|
|
钨材料中缺陷的形成及演化规律 |
罗来马1,2,3( ), 魏国庆1,2,3, 刘祯1, 朱晓勇1,3, 吴玉程1,2,3 |
1 合肥工业大学 材料科学与工程学院 合肥 230009 2 合肥工业大学 材料科学与工程学院 高性能铜合金材料及成形加工教育部工程研究中心 合肥 230009 3 合肥工业大学 材料科学与工程学院 有色金属与加工技术国家地方联合工程研究中心 合肥 230009 |
|
Formation and Evolution of Defects in Tungsten Materials |
LUO Laima1,2,3( ), WEI Guoqing1,2,3, LIU Zhen1, ZHU Xiaoyong1,3, WU Yucheng1,2,3 |
1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China 2 Engineering Research Center for High-Performance Copper Alloys and Forming Processing of the Ministry of Education, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China 3 National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China |
引用本文:
罗来马, 魏国庆, 刘祯, 朱晓勇, 吴玉程. 钨材料中缺陷的形成及演化规律[J]. 金属学报, 2025, 61(4): 526-540.
Laima LUO,
Guoqing WEI,
Zhen LIU,
Xiaoyong ZHU,
Yucheng WU.
Formation and Evolution of Defects in Tungsten Materials[J]. Acta Metall Sin, 2025, 61(4): 526-540.
1 |
Yang H, Wu N Q. Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: A review [J]. Energy Sci. Eng., 2022, 10: 1643
|
2 |
Shandilya P, Sambyal S, Sharma R, et al. Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO3 based photocatalysts [J]. J. Hazard. Mater., 2022, 428: 128218
|
3 |
Hu Y J. First-principles approaches and models for crystal defect energetics in metallic alloys [J]. Comput. Mater. Sci., 2023, 216: 111831
|
4 |
Yeh J W. Physical metallurgy of high-entropy alloys [J]. JOM, 2015, 67: 2254
|
5 |
Mücklich F, Ilić N. RuAl and its alloys. Part I. Structure, physical properties, microstructure and processing [J]. Intermetallics, 2005, 13: 5
|
6 |
DebRoy T, Mukherjee T, Wei H L, et al. Metallurgy, mechanistic models and machine learning in metal printing [J]. Nat. Rev. Mater., 2021, 6: 48
|
7 |
Jin W W, Zhang C Q, Jin S Y, et al. Wire arc additive manufacturing of stainless steels: A review [J]. Appl. Sci., 2020, 10: 1563
|
8 |
Tang S Y, Ummethala R, Suryanarayana C, et al. Additive manufacturing of aluminum-based metal matrix composites—A review [J]. Adv. Eng. Mater., 2021, 23: 2100053
|
9 |
Chao C Y, Lin L F, Macdonald D D. A point defect model for anodic passive films: I. Film growth kinetics [J]. J. Electrochem. Soc., 1981, 128: 1187
|
10 |
Sundar A, Chen G L, Qi L. Substitutional adsorptions of chloride at grain boundary sites on hydroxylated alumina surfaces initialize localized corrosion [J]. npj Mater. Degrad., 2021, 5: 18
|
11 |
Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
doi: 10.1038/ncomms13564
pmid: 27976669
|
12 |
Iveković A, Omidvari N, Vrancken B, et al. Selective laser melting of tungsten and tungsten alloys [J]. Int. J. Refract. Met. Hard Mater., 2018, 72: 27
|
13 |
Yu Z W, Chen G J, Wang J X, et al. Research status and development trend of tungsten alloy cutting [J]. Int. J. Adv. Manuf. Technol., 2023, 125: 4435
|
14 |
Polk J E. Operation of thoriated tungsten cathodes [J]. AIP Conf. Proc., 1993, 271: 1435
|
15 |
Lee H, Tomar V. Understanding effect of grain boundaries in the fracture behavior of polycrystalline tungsten under mode-I loading [J]. J. Eng. Mater. Technol., 2012, 134: 031010
|
16 |
Wang Z H, Zhao K X, Chen W M, et al. Atomistic modeling of diffusion coefficient in fusion reactor first wall material tungsten [J]. Appl. Therm. Eng., 2014, 73: 111
|
17 |
Zheng X, Bai R, Wang D H, et al. Research development of refractory metal materials used in the field of aerospace [J]. Rare Met. Mater. Eng., 2011, 40: 1871
|
17 |
郑 欣, 白 润, 王东辉 等. 航天航空用难熔金属材料的研究进展 [J]. 稀有金属材料与工程, 2011, 40: 1871
|
18 |
Huang Z F, Song J J, Pan L, et al. Tungsten oxides for photocatalysis, electrochemistry, and phototherapy [J]. Adv. Mater., 2015, 27: 5309
|
19 |
Rieth M, Dudarev S L, de Vicente S M G, et al. Recent progress in research on tungsten materials for nuclear fusion applications in Europe [J]. J. Nucl. Mater., 2013, 432: 482
|
20 |
Marinica M C, Ventelon L, Gilbert M R, et al. Interatomic potentials for modelling radiation defects and dislocations in tungsten [J]. J. Phys.: Condens. Mat., 2013, 25: 395502
|
21 |
Fang Z Z, Wang H. Densification and grain growth during sintering of nanosized particles [J]. Int. Mater. Rev., 2008, 53: 326
|
22 |
Hu P, Chen T Y, Li X J, et al. Ultrafast synthesis of nanocrystalline molybdenum powder by thermal plasma and its sintering behavior [J]. Int. J. Refract. Met. Hard Mater., 2019, 83: 104969
|
23 |
Park S J, German R M, Martin J M, et al. Densification behavior of tungsten heavy alloy based on master sintering curve concept [J]. Metall. Mater. Trans., 2006, 37A: 2837
|
24 |
Lee K H, Cha S I, Ryu H J, et al. Effect of two-stage sintering process on microstructure and mechanical properties of ODS tungsten heavy alloy [J]. Mater. Sci. Eng., 2007, A458: 323
|
25 |
Ren C, Fang Z Z, Zhang H, et al. The study on low temperature sintering of nano-tungsten powders [J]. Int. J. Refract. Met. Hard Mater., 2016, 61: 273
|
26 |
Malewar R, Kumar K S, Murty B S, et al. On sinterability of nanostructured W produced by high-energy ball milling [J]. J. Mater. Res., 2007, 22: 1200
|
27 |
Wang H T, Fang Z Z, Hwang K S, et al. Sinter-ability of nanocrystalline tungsten powder [J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 312
|
28 |
Won C W, Nersisyan H H, Won H I, et al. Refractory metal nanopowders: Synthesis and characterization [J]. Curr. Opin. Solid State Mater. Sci., 2010, 14: 53
|
29 |
Fang Z Z, Wang H T, Kumar V. Coarsening, densification, and grain growth during sintering of nano-sized powders—A perspective [J]. Int. J. Refract. Met. Hard Mater., 2017, 62: 110
|
30 |
Verma D, Biswas S, Prakash C, et al. Relating interface evolution to interface mechanics based on interface properties [J]. JOM, 2017, 69: 30
|
31 |
Xiao F N, Barriere T, Cheng G, et al. A review of liquid-liquid method for the elaboration and modelling of reinforced tungsten alloys with various sintering processes [J]. J. Alloys Compd., 2023, 940: 168752
|
32 |
Zhang L, Li X Y, Qu X H, et al. Powder metallurgy route to ultrafine-grained refractory metals [J]. Adv. Mater., 2023, 35: e2205807
|
33 |
Wang X H, Chen P L, Chen I W. Two-step sintering of ceramics with constant grain-size, I. Y2O3 [J]. J. Am. Ceram. Soc., 2006, 89: 431
|
34 |
Li X Y, Zhang L, Dong Y H, et al. Towards pressureless sintering of nanocrystalline tungsten [J]. Acta Mater., 2021, 220: 117344
|
35 |
Que Z Y, Wei Z C, Li X Y, et al. Pressureless two-step sintering of ultrafine-grained refractory metals: Tungsten-rhenium and molybdenum [J]. J. Mater. Sci. Technol., 2022, 126: 203
doi: 10.1016/j.jmst.2022.01.033
|
36 |
Lu G H, Zhang Y, Deng S H, et al. Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening [J]. Phys. Rev., 2006, 73B: 224115
|
37 |
Rice J R, Wang J S. Embrittlement of interfaces by solute segregation [J]. Mater. Sci. Eng., 1989, A107: 23
|
38 |
Wu X B, You Y W, Kong X S, et al. First-principles determination of grain boundary strengthening in tungsten: Dependence on grain boundary structure and metallic radius of solute [J]. Acta Mater., 2016, 120: 315
|
39 |
Kurishita H, Kobayashi S, Nakai K, et al. Development of ultra-fine grained W-(0.25-0.8)wt%TiC and its superior resistance to neutron and 3 MeV He-ion irradiations [J]. J. Nucl. Mater., 2008, 377: 34
|
40 |
Kurishita H, Amano Y, Kobayashi S, et al. Development of ultra-fine grained W-TiC and their mechanical properties for fusion applications [J]. J. Nucl. Mater., 2007, 360-370: 1453
|
41 |
Zhang Y, Ganeev A V, Wang J T, et al. Observations on the ductile-to-brittle transition in ultrafine-grained tungsten of commercial purity [J]. Mater. Sci. Eng., 2009, A503: 37
|
42 |
Funkenbusch A W, Bacon F, Lee D. The influence of microstructure on fracture of drawn tungsten wire [J]. Metall. Trans., 1979, 10A: 1085
|
43 |
Tran-Huu-Loi, Morniroli J P, Gantois M, et al. Brittle fracture of polycrystalline tungsten [J]. J. Mater. Sci., 1985, 20: 199
|
44 |
Gludovatz B, Wurster S, Weingärtner T, et al. Influence of impurities on the fracture behaviour of tungsten [J]. Philos. Mag., 2011, 91: 3006
|
45 |
Krasko G L. Effect of impurities on the electronic structure of grain boundaries and intergranular cohesion in iron and tungsten [J]. Mater. Sci. Eng., 1997, A234-236: 1071
|
46 |
Pan Z L, Kecskes L J, Wei Q M. The nature behind the preferentially embrittling effect of impurities on the ductility of tungsten [J]. Comput. Mater. Sci., 2014, 93: 104
|
47 |
Veverka J, Vilémová M, Chlup Z, et al. Evolution of carbon and oxygen concentration in tungsten prepared by field assisted sintering and its effect on ductility [J]. Int. J. Refract. Met. Hard Mater., 2021, 97: 105499
|
48 |
Šestan A, Zavašnik J, Kržmanc M M, et al. Tungsten carbide as a deoxidation agent for plasma-facing tungsten-based materials [J]. J. Nucl. Mater., 2019, 524: 135
|
49 |
Liu R, Xie Z M, Zhang T, et al. Mechanical properties and microstructures of W-1%Y2O3 microalloyed with Zr [J]. Mater. Sci. Eng., 2016, A660: 19
|
50 |
Mondal A, Upadhyaya A, Agrawal D. Effect of heating mode on sintering of tungsten [J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 597
|
51 |
Kecskes L J, Cho K C, Dowding R J, et al. Grain size engineering of bcc refractory metals: Top-down and bottom-up—Application to tungsten [J]. Mater. Sci. Eng., 2007, A467: 33
|
52 |
Xie Z M, Liu R, Fang Q F, et al. Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten [J]. J. Nucl. Mater., 2014, 444: 175
|
53 |
Liu R, Xie Z M, Hao T, et al. Fabricating high performance tungsten alloys through zirconium micro-alloying and nano-sized yttria dispersion strengthening [J]. J. Nucl. Mater., 2014, 451: 35
|
54 |
Beyerlein I J, Demkowicz M J, Misra A, et al. Defect-interface interactions [J]. Prog. Mater. Sci., 2015, 74: 125
|
55 |
Lu S, Ågren J, Vitos L. Ab initio study of energetics and structures of heterophase interfaces: From coherent to semicoherent interfaces [J]. Acta Mater., 2018, 156: 20
|
56 |
Bai X M, Voter A F, Hoagland R G, et al. Efficient annealing of radiation damage near grain boundaries via interstitial emission [J]. Science, 2010, 327: 1631
|
57 |
Cui B, Luo C Y, Chen X X, et al. Superior radiation resistance of ZrO2-modified W composites [J]. Materials, 2022, 15: 1985
|
58 |
Jung W S, Chung S H. Ab initio calculation of interfacial energies between transition metal carbides and fcc iron [J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 075008
|
59 |
Wang J Q, Liu W F, Liu S, et al. Effect of aging treatment at 700 oC on microstructure and mechanical properties of 9Cr-ODS steel [J]. Acta Metall. Sin., 2024, 60: 616
|
59 |
汪建强, 刘威峰, 刘 生 等. 700 ℃时效对9Cr-ODS钢微观组织和力学性能的影响 [J]. 金属学报, 2024, 60: 616
doi: 10.11900/0412.1961.2022.00558
|
60 |
Xiao F N, Xu L J, Zhou Y C, et al. Preparation, microstructure, and properties of tungsten alloys reinforced by ZrO2 particles [J]. Int. J. Refract. Met. Hard Mater., 2017, 64: 40
|
61 |
Rui X, Li Y F, Zhang J R, et al. Microstructure and mechanical properties of a novel designed 9Cr-ODS steel synergically strengthened by nano precipitates [J]. Acta Metall. Sin., 2023, 59: 1590
doi: 10.11900/0412.1961.2021.00534
|
61 |
芮 祥, 李艳芬, 张家榕 等. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能 [J]. 金属学报, 2023, 59: 1590
|
62 |
Battabyal M, Schäublin R, Spätig P, et al. W-2wt.%Y2O3 composite: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2012, A538: 53
|
63 |
Li J F, Cheng J G, Wei B Z, et al. Microstructure and properties of La2O3 doped W composites prepared by a wet chemical process [J]. Int. J. Refract. Met. Hard Mater., 2017, 66: 226
|
64 |
Lian Y Y, Liu X, Feng F, et al. Mechanical properties and thermal shock performance of W-Y2O3 composite prepared by high-energy-rate forging [J]. Phys. Scr., 2017, 2017: 014044
|
65 |
Dong Z, Ma Z Q, Dong J, et al. The simultaneous improvements of strength and ductility in W-Y2O3 alloy obtained via an alkaline hydrothermal method and subsequent low temperature sintering [J]. Mater. Sci. Eng., 2020, A784: 139329
|
66 |
Dong Z, Ma Z Q, Liu Y C. Accelerated sintering of high-performance oxide dispersion strengthened alloy at low temperature [J]. Acta Mater., 2021, 220: 117309
|
67 |
Shu R, Jiang X S, Li J R, et al. Microstructures and mechanical properties of Al-Si alloy nanocomposites hybrid reinforced with nano-carbon and in-situ Al2O3 [J]. J. Alloys Compd., 2019, 800: 150
|
68 |
Zhang G H, Jiang X S, Qiao C J, et al. Investigation of the microstructure and mechanical properties of copper-graphite composites reinforced with single-crystal α-Al2O3 fibres by hot isostatic pressing [J]. Materials, 2018, 11: 982
|
69 |
Wang X L, Li J R, Zhang Y, et al. Improvement of interfacial bonding and mechanical properties of Cu-Al2O3 composite by Cr-nanoparticle-induced interfacial modification [J]. J. Alloys Compd., 2017, 695: 2124
|
70 |
Wu Z X, Jiang X S, Sun H L, et al. Nano/micro-scale numerical simulation and microscopic analysis on metal/oxide interfaces: A review [J]. Composites, 2022, 163A: 107184
|
71 |
Guo X C, Shang F L. Reinvestigation of the tensile strength and fracture property of Ni(111)/α-Al2O3(0001) interfaces by first-principle calculations [J]. Comput. Mater. Sci., 2011, 50: 1711
|
72 |
Punkkinen M P J, Kokko K, Levämäki H, et al. Adhesion of the iron-chromium oxide interface from first-principles theory [J]. J. Phys.: Condens. Matter, 2013, 25: 495501
|
73 |
Shao Z Y, Jiang X S, Shu R, et al. Effect of Cr micro-alloying on microstructure and mechanical properties of alumina whisker and graphene co-reinforced copper matrix composites [J]. J. Alloys Compd., 2022, 909: 164804
|
74 |
Liu H, Li Y P, Zhang C L, et al. The tensile properties and fracture of the Ni/Cr2O3 interface: First principles simulation [J]. Comput. Mater. Sci., 2014, 82: 367
|
75 |
Salehinia I, Shao S, Wang J, et al. Plastic deformation of metal/ceramic nanolayered composites [J]. JOM, 2014, 66: 2078
|
76 |
Rong J, Wang X, Zhang Y N, et al. Al2O3/FeAl interfacial behaviors by yttrium doping in high temperature oxidation [J]. Ceram. Int., 2019, 45: 22273
doi: 10.1016/j.ceramint.2019.07.253
|
77 |
Fu X Q, Liang L H, Wei Y G. Atomistic simulation study on the shear behavior of Ag/MgO interface [J]. Comput. Mater. Sci., 2018, 155: 116
|
78 |
Chen L, Li Y F, Xiao B, et al. Chemical bonding, thermodynamic stability and mechanical strength of Ni3Ti/α-Al2O3 interfaces by first-principles study [J]. Scr. Mater., 2021, 190: 57
|
79 |
Lin J P, Zhao L L, Li G Y, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys [J]. Intermetallics, 2011, 19: 131
|
80 |
Fang H Z, Shang S L, Wang Y, et al. First-principles studies on vacancy-modified interstitial diffusion mechanism of oxygen in nickel, associated with large-scale atomic simulation techniques [J]. J. Appl. Phys., 2014, 115: 043501
|
81 |
Liu J P, Fan G L, Tan Z Q, et al. Mechanical properties and failure mechanisms at high temperature in carbon nanotube reinforced copper matrix nanolaminated composite [J]. Composites, 2019, 116A: 54
|
82 |
Yao G, Liu X P, Zhao Z H, et al. Excellent performance of W-Y2O3 composite via powder process improvement and Y2O3 refinement [J]. Mater. Des., 2021, 212: 110249
|
83 |
Chen Z, Li Y, Lian Y Y, et al. Response of yttria dispersion strengthened tungsten simultaneously exposed to steady-state and transient hydrogen plasma [J]. Nucl. Fusion, 2020, 60: 046020
|
84 |
Veleva L, Schaeublin R, Battabyal M, et al. Investigation of microstructure and mechanical properties of W-Y and W-Y2O3 materials fabricated by powder metallurgy method [J]. Int. J. Refract. Met. Hard Mater., 2015, 50: 210
|
85 |
Ding X Y, Luo L M, Chen H Y, et al. Chemical synthesis and oxide dispersion properties of strengthened tungsten via spark plasma sintering [J]. Materials, 2016, 9: 879
|
86 |
Hu W Q, Dong Z, Ma Z Q, et al. W-Y2O3 composite nanopowders prepared by hydrothermal synthesis method: Co-deposition mechanism and low temperature sintering characteristics [J]. J. Alloys Compd., 2020, 821: 153461
|
87 |
Hu W Q, Dong Z, Yu L M, et al. Synthesis of W-Y2O3 alloys by freeze-drying and subsequent low temperature sintering: Microstructure refinement and second phase particles regulation [J]. J. Mater. Sci. Technol., 2020, 36: 84
|
88 |
Deng H W, Xie Z M, Wang Y K, et al. Mechanical properties and thermal stability of pure W and W-0.5wt%ZrC alloy manufactured with the same technology [J]. Mater. Sci. Eng., 2018, A715: 117
|
89 |
Zhang J, Tian Y, Zhu J W, et al. Microstructure and mechanical properties of HfC reinforced W matrix composites regulated by trace Zr [J]. Int. J. Refract. Met. Hard Mater., 2020, 86: 105096
|
90 |
Kang K J, Tu R, Luo G Q, et al. Synergetic effect of Re alloying and SiC addition on strength and toughness of tungsten [J]. J. Alloys Compd., 2018, 767: 1064
|
91 |
Miao S, Xie Z M, Yang X D, et al. Effect of hot rolling and annealing on the mechanical properties and thermal conductivity of W-0.5wt.% TaC alloys [J]. Int. J. Refract. Met. Hard Mater., 2016, 56: 8
|
92 |
Xie X F, Zhang Y G, Xie Z M, et al. Stable nanoparticles dispersion induced an unprecedented high strength in a bulk W-TiC alloy [J]. Scr. Mater., 2023, 224: 115136
|
93 |
Kurishita H, Matsuo S, Arakawa H, et al. Current status of nanostructured tungsten-based materials development [J]. Phys. Scr., 2014, 2014: 014032
|
94 |
Zibrov M, Bystrov K, Mayer M, et al. The high-flux effect on deuterium retention in TiC and TaC doped tungsten at high temperatures [J]. J. Nucl. Mater., 2017, 494: 211
|
95 |
Kurishita H, Arakawa H, Matsuo S, et al. Development of nanostructured tungsten based materials resistant to recrystallization and/or radiation induced embrittlement [J]. Mater. Trans., 2013, 54: 456
|
96 |
AlMangour B, Baek M S, Grzesiak D, et al. Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting [J]. Mater. Sci. Eng., 2018, A712: 812
|
97 |
Xie Z M, Liu R, Fang Q F, et al. Microstructure and mechanical properties of nano-size zirconium carbide dispersion strengthened tungsten alloys fabricated by spark plasma sintering method [J]. Plasma Sci. Technol., 2015, 17: 1066
|
98 |
Reiser J, Hoffmann J, Jäntsch U, et al. Ductilisation of tungsten (W): On the shift of the brittle-to-ductile transition (BDT) to lower temperatures through cold rolling [J]. Int. J. Refract. Met. Hard Mater., 2016, 54: 351
|
99 |
Wei Q, Kecskes L J. Effect of low-temperature rolling on the tensile behavior of commercially pure tungsten [J]. Mater. Sci. Eng., 2008, A491: 62
|
100 |
Xie X F, Xie Z M, Liu R, et al. Hierarchical microstructures enabled excellent low-temperature strength-ductility synergy in bulk pure tungsten [J]. Acta Mater., 2022, 228: 117765
|
101 |
Wu X B, Zhang X, Xie Z M, et al. Insight into interface cohesion and impurity-induced embrittlement in carbide dispersion strengthen tungsten from first principles [J]. J. Nucl. Mater., 2020, 538: 152223
|
102 |
Nogami S, Hasegawa A, Fukuda M, et al. Mechanical properties of tungsten: Recent research on modified tungsten materials in Japan [J]. J. Nucl. Mater., 2021, 543: 152506
|
103 |
Raffo P L. Yielding and fracture in tungsten and tungsten-rhenium alloys [J]. J. Less Common Met., 1969, 17: 133
|
104 |
Xie Z M, Liu R, Zhang T, et al. Achieving high strength/ductility in bulk W-Zr-Y2O3 alloy plate with hybrid microstructure [J]. Mater. Des., 2016, 107: 144
|
105 |
Xie Z M, Liu R, Miao S, et al. Effect of high temperature swaging and annealing on the mechanical properties and thermal conductivity of W-Y2O3 [J]. J. Nucl. Mater., 2015, 464: 193
|
106 |
Yang X D, Xie Z M, Miao S, et al. Tungsten-zirconium carbide-rhenium alloys with extraordinary thermal stability [J]. Fusion Eng. Des., 2016, 106: 56
|
107 |
Dong Z, Ma Z Q, Yu L M, et al. Achieving high strength and ductility in ODS-W alloy by employing oxide@W core-shell nanopowder as precursor [J]. Nat. Commun., 2021, 12: 5052
doi: 10.1038/s41467-021-25283-2
pmid: 34417455
|
108 |
Cheng Y, Mrovec M, Gumbsch P. Atomistic simulations of interactions between the 1/2<111> edge dislocation and symmetric tilt grain boundaries in tungsten [J]. Philos. Mag., 2008, 88: 547
|
109 |
Smiti E, Jouffrey P, Kobylanski A. The influence of carbon and oxygen in the grain boundary on the brittle-ductile transition temperature of tungsten Bi-crystals [J]. Scr. Metall., 1984, 18: 673
|
110 |
Hartmaier A, Gumbsch P. Mesoscopic simulation of dislocation activity at crack tips [J]. MRS Online Proc. Libr., 1999, 539: 233
|
111 |
Wang L H, Teng J, Sha X C, et al. Plastic deformation through dislocation saturation in ultrasmall pt nanocrystals and its in situ atomistic mechanisms [J]. Nano Lett., 2017, 17: 4733
doi: 10.1021/acs.nanolett.7b01416
pmid: 28715223
|
112 |
Miao S, Zhao Y Q, Xie Z M, et al. On the ductilization and the resistance to annealing-induced embrittlement of high-strength W-Re and nano-particle doped W-Re-ZrC alloys [J]. Mater. Sci. Eng., 2022, A861: 144334
|
113 |
Rice J R, Thomson R. Ductile versus brittle behaviour of crystals [J]. Philos. Mag., 1974, 29: 73
|
114 |
Khantha M, Pope D P, Vitek V. Dislocation screening and the brittle-to-ductile transition: A Kosterlitz-Thouless type instability [J]. Phys. Rev. Lett., 1994, 73: 684
pmid: 10057511
|
115 |
Lu Y, Zhang Y H, Ma E, et al. Relative mobility of screw versus edge dislocations controls the ductile-to-brittle transition in metals [J]. Proc. Natl. Acad. Sci. USA, 2021, 118: e2110596118
|
116 |
Gröger R, Bailey A G, Vitek V. Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2<111> screw dislocations at 0 K [J]. Acta Mater., 2008, 56: 5401
|
117 |
Po G, Cui Y N, Rivera D, et al. A phenomenological dislocation mobility law for bcc metals [J]. Acta Mater., 2016, 119: 123
|
118 |
Duesbery M S, Xu W. The motion of edge dislocations in body-centered cubic metals [J]. Scr. Mater., 1998, 39: 283
|
119 |
Ren C, Fang Z Z, Xu L, et al. An investigation of the microstructure and ductility of annealed cold-rolled tungsten [J]. Acta Mater., 2019, 162: 202
|
120 |
Gumbsch P. Brittle fracture and the brittle-to-ductile transition of tungsten [J]. J. Nucl. Mater., 2003, 323: 304
|
121 |
Christian J W, Mahajan S. Deformation twinning [J]. Prog. Mater Sci., 1995, 39: 1
|
122 |
Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
|
123 |
Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610
pmid: 19372422
|
124 |
Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323: 607
doi: 10.1126/science.1167641
pmid: 19179523
|
125 |
Li X Y, Zhao Q K, Tian Y Z, et al. Phase transformation induced transitional twin boundary in body-centered cubic metals [J]. Acta Mater., 2023, 249: 118815
|
126 |
Ogata S, Li J, Yip S. Energy landscape of deformation twinning in bcc and fcc metals [J]. Phys. Rev., 2005, 71B: 224102
|
127 |
Wang J W, Zeng Z, Weinberger C R, et al. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten [J]. Nat. Mater., 2015, 14: 594
|
128 |
Wang X, Wang J W, He Y, et al. Unstable twin in body-centered cubic tungsten nanocrystals [J]. Nat. Commun., 2020, 11: 2497
doi: 10.1038/s41467-020-16349-8
pmid: 32427858
|
129 |
Kibey S, Liu J B, Johnson D D, et al. Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation [J]. Acta Mater., 2007, 55: 6843
|
130 |
Weinberger C R, Battaile C C, Buchheit T E, et al. Incorporating atomistic data of lattice friction into BCC crystal plasticity models [J]. Int. J. Plast., 2012, 37: 16
|
131 |
Weinberger C R, Tucker G J, Foiles S M. Peierls potential of screw dislocations in bcc transition metals: Predictions from density functional theory [J]. Phys. Rev., 2013, 87B: 054114
|
132 |
Greer J R, Weinberger C R, Cai W. Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: Compression experiments and dislocation dynamics simulations [J]. Mater. Sci. Eng., 2008, A493: 21
|
133 |
Christian J W. Some surprising features of the plastic deformation of body-centered cubic metals and alloys [J]. Metall. Trans., 1983, 14A: 1237
|
134 |
Duesbery M S, Vitek V. Plastic anisotropy in b.c.c. transition metals [J]. Acta Mater., 1998, 46: 1481
|
135 |
Wang J W, Zeng Z, Wen M R, et al. Anti-twinning in nanoscale tungsten [J]. Sci. Adv., 2020, 6: eaay2792
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|