典的Christian界面控制生长机制[8]。需要说明的是,此时固相和液相的溶质通量均正比于成分梯度,也即遵循经典Fick扩散定律。此外,由于界面迁移速率由扩散控制机制(式(3))和界面控制机制(式(4))共同决定,因此这种情况也常被称为混合控制生长机制[9]

(4) 完全非平衡。当界面迁移速率与液相中溶质扩散速率相当时,界面迁移速率同样由界面处固相和液相扩散以及界面迁移驱动力共同决定,但是固相和液相中的溶质通量不再仅正比于成分梯度,而且与扩散历史相关[10],也即:

JBL*-JBS*=VVmCL*-CS*=-DLVmCL*Z-τDLJBL*t+

DSVmCS*Z+τDSJBS*t               

式中,t为时间,τDS = DS / (VDS)2 (VDS是固相中的溶质扩散速率)和τDL = DL / (VDL)2 (VDL是液相中的溶质扩散速率)分别为固相和液相的溶质扩散弛豫参数。在此情形下,不仅界面处于非平衡状态,固相和液相的溶质扩散也偏离经典的Fick扩散定律而“远离平衡”,故本文将其定义为“完全非平衡”。需要特别说明的是,当界面迁移速率达到甚至超过液相中溶质扩散速率时,稳态时界面处固相成分与液相成分相等,且固相和液相中均无成分梯度[11]。此时,发生无偏析凝固[12,13] (即完全溶质截留,详见1.2节),合金的界面迁移过程与纯物质相同,仅伴随着液相原子的有序化但无溶质原子在界面处的再分配。

界面动力学通常包括2类过程(图1):界面迁移和溶质跨界面扩散。前者对应着界面迁移速率与界面迁移驱动力之间的关系(式(4))。以纯物质为例,通常情况下界面温度偏离平衡熔点温度越大,则驱动力越大、界面迁移速率也越大。类似地,可认为合金界面迁移动力学过程使得界面温度偏离平衡温度(或者说初始成分对应的液相线温度)[14]。而后者对应着界面成分与界面迁移速率之间关系,或者说非平衡溶质分配系数(k = CS* / CL*)随界面迁移速率的变化关系。换言之,溶质跨界面扩散过程使得界面成分偏离平衡成分[14]

事实上,随着界面迁移速率的不断提高,k不断偏离平衡溶质分配系数(ke = CSeq / CLeq),直到k = 1,此现象被称为溶质截留效应[15]。从物理机制的角度而言,溶质截留效应是指当界面迁移速率较大时,更多的溶质原子会被包裹入新生成的固相之中(图1)。尽管从热力学的角度而言,这些多余的溶质原子具有通过溶质跨界面扩散重新回到界面处液相中的驱动力,但由于界面迁移速率很快,新的固相会迅速生成,进而阻碍了上述溶质跨界面扩散过程的发生,故相比平衡成分,更多的溶质原子最终被保留到固相之中。这一非平衡效应最早可追溯到1969年Baker和Cahn[16]的工作,他们发现在急冷条件下,Cd在Zn-Cd合金中的固溶度甚至可以超过其在平衡相图中的最大固溶度极限。

同样,与界面迁移动力学过程相对应,还存在另一非平衡效应,即溶质拖曳效应。从定义上讲,溶质拖曳效应是指溶质原子和界面的相互作用(即溶质跨界面扩散过程)会消耗界面迁移的驱动力,从而使界面迁移速率降低的现象。该平衡效应可追溯到1957年Lücke和Detert的工作[17],他们发现在高纯Al中加入0.01% (质量分数)的Mn和Fe后,再结晶速率均会大幅度降低。对于相界面,纯物质的界面驱动力全部用于驱动界面迁移,而合金中的跨界面扩散过程会消耗部分界面驱动力,进而使得界面迁移速率相比纯物质而言大幅降低。但当完全溶质截留发生后,溶质跨界面扩散过程被完全抑制,溶质拖曳效应也会随之消失。

需要特别指出的是,在固态相变领域,溶质拖曳效应在非平衡界面动力学理论建立之初便被广泛接受。但在凝固领域,凝固过程中是否存在溶质拖曳效应?溶质拖曳效应程度如何?这些问题一直伴随着非平衡凝固界面动力学理论的发展,且至今也未得到完全解决。然而,抛开液/固相变、固/液相变和固态相变的不同之处,如应力问题、对流问题等,3者从不可逆热力学的角度完全相同,故所建立的非平衡界面动力学理论也应完全相同。

本文从非平衡界面动力学的共性问题出发,详细论述基于尖锐界面理论假设的非平衡界面动力学理论的发展历史与现状。在总结经典理论模型和最新理论研究成果的基础上,分析这一领域的发展趋势并进行展望,以期推动人们对非平衡界面动力学的认识与理解,并为组织调控提供借鉴。需要说明的是,下文将以二元合金凝固为论述对象,但相关理论论述也同样适用于熔化和固态相变。

1 局域非平衡条件下的二元合金界面动力学理论

界面动力学理论是通过建立界面动力学通量与对应驱动力之间的关系来确定界面参变量之间的关系,进而得到界面温度和界面成分随界面速率的变化规律(稳定态情况)或者界面温度、界面成分和界面速率随时间的变化规律(非稳态情况)。因此,本节将首先介绍界面动力学过程,而后依次对稳态和非稳态界面动力学理论的发展进行论述。

1.1 界面动力学过程

Baker[18]在1965年首次对非平衡界面动力学过程进行了描述,认为二元合金的凝固过程首先可以看作是溶剂A从液相原子变成固相原子和溶质B从液相原子变成固相原子2个过程(图2)。

图2

图2   液相直接凝固出目标固相成分的固/液界面动力学过程示意图

Fig.2   Schematic for the solid/liquid interface kinetic processes when the solid with the aimed composition is solidified directly from the liquid


对于迁移速率为V的平界面,单位时间、单位面积通过固/液界面的A原子和B原子数目,也即A原子和B原子的通量,分别为:

JAS*=VVm1-CS*, JBS*=VVmCS*

式中,JAS*为界面处固相中溶剂A的通量。JAS*JBS*对应的共轭驱动力(XAXB)为固相原子与液相原子的化学势之差(ΔμA*ΔμB*),也即:

XA=ΔμA*=μAS*-μAL*, XB=ΔμB*=μBS*-μBL*

式中,μAS*μAL*分别为界面处溶剂A在固相和液相中的化学势,μBS*μBL*分别为界面处溶质B在固相和液相中的化学势。因此,单位面积固/液界面迁移所引起的Gibbs自由能变化率(G˙)为:

G˙=VVmΔGtotal=VVm1-CS*ΔμA*+CS*ΔμB*

式中,ΔGtotal为凝固1 mol原子时整个界面所耗散的Gibbs自由能。

其次,如前所述界面动力学可以看作是界面迁移(即液相原子转变为固相原子,但是成分仍为液相成分)和跨界面扩散(即新生成固相中多余溶质原子从固相跨界面扩散到液相) 2个过程。2者的通量(JCJD)分别为:

JC=VVm, JD=VVmCL*-CS*

式中,C和D分别代表界面迁移和界面扩散。由于上述2种情况下,初态和终态均相同,因此界面耗散的Gibbs自由能也应相同。故式(8)可改写为:

G˙=VVmΔGtotal=VVm1-CL*ΔμA*+CL*ΔμB*+
                       VVmCL*-CS*ΔμA*-ΔμB*

上式表明界面迁移和跨界面扩散对应的共轭驱动力(XCXD)分别为:

XC=1-CL*ΔμA*+CL*ΔμB*, XD=ΔμA*-ΔμB*

前者是1 mol液相直接转变为固相所引起的Gibbs自由能变化;后者是溶质原子B由固相跨界面扩散到液相,而相应溶剂原子A由液相跨界面扩散到固相并占据之前溶质原子B位置所引起的Gibbs自由能变化(图3)。如图3所示,1 mol液相发生凝固时整个界面所耗散的Gibbs自由能为ΔGtotal = (1-CS*)ΔμA*+CS*ΔμB*。将固相Gibbs自由能曲线在成分CS*的公切线向上平移到液相Gibbs自由能曲线的成分CL*位置时,ΔGtotal被分为2部分:上部分为溶质跨界面扩散耗散过程的Gibbs自由能ΔGD = (CL*-CS*)(ΔμA*-ΔμB*);下部分为界面迁移耗散过程的Gibbs自由能ΔGm = (1-CL*)ΔμA*+CL*ΔμB*

图3

图3   稳态固/液界面动力学过程的摩尔Gibbs自由能示意图

Fig.3   Mole Gibbs free energy diagram for the solid/liquid interface kinetic processes under a steady-state condition (Green and red curves represent the Gibbs free energy curve of the solid phase and liquid phase, respectively, the same below. Total Gibbs free energy dissipated by the interface after solidification of 1 mol liquid is ΔGtotal = (1-CS*)ΔμA*+CS*ΔμB*. By translating the tangent of Gibbs free energy curve of solid at CS* to the Gibbs free energy curve of liquid at CL*, ΔGtotal is divided into two parts: The upper one for trans-interface diffusion is ΔGD = (CL*-CS*)(ΔμA*-ΔμB*) and latter part for interface migration is ΔGm = (1-CL*)ΔμA*+CL*ΔμB*. ΔGm—Gibbs free energy of interface migration, ΔGD—Gibbs free energy of trans-interface diffusion, CS*—the solid composition at the interface, CL*—the liquid composition at the interface, ΔμA*—the chemical potential of A across the interface, ΔμB*—the chemical potential of B across the interface, μAL* and μAS*—the chemical potential at the interface for liquid and solid phase B, μBL* and μBS*—the chemical potential at the interface for liquid and solid phase B, respectively, gmS—the mole Gibbs free energy of the solid, gmL—the mole Gibbs free energy of the liquid)


需要指出的是,Baker[18]实际上从不可逆热力学的角度出发,建立了界面动力学的理论框架,该理论框架持续影响着后续理论工作的开展。然而,该理论实际上假设固相成分恒定(即为CS = CS*),换而言之,其忽略了生长相中溶质扩散的影响:对于液/固相变而言,液相中溶质扩散系数通常比固相大几个数量级,该假设成立;对固/固相变而言,生长相和母相的扩散速率相当,甚至生长相中可能更大,因此生长相中的扩散通常不可忽略;对于固/液相变而言,液相中溶质扩散系数比固相大几个数量级,该假设同样不成立。Hillert等[19,20]最早关注了上述问题,并从界面处的守恒方程出发进行了对比分析,界面处守恒方程可表示为:

JBL*-JBS*=VVmCL*-CS*

当固相中溶质扩散可以忽略时,即JBS*=0式(12)可简化为:

JBL*=VVmCL*-CS*

比较式(9)和(13)可知:JD = JBL*。可见,跨界面扩散通量与界面处液相的溶质通量相等。此时,最终穿越界面进入固相的溶质成分Ctrans = CS*,整个界面耗散的摩尔Gibbs自由能ΔGtotal = (1-CS*)ΔμA*+CS*ΔμB*。而当固相中的溶质扩散不可忽略时,他们认为对于跨界面扩散通量,JD = JBL*仍然成立,此时Ctrans可由式(12)得到:

JD=JBL*=VVmCL*-CS*-VmVJBS*=
VVmCL*-Ctrans 

Ctrans = CS*-JBS*Vm / V。此时,Ctrans是与界面处固相扩散有关的量,整个界面耗散的摩尔Gibbs自由能为ΔGtotal = (1-Ctrans)ΔμA*+CtransΔμB*,且:

G˙=VVmΔGtotal=VVm1-CL*ΔμA*+CL*ΔμB*+
                           VVmCL*-CtransΔμA*-ΔμB*

Hillert等[19,20]把Baker[18]不考虑生长相内扩散的界面称为稳态界面,而把考虑生长相内扩散的界面称为非稳态界面(如图4),在图中1 mol液相原子发生凝固时整个界面所耗散的Gibbs自由能为ΔGtotal = (1-Ctrans)ΔμA*+CtransΔμB*。将固相Gibbs自由能曲线在成分CS*的公切线向上平移到液相Gibbs自由能曲线的成分CL*位置时,ΔGtotal被分为2部分:上部分为溶质跨界面扩散耗散过程的Gibbs自由能ΔGD = (CL*-Ctrans)(ΔμA*-ΔμB*);下部分为界面迁移耗散过程的Gibbs自由能ΔGm = (1-CL*)ΔμA*+CL*ΔμB*。稳态和非稳态情况ΔGtotal之差为ΔGtransS = (Ctrans-CS*)(ΔμA*-ΔμB*)。此能量为将实际穿过界面成分从CS*调整到Ctrans所耗散的Gibbs自由能。

图4

图4   非稳态固/液界面动力学过程的摩尔Gibbs自由能示意

Fig.4   Mole Gibbs free energy diagram for the solid/liquid interface kinetic processes under a non-steady-state condition (Total Gibbs free energy dissipated by the interface after solidification of 1 mol liquid is ΔGtotal = (1-Ctrans)ΔμA*+CtransΔμB*. By translating the tangent of Gibbs free energy curve of solid at CS* to the Gibbs free energy curve of liquid at CL*, ΔGtotal is divided into two parts: The upper one for trans-interface diffusion is ΔGD = (CL*-Ctrans)(ΔμA*-ΔμB*) and latter part for interface migration is ΔGm = (1-CL*)ΔμA*+CL*ΔμB*. The difference in ΔGtotal between the steady-state condition and the non-steady-state condition is ΔGtransS = (Ctrans-CS*)(ΔμA*-ΔμB*), which is the Gibbs free energy dissipated to adjust the actual composition transferred across the interface from CS* to Ctrans (Ctrans—the solute component that finally crosses the interface and enters the solid phase)


需要特别说明的是,上述结果是通过稳态和非稳态情况间的相互对比得到的,而值得质疑是为何2种情况下跨界面溶质扩散通量始终等于界面处母相的溶质扩散通量。针对这一问题,Wang等[21]通过构造体系的Gibbs自由能,并对其进行时间求导运算,从而得出了Gibbs自由能的变化率。所得到的单位面积液/固界面迁移所引起的Gibbs自由能变化率为:

G˙=VVmΔGtotal=VVmCS*μBS*+1-CS*μAS*-                
        CL*μBL*+1-CL*μAL*-
                 JBS*μBS*-μAS*+JBL*μBL*-μAL*

根据式(16),在非稳态条件下界面的动力学过程分为界面迁移、界面处固相扩散和界面处液相扩散3个过程,其对应的驱动力分别为固、液2相的摩尔Gibbs自由能差(gmS*-gmL*)、界面处固相扩散势(μ˜S* = μBS*-μAS*)和界面处液相的扩散势(μ˜L* = μBL*-μAL*)。但由于界面溶质守恒条件(式(12)),这3个过程实际上相互依赖。如若将式(12)代入式(16),即可发现式(16)与(15)等价,且Ctrans有2种表达式:

Ctrans=CS*-VmVJBS*=CL*-VmVJBL*

进一步地,Kuang等[22,23]认为在稳态条件下跨界面溶质扩散为一步完成,即从固相跳跃到液相,跨界面扩散通量JD = JBL* = CL*-CS*V / Vm (图5a)。

图5

图5   跨界面溶质扩散示意图

Fig.5   Schematics for solute trans-interface diffusion in one step (a) and two steps (b) (For the former, there is only one flux for solute trans-interface diffusion, i.e., JD = JBL* = (CL*-CS*)V / Vm, whereas for the latter, there are two fluxes for solute trans-interface diffusion, i.e., JDSI = (Ctrans*-CS*)V / Vm = -JBS* and JDIL = (CL*-Ctrans*)V / Vm = JBL*. JD—the flux of solute trans-interface diffusion, JDSI—the flux of trans-interface diffusion from solid phase to interface, JDIL—the flux of trans-interface diffusion from interface to liquid phase, Ctrans*—the solute component at the interface that finally crosses the interface and enters the solid phase, V—the velocity of the migrating interface, Vm—mole volume)


在非稳态条件下,跨界面溶质扩散为2步完成(图5b):首先,从固相跳跃到界面,其中界面成分为Ctrans*,相应的跨界面扩散通量为JDSI = (Ctrans*-CS*)V / Vm = -JBS*;其次,从界面跳跃到液相,相应的跨界面扩散通量为JDIL = (CL*-Ctrans*)V / Vm = JBL*。由此可见,无论是界面处液相还是固相中的溶质扩散通量,均为跨界面溶质扩散通量。但Hillert等[19,20]的工作仅选取了一种独立的动力学过程。试想一不断加热熔化和降温凝固的循环过程,对于Hillert等[19,20]的工作,熔化过程需选择JBS*为跨界面溶质通量,而在凝固过程中需选择JBL*为跨界面溶质通量。而在Wang等[21]和Kuang等[22,23]工作中,JBS*JBL*均为跨界面通量,因此无论是熔化过程还是凝固过程,上述理论分析结果均适用。

1.2 稳态界面动力学理论

根据经典的Onsager唯象关系[24,25],Baker[18]定义了通量和驱动力之间的关系,建立了经典的稳态动力学理论。针对上述2种通量和驱动力的选择,建立了2种模型:

JAS*=LAAXA+LABXB, JBS*=LBAXA+LBBXB
JC=LCCXC+LCDXD, JD=LDCXC+LDDXD

式中,LAALABLBALBBLCCLCDLDCLDD均为动力学系数。且根据Onsager倒易关系[24,25],有LAB = LBALCD = LDC。由于2种通量和驱动力的选择是描述同一动力学问题,因此Baker[18]首先对2种模型的等价性进行了研究。结果发现式(18)和(19)并不能同时满足Onsager的经典倒易关系,如当LAB = LBA成立时,LCD = LDC并不成立。因此在很长一段时间内人们都在关注经典Onsager倒易关系的普适性问题。Hillert[26]在2006年完全解决了这一问题,发现2种通量和驱动力的选择完全等价,所建立的界面动力学模型也完全等价,且LAB = LBALCD = LDC也同时成立。但Baker[18]这一开创性理论工作仅关注了动力学系数之间的关系以及应满足的条件,并未给出具体的表达式。

Aziz和Kaplan[27]在1988年建立了另一经典的界面动力学模型。基于化学反应速率理论,该模型中通量和驱动力之间为幂指数关系而非如 式(18)和(19)中的线性关系,并且还给定了动力学系数的表达式。相应的溶质截留模型,也即跨界面溶质扩散动力学过程为:

k=CS*CL*=VVDI+κeVVDI+1-1-κeCL*
κe=CS*1-CL*CL*1-CS*expΔμA*-ΔμB*RT

式中,VDI为界面溶质扩散速率,κe为溶液条件下的分配因子,R为气体常数,T为温度。相应的界面迁移动力学模型为:

V=V01-expΔGmRT

式中,V0为界面迁移速率上限,ΔGm为界面迁移耗散过程的Gibbs自由能。但关于ΔGm,Aziz和Kaplan[27]却给出了2种表达式:一种是ΔGtotal (式(10)),一种是XC (式(11))。前者为未考虑溶质拖曳模型,后者为考虑溶质拖曳模型(详见第4节论述)。对式(20)和(22)进行线性近似可得:

JD=-VDICS*1-CL*VmRTXD
V=-V0RTΔGm

由此可见,Aziz和Kaplan[27]的工作仍在Baker[18]的理论框架之内:首先,在动力学过程方面,Aziz和Kaplan[27]选择了界面迁移和跨界面扩散;其次,在通量和驱动力关系方面,Aziz和Kaplan[27]仅考虑了通量与其共轭驱动力间关系,并未涉及通量与非共轭驱动力间关系,即未考虑不同动力学过程之间的相互影响;最后,Aziz和Kaplan[27]给出了相应动力学系数的表达式。

需要特别说明的是,目前界面动力学理论普遍采用界面迁移和跨界面扩散2类动力学过程,但也有少数工作仍采用实际A原子和B原子通过界面的通量,即JAS*JBS* (式(6)),来描述界面动力学过程,相应的动力学系数也是通过化学反应速率理论给定[28]。此外,界面迁移的动力学系数来源于纯物质的界面动力学方程,故已被广泛认同。但有关跨界面扩散的动力学系数,不同学者给出了不同的表达式,如Buchmann和Rettenmayr[29]认为其应为与成分无关的常数。近期,Hareland等[30]认为该系数应满足成分的对称性(如式(23)中的CS*(1-CL*)应为CL*(1-CL*))。但这些质疑均不影响Aziz和Kaplan工作[27]在这一领域的地位,其也是到目前为止最被认可的模型。

1.3 非稳态界面动力学理论

Hillert等[19,20]仅讨论了非稳态条件下的界面动力学过程,并未明确给出界面动力学理论。随后,Buchmann和Rettenmayr[29]在讨论凝固过程中的初始瞬态非平衡问题时,给出了通量和驱动力之间的关系:

JC=-V0VmRT1-CL*ΔμA*+CL*ΔμB*
JD=-VDIVmRTCL*-CtransΔμA*-ΔμB*

式(25)与Aziz和Kaplan[27]考虑溶质拖曳效应的模型在线性近似条件下(式(24))完全相同;式(26)相较于Aziz和Kaplan[27]在线性条件下的溶质截留模型,跨界面扩散变成与界面处固相溶质扩散JBS*相关的量(式(14)),对应的移动性系数变成了与穿越界面进入固相成分Ctrans有关的量。

Wang等[21]在Aziz和Kaplan[27]工作的基础上考虑了界面处固相的溶质扩散。在假设界面处固相溶质扩散不耗散Gibbs自由能的前提下,推导出的界面动力学方程为:

V=V01-expCL*ΔμB+1-CL*ΔμART
k=VVDI+κe+VmJBS*CL*VDIVVDI+1-1-κeCL*

可见,界面处固相的溶质扩散仅影响跨界面溶质扩散方程(式(28))。需要说明的是,在分析界面动力学过程时,Wang等[21]采用了热力学极值原理,故界面迁移的动力学遵循考虑溶质拖曳效应的动力学方程(式(27)),即与Aziz和Kaplan[27]考虑溶质拖曳效应的方程一致。

基于两步跨界面扩散概念和热力学极值原理,Kuang等[22,23]构建了多元置换固溶体合金和含间隙组元的多元固溶体合金的界面动力学模型。该模型不仅考虑了界面处母相的耗散过程,同时也考虑了界面处生长相中的耗散过程。对于二元合金凝固过程,相应的界面动力学模型为:

-JCMJC-CS*-CL*JBS*MJBS*=CL*ΔμB*+1-CL*ΔμA*
-JBL*MJBL*-JBS*MJBS*=ΔμB*-ΔμA*

式中,MJBS*MJBL*MJC分别为界面处固相溶质扩散、界面处液相溶质扩散和界面迁移的动力学系数,表达式分别为:

MJBS*=DSa0VmμBS*-μAS*CS*-1,
MJBL*=DLa0VmμBL*-μAL*CL*-1,
MJC=V0VmRT

式中,a0为原子间面间距。需要说明的是,Buchmann和Rettenmayr[29]的工作选择是独立的动力学过程,即界面迁移JC和一步跨界面扩散JD = JBL*,这与稳态界面动力学理论完全对应。Kuang等[22,23]选取了界面迁移JC、固相到界面的跨界面扩散JDSI = -JBS*和界面到液相的跨界面扩散JDIL = JBL* 3个相互依赖的动力学过程,并认为这些过程均会耗散能量,且各自具有特定的动力学系数。一般而言,从3个相互依赖的动力学过程中选取2个独立的动力学过程,共存在3种选择,那么为何选择JCJD = JBL*呢?这种选择本身就存在疑问。此外,如果将式(29)、(30)与式(12)联立并写成JCJBS*JBL*的表达式,则可发现所得的界面动力学模型同时满足Onsager唯象关系和Onsager倒易关系[24,25],这也进一步佐证了模型的正确性。

2 完全非平衡条件下的二元合金界面动力学理论

根据本文定义,在完全非平衡条件下,不仅界面处于非平衡状态,而且体积相中的溶质扩散也不再遵循经典的Fick扩散定律[10]

JBi*=-DiVmCi-τDiJBit       (i=S, L)

式中,∇Ci 为浓度梯度。事实上,存在2种方法可将体积相扩散的非平衡效应耦合入界面动力学之中[31]

其一是动力学能量方法,即固定溶质扩散的移动性,改变溶质扩散的驱动力。此时式(30)可改写为:

JBi=-DiVmμ˜iCi-1μ˜i+αiVmJBit       (i=S, L)

式中,μ˜i = μBi-μAi为溶剂A和溶质B之间的相互扩散势,μ˜i为化学式梯度,动力学系数αi = (μ˜i / Ci)(Vm2 / (VDi)2)。这种方法可直接将不考虑溶质扩散非平衡效应模型中的μ˜i项替换成μ˜i + (αi / Vm)JBi / t或者将体系中的摩尔Gibbs自由能gmi替换成gmi+0.5αi(JBi)2[10]

其二是有效移动性方法,即固定溶质扩散的驱动力,改变溶质扩散的移动性。此时式(33)可改写为:

JBi=-DiVmμ˜iCi-11+Vm(VDi)21CiJBitμ˜i=             
-DiVm1+Vm(VDi)21CiJBitCi     (i=S, L)

这种方法可直接将不考虑溶质扩散非平衡效应模型中的Di 项替换成Di / Vm[1+(Vm /(VDi)2)(1 / Ci)(JBi / t)]或者在稳态条件下直接将DL项替换成DL(1-V2 / (VDL)2)

在非平衡界面动力学理论领域,目前主要采用动力学能量方法对局域平衡条件下的理论模型进行改进。在稳态界面动力学理论方面,Galenko[32,33]对Aziz和Kaplan[27]的工作进行了改进,相应的理论模型为:

k=CS*CL*=VVDI+ψκeVVDI+ψ1-1-κeCL*
V=V01-expΔGmRT

式中,弛豫因子(ψ)可表示为:

ψ=1-V2(VDL)2(V<VDL)0            (VVDL)

考虑溶质拖曳效应的模型(式(36))中ΔGm的驱动力仍为XC (式(11))。对于不考虑溶质拖曳效应的模型:

ΔGC=1-CS*ΔμA+CS*ΔμB+CL*-CS*VmαLJBLt(V<VDL)1-CL*ΔμA+CL*ΔμB                                         (VVDL)

式中,ΔGC为不考虑溶质拖曳效应的Gibbs自由能。在稳态条件下,固相中的溶质扩散可忽略,因此本工作中仅考虑了液相中非平衡溶质扩散效应。当V = VDL时,完全溶质截留(即k = 1)会立刻发生,且溶质拖曳效应会立刻消失((CL*-CS*)(ΔμA-ΔμB) = 0)。但需要特别说明的是,动力学能量本身并不能将非平衡溶质扩散效应耦合入界面动力学效应之中,如式(38)中的非平衡溶质扩散效应项(CL*-CS*)VmαLJBL / t,从单位的角度其很明显与化学势不一致。

Wang等[21]首次在非稳态的条件下对Aziz和Kaplan[27]的工作进行了改进,并且同时考虑了固相和液相中的非平衡溶质扩散效应,但未考虑界面处固相溶质通量对界面处能量的耗散,相应的界面动力学模型为:

k=CS*CL*=VVDI+ψκe+VmJBS*CL*VDIVVDI+ψ1-1-κeCL*
V=V01-exp1RT(CL*ΔμB+1-CL*ΔμA-
12αL(JBL*)2+12αS(JBS*)2)                   

式(39)表明界面处固相的溶质扩散会在非稳态条件下影响界面处的溶质分配,而式(40)表明界面处的液相和固相中非平衡溶质扩散均会影响界面迁移的驱动力。需要特别说明的是,在溶质截留方面,Wang等[21]采用的是有效移动性方法耦合非平衡溶质扩散效应,而在界面迁移驱动力方面则采用的是摩尔Gibbs自由能示意图方法。这说明Wang等[21]的工作也有待商榷。需要特别说明的是,在引入非平衡溶质扩散效应时,动力学能量方法同样在描述相场理论中无法耦合入短程扩散,且这种方法本身与热力学极值原理不相容,故采用有效移动性方法直接对局域平衡条件下得到的界面动力学理论进行拓展是较好的选择[31]。此外,Wang等[21]的工作实际上只选择了考虑溶质拖曳的理论模型,其原因在于热力学极值原理仅支持该类模型(如式(27)和当JBS* = 0时的式(29))。

3 二元合金部分溶质拖曳界面动力学理论

如前所述,Aziz和Kaplan[27]在界面迁移的驱动力方面给出了考虑溶质拖曳效应和不考虑溶质拖曳效应2种表达式。在脉冲激光熔化Si-As合金的非平衡凝固[34]、过冷Ni-B合金的非平衡枝晶生长[35]等实验中,均发现不考虑溶质拖曳的模型与实验结果吻合较好。因此,Kittl等[34]和Eckler等[35]认为非平衡凝固过程遵循不考虑溶质拖曳的界面动力学模型。但是这一观点被Hillert[36]质疑,其原因在于固态相变遵循考虑溶质拖曳效应的模型。如前所述,液/固相变与固态相变从不可逆热力学的角度并无本质区别,故所遵循的模型应完全相同。特别地,近期Wang等[21,31]和kuang等[22,23]工作表明,热力学极值原理只支持考虑溶质拖曳效应的理论模型,这也与Hillert[36]的观点一致。此外,Wang等[21]发现Kittl等[34]分析所采用的Si-As合金相图与非平衡凝固实验条件并不一致。在此基础上可得出结论,液/固相变和固态相变均遵循考虑溶质拖曳效应的理论模型。

但事实上,本文所关注的所有理论模型均建立在尖锐界面理论假设之上,而实际的界面是有一定厚度的。对于厚界面或者说弥散界面而言,实际驱动界面迁移的驱动力是介于上述考虑溶质效应和不考虑溶质拖曳效应之间的,即部分溶质拖曳效应[31]。这一结论也被Yang等[37]有关分子动力学模拟的工作所证实。需要说明的是,Aziz和Boettinger[38]首先提出了部分溶质拖曳的概念,并定义了介于液相成分和固相成分之间的有效成分(Ceff):

Ceff=γCL*+1-γCS*

式中,γ是介于0和1之间的拖曳系数。基于此,界面迁移的动力学方程(如式(22))可改写为:

V=V01-expCeffΔμB+1-CeffΔμART

由此可见,当γ = 0时,式(42)为不考虑溶质拖曳效应的理论模型,当γ = 1时为考虑溶质拖曳效应的理论模型,而当0 < γ < 1为部分溶质拖曳理论模型。在实际应用中,γ通常为拟合值,且对于不同合金及不同成分其值也不同。原则上,可以通过这种方法将上述所有理论模型中的界面迁移动力学方程中的相应成分进行替换,从而得到相应的部分溶质拖曳模型。然而,需要注意的是,在部分溶质拖曳的情况下,不仅界面迁移的驱动力发生变化,跨界面扩散的驱动力也会相应改变。因此,部分溶质拖曳不仅会影响界面迁移动力学过程,还会影响跨界面扩散过程。后者目前在相关研究中鲜有关注。

近期,受Kuang等[22,23]的两步跨界面扩散概念启发,Hareland等[30]对部分溶质拖曳理论模型进行了进一步改进。需要说明的是,该工作聚焦于多元合金体系,并旨在描述一般的相变过程(包括液/固相变和固/固相变)。为更清晰地展示其物理内涵,本文将其简化至如下二元合金的凝固情形。首先,Hareland等[30]假设界面内成分为Ceff,相应的通量为JD。则界面处固相一侧和液相一侧的成分守恒条件分别为:

JBS*-JD=VVmCS*-Ceff
JD-JBL*=VVmCeff-CL*

其次,Hareland等[30]假设界面处的动力学过程为界面迁移和跨界面扩散2个独立的动力学过程,其对应的通量分别为JCJD。则将式(43)和(44)代入式(16)可得:

G˙=VVmΔGm=JCCeffΔμB+1-CeffΔμA+
JDΔμA-ΔμB

相应的界面动力学方程为:

JC=-V0VmRT1-CeffΔμA+CeffΔμB
JD=-VDIVmRTCeff1-CeffΔμA-ΔμB

相较于前人工作,Hareland等[30]的模型从式(16)出发,实际上也考虑了固相溶质扩散的影响,故隶属于非稳态的界面动力学方程(图6)。如图6所示,1 mol液相发生凝固时整个界面所耗散的Gibbs自由能为ΔGtotal = (1-Ctrans)ΔμA*+CtransΔμB*。将固相Gibbs自由能曲线在成分CS*的公切线向上平移到液相Gibbs自由能曲线的成分Ceff位置时,ΔGtotal被分为2部分:上部分为溶质跨界面扩散耗散过程的Gibbs自由能ΔGD = (Ceff-Ctrans)(ΔμA*-ΔμB*);下部分为界面迁移耗散过程的Gibbs自由能ΔGm = (1-Ceff)ΔμA*+CeffΔμB*。稳态和非稳态情况ΔGtotal之差为ΔGtransS = (Ctrans-CS*)(ΔμA*-ΔμB*)。此能量为将实际穿过界面进入固相成分从CS*调整到Ctrans所耗散的Gibbs自由能。部分溶质拖曳和完全溶质拖曳ΔGm之差为ΔGLeff = (CL*-Ceff)(ΔμA*-ΔμB*)。此能量为将固/液界面前沿液相成分从CL*调整到Ceff以发生界面迁移所耗散的能量。需要说明的是,Hareland等[30]的工作混淆了非稳态的CtransCeff,2者概念完全不同。另外在非稳态下式(41)Ceff的定义是否仍然适用也存在质疑,如当CS* < Ceff < Ctrans就会存在问题。此外,由于JD (式(43)和(44))是与Ceff有关的物理量,因此同样考虑了部分溶质拖曳对跨界面扩散能量耗散的影响:当γ = 0时,Ceff = CS* (式(41))、JD = JBS* (式(43));当γ = 1时,Ceff = CL* (式(41))、JD = JBL* (式(44));当0 < γ < 1时,根据式(41)、(43)和(44),JD始终位于JBL*JBS*之间。最后,该模型中的动力学系数中采用了Ceff(1-Ceff)这种完全对称的成分表达式,不存在Aziz和Kaplan[27]模型中预测结果不合理的问题。但也要特别注意的是,在此工作中界面处实际上有4种动力学过程(JBS*JDJBL*JC),2个限制条件(即式(43)和(44)),因此有2个独立的动力学过程。Hareland等[30]选择了常用的JCJD,而实际的选择可能有6种,这本身也值得商榷。其次,该工作未考虑体积相的非平衡溶质扩散效应。但该工作对后续界面动力学理论的发展具有重要启发作用,且在一定程度上会进一步推动部分溶质拖曳界面动力学理论模型的发展。

图6

图6   非稳态部分拖曳固/液界面动力学过程的摩尔Gibbs自由能示意图

Fig.6   Mole Gibbs free energy diagram for the solid/liquid interface kinetic processes with a partial solute-drag effect under a non-steady-state condition (The total Gibbs free energy dissipated by the interface after solidification of 1 mol liquid is ΔGtotal = (1-Ctrans)ΔμA*+CtransΔμB*. By translating the tangent of Gibbs free energy curve of solid at CS* to the Gibbs free energy curve of liquid at Ceff, ΔGtotal is divided into two parts. The upper one for trans-interface diffusion is ΔGD = (Ceff-Ctrans)(ΔμA*-ΔμB*) and latter part for interface migration is ΔGm = (1-Ceff)ΔμA*+CeffΔμB*. The difference in ΔGD between the steady-state condition and the non-steady-state condition is ΔGtransS = (Ctrans-CS*)(ΔμA*-ΔμB*), which is the Gibbs free energy dissipated to adjust the actual composition transferred across the interface from CS* to Ctrans for trans-interface diffusion. The difference in ΔGm between the two cases with a full solute-drag effect and with a partial solute-drag effect is ΔGLeff = (CL*-Ceff)(ΔμA*-ΔμB*), which is the Gibbs free energy dissipated to adjust the liquid composition ahead of the solid/liquid interface from CL* to Ceff for interface migration. It should be pointed out that Hareland et al. [30] confused the concepts of Ctrans under non-steady-state and Ceff. Furthermore, it is also queried that the definition of Ceff can be stilled be used for a non-steady state condition. For example, there will be a problem when CS* < Ceff < Ctrans (Ceff—effective concentration)


4 结论与展望

本文以二元合金凝固为例,分析总结了非平衡界面动力学理论的发展现状和发展趋势。主要结论如下。

(1) 针对局域平衡界面条件,目前已分别建立了稳态和非稳态条件下的非平衡界面动力学理论。采用的理论方法包括不可逆热力学、化学反应速率理论和热力学极值原理。

(2) 针对完全非平衡界面条件,同样建立了稳态和非稳态条件下的非平衡界面动力学理论。耦合体积相非平衡溶质扩散效应的方法主要包括动力学能量方法和有效移动性方法。

(3) 针对尖锐界面动力学理论假设的不足,通过引入界面有效成分的概念,建立了半拖曳非平衡界面动力学理论。

尽管该领域已取得诸多进展,但在理论研究方法和理论概念等方面仍存在诸多亟待解决的关键科学问题。

(1) 目前主要采用动力学能量方法引入体积相非平衡溶质扩散效应,但该方法实际上只能将该效应引入到体积相而不是同时引入到体积相和界面处。

(2) 目前半拖曳模型的界面有效成分仍然采用稳态条件下的定义,在非稳态条件下,该定义存在CS* < Ceff < Ctrans的情况,故仍需新的定义。

(3) 目前的半拖曳模型采用的耗散过程为独立过程,而基于热力学极值原理的工作表明采用非独立耗散过程具有理论优势。独立过程与非独立过程的理论联系仍需深入研究。

(4) 化学反应速率理论为非线性热力学,而热力学极值原理和不可逆热力学为线性热力学,那么线性热力学到非线性热力学转变的临界条件也需进一步研究。

(5) 本文是以二元合金凝固为例进行分析讨论。尽管已构建了针对多元合金的相应理论模型[39~41],然而,对于当前研究领域的热点(多主元合金[42~47])而言,由于其独特的成分构成特点,即不存在溶质和溶剂之分,其界面动力学理论仍需进一步研究与探索。

(6) 理论模型的验证问题。目前主要采用过冷枝晶生长实验[48~54]和分子动力学模拟[55~57]进行验证,前者与界面动力学理论不完全对应,而后者虽然具有无任何拟合参数拟合的潜力,但尚未发挥出来。故仍需开展相关理论、实验和模拟方法研究。

参考文献

Li Q, Li X R, Dong B X, et al.

Metallurgy and solidification microstructure control of fusion-based additive manufacturing fabricated metallic alloys: A review

[J]. Acta Metall. Sin. (Eng. Lett.), 2024, 37: 29

[本文引用: 1]

Ren S, Wu J Z, Zhang Y, et al.

Numerical simulation on effects of spatial laser beam profiles on heat transport during laser directed energy deposition of 316L stainless steel

[J]. Acta Metall. Sin., 2024, 60: 1678

DOI     

The distribution characteristics and magnitude of energy density on the cross section of a laser beam are determined by its spatial profile, which directly impacts heat transport during laser material processing. Hence, it is essential to understand the influence of spatial profiles on heat transport during laser directed energy deposition with synchronous material delivery. Herein, a three-dimensional heat transport model that takes into account important physical events such as laser-powder-pool coupling, thermal-fluid coupling, solid-liquid phase change, and multiple heat transfer was established. The model was validated using single-track single-layer deposition experiments. The effects of four spatial laser beam profiles, including Gaussian (GP), super-Gaussian (SGP1 and SGP2), and pure flat-topped (FTP) profiles, on the heat transport and fluid flow within the molten pool were investigated. Simulated results show that peak temperatures of the molten pool decrease sequentially under GP, SGP1, SGP2 and FTP, and the temperature gradients on the solidification interface increase gradually from the top to the bottom of the molten pool. Temperature gradients on the solidification interface positively correlate with the angle between the normal direction of the solidification interface and the laser scanning direction, and negatively correlate with the distances from the beam center on the molten pool surface. Under all four spatial laser beam profiles, temperature gradients at the same positions on the solidification interface near the rear of the molten pool increase, while those at the bottom of the molten pool decrease. The molten pool exhibits an outward annular flow pattern under all four spatial laser beam profiles with fluid flows mainly driven by Marangoni shear stress. Heat transfer within the molten pool is dominated by Marangoni convection and heat conduction. Average fluid velocities within the molten pool decrease successively according to the following order: Gaussian, super-Gaussian, and pure flat-topped profiles.

任 松, 吴家柱, 张 屹 .

激光束空域形态对激光定向能量沉积316L不锈钢热输运影响的数值模拟

[J]. 金属学报, 2024, 60: 1678

Wang Y Q, Fu K, Zhao Y Z, et al.

Non-equilibrium solidification behavior and microstructure evolution of undercooled Fe7(CoNi-Mn)80B13 eutectic high-entropy alloy

[J]. Acta Metall. Sin., 2025, 61: 143

王叶青, 付 珂, 赵永柱 .

Fe7(CoNiMn)80B13共晶高熵合金的深过冷非平衡凝固行为及微观组织演变

[J]. 金属学报, 2025, 61: 143

Hu B, Zhang H Q, Zhang J, et al.

Progress in interfacial thermodynamics and grain boundary complexion diagram

[J]. Acta Metall. Sin., 2021, 57: 1199

DOI      [本文引用: 1]

Grain boundaries (GBs), a crucial component of microstructures, have a significant influence on the properties of materials. The GB complexion (GBC) transitions are essential information to accurately explain numerous material phenomena. However, owing to the complexity of GB structures and the difficulty in observation of GBC transitions, there is still no direct evidence and mechanism explanation for these material phenomena. With the advancement of characterization equipment, especially spherical aberration-correction transmission electron microscopy, coupled with powerful computer simulation, the establishment of interfacial thermodynamic models to construct different types of GBC diagrams, which provide a broad prospect for the study of GB structures and GBC transitions, is essential. In this paper, the progress of interface thermodynamics and GBC diagrams from the aspects of the classification and characterization of GBs and GBC transitions, interface thermodynamic models, and the construction of GBC diagrams were reviewed. The paper also looks forward to the future development of interface thermodynamics and GBC diagrams.

胡 标, 张华清, 张 金 .

界面热力学与晶界相图的研究进展

[J]. 金属学报, 2021, 57: 1199

[本文引用: 1]

Zhu J L, Wang Q, Wang H P.

Thermophysical properties and atomic distribution of undercooled liquid Cu

[J]. Acta. Metall. Sin., 2017, 53: 1018

DOI      [本文引用: 1]

Cu is commonly used in the field of electricity and electronics because of its high ductility, and electrical and thermal conductivity. The thermophysical properties and the atomic structure of liquid Cu, especially for undercooled state, are of practical significance in both application and fundamental researches. The major approaches to obtain thermophysical properties of undercooled metals are containerless techniques based on electrostatic levitation, electromagnetic levitation and ultrasonic levitation et al. However, the strong volatility of liquid Cu results in great difficulties to measure the thermophysical properties. Accordingly, computational prediction is becoming an expected method to obtain the thermophysical data of liquid Cu. The molecular dynamics (MD) simulation, in combination with a resonable potential model, has been extensively employed in studying the physical properties of several metals as a powerful approach. In this work, the atomic distribution and thermophysical properties including melting temperature, density, specific heat and self-diffusion coefficient of liquid Cu were studied by molecular dynamics simulation. Mishin's and Zhou's embedded-atom method potentials, and the modified embedded-atom method potential proposed by Baskes were used over the temperature range of 800~2400 K, reaching the maximum undercooling of 556 K. The simulated results are in good agreement with the reported experimental results. The crystal-liquid-crystal sandwich structure has been used to calculate the melting point. The melting point calculated by Baskes' potential model is 1341 K, just a difference of 1.11% from the experimental value. The density at the melting point calculated by Mishin's potential is 7.86 g/cm3, with a difference less than 2% compared with the reported data. It is found that the enthalpy of liquid Cu increases linearly with the increase of temperature. The specific heat is obtained to be 31.89 J/(molK) by Mishin's potential, which is constant in the corresponding temperature range. The self-diffusion coefficient is exponentially dependent on the temperature. The maximum error between the reported value and the present value of the self-diffusion coefficient calculated by Mishin's potential is only 4.93%. The pair distribution function was applied to investigate the atomic structure of liquid Cu, which suggests that the simulated system is still ordered in short range and disordered in long range for both normal liquid and undercooled state. It is found that the atomic ordered degree is weakened with the increase of temperature, and it is kept within 3~4 atom neighbor distance.

朱姜蕾, 王 庆, 王海鹏.

深过冷液态金属Cu的热物理性质和原子分布

[J]. 金属学报, 2017, 53: 1018

DOI      [本文引用: 1]

针对液态金属Cu在深过冷亚稳条件下的热物理性质和液态结构数据缺乏的问题,采用分子动力学方法结合修正嵌入原子势,研究了常规液态和亚稳液态金属Cu的热物理性质(熔点、密度、比热容和自扩散系数)和原子分布规律,体系温度范围为800~2400 K,最大过冷度达到556 K。通过构建晶体-液体-晶体结构,探索了金属Cu的熔化过程,获得最优的熔点计算温度为1341 K,与实验值误差1.11%。获得了宽广温度范围内液态金属Cu的密度随温度的变化规律,采用Mishin势函数计算的熔点处密度模拟值为7.86 g/cm3,与文献报道的实验结果的误差小于2%。液态金属Cu的焓在800~2400 K范围内随温度呈线性关系变化,即比热容几乎不随过冷度变化而变化,而自扩散系数则随温度呈指数关系变化。根据不同温度原子的位置变化,获得了相应的双体分布函数,发现液态体系始终处于短程有序、长程无序的状态,且原子短程有序度随温度升高而降低,短程有序结构仅保持在3~4个原子间距范围内,且随间距增大而展现出典型的无序特征。

Zener C.

Theory of growth of spherical precipitates from solid solution

[J]. J. Appl. Phys., 1949, 20: 950

[本文引用: 4]

Wert C, Zener C.

Interference of growing spherical precipitate particles

[J]. J. Appl. Phys., 1950, 21: 5

[本文引用: 3]

Christian J W. The Theory of Transformations in Metals and Alloys: An Advanced Textbook in Physical Metallurgy[M]. 3rd Ed., New York: Pergamon, 2002: 1

[本文引用: 1]

Sietsma J, van der Zwaag S.

A concise model for mixed-mode phase transformations in the solid state

[J]. Acta Mater., 2004, 52: 4143

[本文引用: 1]

Galenko P K, Jou D.

Rapid solidification as non-ergodic phenomenon

[J]. Phys. Rep., 2019, 818: 1

DOI      [本文引用: 3]

Rapid solidification is a relevant physical phenomenon in material sciences, whose theoretical analysis requires going beyond the limits of local equilibrium statistical physics and thermodynamics and, in particular, taking account of ergodicity breaking and of generalized formulation of thermodynamics. The ergodicity breaking is related to the time symmetry breaking and to the presence of some kinds of fluxes and gradient flows making that an average of microscopic variables along time is different than an average over some chosen statistical ensemble. In fast processes, this is due, for instance, to the fact that the system has no time enough to explore the whole region of possible microscopic states in the phase space. Similarly to this, systems submitted to strong fluxes may have no time for reaching the whole phase space in local bulks during observable macroscopic time. Rapid solidification, ergodicity breaking and extended thermodynamics actually make a conceptually novel combination in the present overview: ergodicity breaking is expressed in general terms and then extended thermodynamics is formulated as a particular phenomenological expression and applied to describe the dynamics of the phenomenon. Using the formalism of micro- and meso-scopic dynamics we introduce a general view on non-ergodic fast transitions and provide a simplest description of a continuum theory based on the system of hyperbolic equations applicable to rapid solidification. Analysis of non-equilibrium effects, including interface kinetics, solute trapping and solute drag, is presented with their effect on the rapidly moving solid-liquid interface. Special attention is paid to the theory predictions compared with the kinetics obtained in experiments on samples processed by electromagnetic levitation facility and in molecular dynamics simulation. (C) 2019 Elsevier B.V.

Sobolev S L.

Local-nonequilibrium model for rapid solidification of undercooled melts

[J]. Phys. Lett., 1995, 199A: 383

[本文引用: 1]

Liang C, Wang X J, Wang H P.

Formation mechanism of B2 phase and micro-mechanical property of rapidly solidified Ti-Al-Nb alloy

[J]. Acta Metall. Sin., 2022, 58: 1169

[本文引用: 1]

梁 琛, 王小娟, 王海鹏.

快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能

[J]. 金属学报, 2022, 58: 1169

[本文引用: 1]

Zhai B, Zhou K, Lv P, et al.

Rapid solidification of Ti-6Al-4V alloy micro-droplets under free fall condition

[J]. Acta Metall. Sin., 2018, 54: 824

DOI      [本文引用: 1]

Especially in the past decades, Ti-6Al-4V alloy has received much attention, not only due to its high melting temperature, good corrosion resistance, low density and high hardness, but also because of the diverse and complicated microstructures formed under different conditions. This makes Ti-6Al-4V a potential candidate in both aerospace industries and fundamental research. It is well known that the solidified microstructures of alloy have a great influence on their mechanical properties. Therefore, it is crucial to investigate the mechanical properties of Ti-6Al-4V solidified under different conditions, in particular in the undercooling conditions. However, it is noted that most research on the solidification of Ti-6Al-4V alloy was carried out under equilibrium condition. With respect to Ti-6Al-4V alloy solidified under substantial undercooling conditions, few studies could be found. Thus, it is interesting to study two points: (1) the feature of the microstructure of Ti-6Al-4V alloy solidified under highly undercooled conditions and large cooling rate, (2) the influence of undercooling and cooling rate on the mechanical property of Ti-6Al-4V alloy. To address these two problems, Ti-6Al-4V alloy was rapidly solidified in a drop tube. The main results are summarized as follows. The microstructure of the Ti-6Al-4V alloy solidified under free fall condition displays "lamellar α+β→α dendrites→basket-weave α'+β→ needle-like α'→ needle-like α'+ anomalous β " transformation with decreasing the droplets diameter. And the needle-like α' phase in the original boundaries of equiaxed β grains is transformed into a continuous distribution and anomalous structure of β phase when the droplet size is less than about 400 μm. The microhardness of this alloy ranges from 506 kg/mm2 to 785 kg/mm2 when the droplet diameter decreases from 1420 μm to 88 μm, which is much higher than that of the master alloy. For "lamellar structure of α+β phases", "needle-like α' phase" and "needle-like α' phase+ anomalous β phase", the microhardness increases with the decrease of droplet diameter. But for 'basket-weave' microstructure, the microhardness diminishes with the decrease of droplet diameter.

翟 斌, 周 凯, 吕 鹏 .

自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究

[J]. 金属学报, 2018, 54: 824

[本文引用: 1]

Wang H F, Wang K, Kuang W W, et al.

The development of non-equilibrium theories

[J]. Sci. Sin. Technol., 2015, 45: 358

[本文引用: 2]

王海丰, 王 慷, 况望望 .

非平衡凝固理论的发展

[J]. 中国科学: 技术科学, 2015, 45: 358

[本文引用: 2]

Aziz M J.

Model for solute redistribution during rapid solidification

[J]. J. Appl. Phys., 1982, 53: 1158

[本文引用: 1]

Baker J C, Cahn J W.

Solute trapping by rapid solidification

[J]. Acta Metall., 1969, 17: 575

[本文引用: 1]

Lücke K, Detert K.

A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities

[J]. Acta Metall., 1957, 5: 628

[本文引用: 1]

Baker J C.

Interfacial partitioning during solidification

[D]. Cambridge: Massachusetts Institute of Technology, 1965

[本文引用: 7]

Hillert M, Rettenmayr M.

Deviation from local equilibrium at migrating phase interfaces

[J]. Acta Mater., 2003, 51: 2803

[本文引用: 5]

Hillert M, Odqvist J, Ågren J.

Interface conditions during diffusion-controlled phase transformations

[J]. Scr. Mater., 2004, 50: 547

[本文引用: 5]

Wang H F, Liu F, Zhai H M, et al.

Application of the maximal entropy production principle to rapid solidification: A sharp interface model

[J]. Acta Mater., 2012, 60: 1444

[本文引用: 10]

Kuang W W, Wang H F, Zhang J B, et al.

Application of the thermodynamic extremal principle to diffusion-controlled phase-transformations in multi-component substitutional alloys: Modeling and applications

[J]. Acta Mater., 2016, 120: 415

[本文引用: 6]

Kuang W W, Wang H F, Li X, et al.

Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe-C-X alloys: Modeling and applications

[J]. Acta Mater., 2018, 159: 16

[本文引用: 6]

Onsager L.

Reciprocal relations in irreversible processes. I

[J]. Phys. Rev., 1931, 37: 405

[本文引用: 3]

Onsager L.

Reciprocal relations in irreversible processes. II

[J]. Phys. Rev., 1931, 38: 2265

[本文引用: 3]

Hillert M.

An application of irreversible thermodynamics to diffusional phase transformations

[J]. Acta Mater., 2006, 54: 99

[本文引用: 1]

Aziz M J, Kaplan T.

Continuous growth model for interface motion during alloy solidification

[J]. Acta Metall., 1988, 36: 2335

[本文引用: 15]

Jackson K A, Beatty K M, Gudgel K A.

An analytical model for non-equilibrium segregation during crystallization

[J]. J. Cryst. Growth, 2004, 271: 481

[本文引用: 1]

Buchmann M, Rettenmayr M.

Non-equilibrium transients during solidification—A numerical study

[J]. Scr. Mater., 2008, 58: 106

[本文引用: 3]

Hareland C A, Guillemot G, Gandin C A, et al.

The thermodynamics of non-equilibrium interfaces during phase transformations in concentrated multicomponent alloys

[J]. Acta Mater., 2022, 241: 118407

[本文引用: 8]

Wang H F, Galenko P K, Zhang X, et al.

Phase-field modeling of an abrupt disappearance of solute drag in rapid solidification

[J]. Acta Mater., 2015, 90: 282

[本文引用: 4]

Galenko P.

Solute trapping and diffusionless solidification in a binary system

[J]. Phys. Rev., 2007, 76E: 031606

[本文引用: 1]

Galenko P.

Extended thermodynamical analysis of a motion of the solid-liquid interface in a rapidly solidifying alloy

[J]. Phys. Rev., 2002, 65B: 144103

[本文引用: 1]

Kittl J A, Sanders P G, Aziz M J, et al.

Complete experimental test of kinetic models for rapid alloy solidification

[J]. Acta Mater., 2000, 48: 4797

[本文引用: 3]

Eckler K, Herlach D M, Aziz M J.

Search for a solute-drag effect in dendritic solidification

[J]. Acta Metall. Mater., 1994, 42: 975

[本文引用: 2]

Hillert M.

Solute drag, solute trapping and diffusional dissipation of Gibbs energy

[J]. Acta Mater., 1999, 47: 4481

[本文引用: 2]

Yang Y, Humadi H, Buta D, et al.

Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts

[J]. Phys. Rev. Lett., 2011, 107: 025505

[本文引用: 1]

Aziz M J, Boettinger W J.

On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification

[J]. Acta Metall. Mater., 1994, 42: 527

[本文引用: 1]

Wang K, Wang H F, Liu F, et al.

Modeling dendrite growth in undercooled concentrated multi-component alloys

[J]. Acta Mater., 2013, 61: 4254

[本文引用: 1]

Wang K, Wang H F, Liu F, et al.

Modeling rapid solidification of multi-component concentrated alloys

[J]. Acta Mater., 2013, 61: 1359

Wang K, Wang H F, Liu F, et al.

Morphological stability analysis for planar interface during rapidly directional solidification of concentrated multi-component alloys

[J]. Acta Mater., 2014, 67:220

[本文引用: 1]

Zhang J B, Cui D X, Li X, et al.

Revealing the phase-transformation path in a FeCoNiSn x eutectic high entropy alloy system by crystallographic orientation relationships

[J]. J. Mater. Sci. Technol., 2023, 156: 92

[本文引用: 1]

Zhou Y H, Zhang J Y, Zhang J, et al.

A strong-yet-ductile high-entropy alloy in a broad temperature range from cryogenic to elevated temperatures

[J]. Acta Mater., 2024, 268: 119770

Zhou Y H, Zhang Z H, Wang Y P, et al.

Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis

[J]. Addit. Manuf., 2019, 25: 204

DOI     

Selective laser melting (SLM) is a laser-based additive manufacturing technique that can fabricate parts with complex geometries and sufficient mechanical properties. However, the optimal SLM process windows of metallic materials are difficult to predict, especially when exploring new metallic materials. In this paper, a universal and simplified model has been proposed to predict the energy density suitable for SLM of a variety of metallic materials including Ti and Ti alloys, Al alloy, Ni-based superalloy and steel, on the basis of the relationship between energy absorption and consumption during SLM. Several important but easily overlooked factors, including the surface structure of metallic powder, porosity of powder bed, vaporization and heat loss, were considered to improve the accuracy of the model. Results show that, to achieve near-full density parts, the energy absorption (Q(a)) by the local powder bed should be approximately 3-8 times greater than the energy consumption (Q(c))and this finding applies to all materials investigated. The value of Q(a)/Q(c) highly depends on material properties, particularly laser absorptivity, latent heat of melting and specific heat capacity. Experiments on high-entropy alloy (CrMnFeCoNi) and Hastelloy X alloy, new metallic materials for SLM, have been further conducted to verify the model. Results confirm that the model can predict suitable laser energy densities needed for processing the various metallic materials without tedious trial and error experiments. Indications and uncertainty of the model have also been analyzed.

Gu J, Ju J, Wang R, et al.

Effects of laser scanning rate and Ti content on wear of novel Fe-Cr-B-Al-Ti coating prepared via laser cladding

[J]. J. Therm. Spray Technol., 2022, 31: 2609

Ju J, Yu H Y, Zhao Y L, et al.

Understanding the oxidation behaviors of a Ni-Co-based superalloy at elevated temperatures through multiscale characterization

[J]. Corros. Sci., 2024, 227: 111800

Yang T, Zhao Y L, Fan L, et al.

Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in multicomponent high-entropy alloys

[J]. Acta Mater., 2020, 189: 47

DOI      [本文引用: 1]

Thermally stable high-entropy alloys (HEAs) consisting of a high density of coherent precipitates show a great potential for high-temperature applications. In this work, we systematically investigated the phase stability and coarsening kinetics of L1(2)-type coherent precipitates in a Ni-30Co-13Fe-15Cr-6Al-6Ti-0.1B (at.%) HEA isothermally aged at 800, 900 and 1000 degrees C. Aged microstructures in the grain interiors under this temperature range were essentially dominated by the uniform precipitation of multicomponent L1(2) (Ni, Co, Fe, Cr)(3)(Ti, Al)-type precipitates. The coarsening kinetics of these intragranular L1(2) precipitates were quantitatively determined, which were adequately characterized by the classical Lifshitz-Slyozov-Wagner model. The activation energy for coarsening was determined to be 378 kJ/mol, which is relatively higher than that of conventional Ni or Co-based superalloys, suggesting a slow elemental diffusion in the HEA matrix. More importantly, the heterogeneous precipitation and the associated metastable phase transformation mechanism along grain boundaries (GBs) were carefully analyzed. Localized chemical heterogeneity was identified within the discontinuous L1(2) phase at the GBs, which thermodynamically destabilizes the L1(2) structure and encourages the formation of brittle Heusler phase. Finally, we establish a unique duplex-aging strategy that can be efficiently utilized for GB stabilization, by which these detrimental intergranular heterostructures can be greatly eliminated, leading to an exceptional resistance to intermediate-temperature embrittlement, along with enhanced tensile strengths. These findings will not only shed light on the precipitation mechanisms in compositionally complex HEAs but also generate new opportunities to the interfacial design of HEAs for advanced high-temperature applications with superior properties. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd.

Zhang J B, Wang H F, Kuang W W, et al.

Rapid solidification of non-stoichiometric intermetallic compounds: Modeling and experimental verification

[J]. Acta Mater., 2018, 148: 86

[本文引用: 1]

Zhang J B, Wang H F, Zhang F, et al.

Growth kinetics and grain refinement mechanisms in an undercooled melt of a CoSi intermetallic compound

[J]. J. Alloys Compd., 2019, 781: 13

Zhao J F, Li M X, Wang H P, et al.

A kinetic transition from peritectic crystallization to amorphous solidification of rapidly quenched refractory Nb-Ni alloy

[J]. Acta Mater., 237, 2022: 118127

Wang H P, Liao H, Hu L, et al.

Freezing shrinkage dynamics and surface dendritic growth of floating refractory alloy droplets in outer space

[J]. Adv. Mater., 2024, 36: 2313162

Wang H P, Liao H, Chang J, et al.

Decoupling effect stimulated independent dendrite growth of eutectic phases under microgravity and containerless states

[J]. Mater. Today, 2024, 75: 386

Zhang J B, Zhang F, Luo X, et al.

Rapid solidification of a FeSi intermetallic compound in undercooled melts: Dendrite growth and microstructure transitions

[J]. J. Mater. Sci., 2020, 55: 4094

Zhang J B, Hua D P, Cui D X, et al.

Subgrain-assisted spontaneous grain refinement in rapid solidification of undercooled melts

[J]. J. Mater. Sci. Technol., 2024, 174: 234

DOI      [本文引用: 1]

The grain refinement mechanism for rapid solidification of undercooled melts is still an open problem even after 60 years of on-going studies. In this work, rapid solidification of undercooled Ni and equi-atomic FeCoNiPd melts was studied and spontaneous grain refinement was found at both low and high undercooling. After a detailed electron backscattered diffraction analysis, subgrain-induced grain orientation scattering and splitting were found to occur along with the transition from coarse dendrites to fine equiaxed grains at low and high undercooling, respectively, indicating that subgrains play an important role during the formation of fine equiaxed grains. On this basis, a compromise mechanism of subgrain-assisted spontaneous grain refinement was proposed. Because the dendrite re-melting induced thermo-mechanical process and fluid flow induced dendrite deformation occur simultaneously during the post-recalescence stage, stress accumulation would be maximum at both low and high undercooling, thus inducing dynamic recrystallization, during which the formation and rotation of subgrains make the grain orientations scattering and even splitting. Furthermore, the grain/subgrain size of undercooled FeCoNiPd ascribing to its unique co-segregation behavior keeps almost invariable from low to high undercooling, indicating that the co-segregation strategy would be effective to inhibit grain growth after rapid solidification and would be useful in practice.

Cui D X, Zhang J B, Li X, et al.

Atomistic insights into sluggish crystal growth in an undercooled CoNiCrFe multi-principal element alloy

[J]. J. Alloys Compd., 2023, 941: 168881

[本文引用: 1]

Cui D X, Qu J R, Zhang J B, et al.

Atomistic insights into sluggish crystal growth in CoNi-containing multi-principal element alloys

[J]. J. Mater. Res. Technol., 2024, 29: 109

Antillon E A, Hareland C A, Voorhees P W.

Solute trapping and solute drag during non-equilibrium solidification of Fe-Cr alloys

[J]. Acta Mater., 2023, 248: 118769

[本文引用: 1]

/