|
|
搭接工艺对选区激光熔化镍基单晶高温合金DD491晶体取向与微观组织的影响 |
张振武1, 李继康1( ), 许文贺1, 沈沐宇1, 戚磊一1, 郑可盈1, 李伟2, 魏青松1( ) |
1 华中科技大学 材料科学与工程学院 材料成形与模具技术全国重点实验室 武汉 430074 2 武汉科技大学 机械自动化学院 冶金装备及其控制教育部重点实验室 武汉 430081 |
|
Effects of Overlapping Process on Grain Orientation and Microstructure of Nickel-Based Single-Crystal Superalloy DD491 Fabricated by Selective Laser Melting |
ZHANG Zhenwu1, LI Jikang1( ), XU Wenhe1, SHEN Muyu1, QI Leiyi1, ZHENG Keying1, LI Wei2, WEI Qingsong1( ) |
1 State Key Laboratory of Material Processing and Die & Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2 Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, School of Mechanical and Automation, Wuhan University of Science and Technology, Wuhan 430081, China |
引用本文:
张振武, 李继康, 许文贺, 沈沐宇, 戚磊一, 郑可盈, 李伟, 魏青松. 搭接工艺对选区激光熔化镍基单晶高温合金DD491晶体取向与微观组织的影响[J]. 金属学报, 2024, 60(11): 1471-1486.
Zhenwu ZHANG,
Jikang LI,
Wenhe XU,
Muyu SHEN,
Leiyi QI,
Keying ZHENG,
Wei LI,
Qingsong WEI.
Effects of Overlapping Process on Grain Orientation and Microstructure of Nickel-Based Single-Crystal Superalloy DD491 Fabricated by Selective Laser Melting[J]. Acta Metall Sin, 2024, 60(11): 1471-1486.
1 |
Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55: 1077
|
1 |
张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55: 1077
|
2 |
Xia W S, Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44: 76
doi: 10.1016/j.jmst.2020.01.026
|
3 |
Zhao X B, Gao S F, Yang C B, et al. Influence of crystal orientation on microstructure and mechanical properties and its control for nickel-base single crystal superalloys [J]. Mater. China, 2013, 32: 24
|
3 |
赵新宝, 高斯峰, 杨初斌 等. 镍基单晶高温合金晶体取向的选择及其控制 [J]. 中国材料进展, 2013, 32: 24
|
4 |
Liu L, Sun D J, Huang T W, et al. Directional solidification under high thermal gradient and its application in superalloys processing [J]. Acta Metall. Sin., 2018, 54: 615
doi: 10.11900/0412.1961.2018.00075
|
4 |
刘 林, 孙德建, 黄太文 等. 高梯度定向凝固技术及其在高温合金制备中的应用 [J]. 金属学报, 2018, 54: 615
|
5 |
Li J G, Meng X B, Liu J D, et al. Common solidification defects and inhibition methods in single crystal superalloy turbine blades [J]. Spec. Cast. Nonferrous Alloys, 2021, 41: 1321
|
5 |
李金国, 孟祥斌, 刘纪德 等. 单晶高温合金涡轮叶片的常见凝固缺陷及控制方法 [J]. 特种铸造及有色合金, 2021, 41: 1321
doi: 10.15980/j.tzzz.2021.11.001
|
6 |
Bondarenko Y A, Kablov E N. Directional crystallization of high-temperature alloys with elevated temperature gradient [J]. Met. Sci. Heat Treat., 2002, 44: 288
|
7 |
Kong X C, Zhang Z Q, Zhu J Q, et al. Research progress on cooling structure of aeroengine air-cooled turbine blade [J]. J. Prop. Technol., 2022, 43(5): 1
|
7 |
孔祥灿, 张子卿, 朱俊强 等. 航空发动机气冷涡轮叶片冷却结构研究进展 [J]. 推进技术, 2022, 43(5): 1
|
8 |
Song B, Zhang J L, Zhang Y J, et al. Research progress of materials design for metal laser additive manufacturing [J]. Acta Metall. Sin., 2023, 59: 1
doi: 10.11900/0412.1961.2022.00026
|
8 |
宋 波, 张金良, 章媛洁 等. 金属激光增材制造材料设计研究进展 [J]. 金属学报, 2023, 59: 1
|
9 |
DeBroy T, Mukherjee T, Wei H L, et al. Metallurgy, mechanistic models and machine learning in metal printing [J]. Nat. Rev. Mater., 2021, 6: 48
|
10 |
Liu J, To A C. Quantitative texture prediction of epitaxial columnar grains in additive manufacturing using selective laser melting [J]. Addit. Manuf., 2017, 16: 58
|
11 |
Kalidindi S R, Bronkhorst C A, Anand L. Crystallographic texture evolution in bulk deformation processing of FCC metals [J]. J. Mech. Phys. Solids, 1992, 40: 537
|
12 |
Liu L T, Chen C Y, Li X, et al. Research progress in laser additive manufacturing technology of single crystal superalloy [J]. J. Netshape Forming Eng., 2019, 11(4): 73
|
12 |
刘龙涛, 陈超越, 李 霞 等. 激光增材制造单晶高温合金研究进展 [J]. 精密成形工程, 2019, 11(4): 73
|
13 |
Gäumann M, Bezençon C, Canalis P, et al. Single-crystal laser deposition of superalloys: Processing-microstructure maps [J]. Acta Mater., 2001, 49: 1051
|
14 |
Lu N N. Single crystal growth controling of CMSX-10 superalloy via laser melting deposition [D]. Harbin: Harbin Institute of Technology, 2021
|
14 |
卢楠楠. CMSX-10高温合金激光熔化沉积单晶生长控制 [D]. 哈尔滨: 哈尔滨工业大学, 2021
|
15 |
Ci S W. Study on microstructure and mechanical properties of nickel-based single crystal supertalloy by laser additive manufacturing [D]. Hefei: University of Science and Technology of China, 2021
|
15 |
慈世伟. 激光增材制造镍基单晶高温合金显微组织和力学性能研究 [D]. 合肥: 中国科学技术大学, 2021
|
16 |
Liu X X, Cheng X, Wang H M, et al. Influence of processing conditions on formation of stray grains in DD5 single-crystal superalloys by laser melting multi-traced deposition [J]. Chin. J. Lasers, 2017, 44: 0602009
|
16 |
刘小欣, 程 序, 王华明 等. 不同工艺条件对激光熔化多道沉积DD5单晶高温合金杂晶的影响 [J]. 中国激光, 2017, 44: 0602009
|
17 |
Fernandez-Zelaia P, Kirka M M, Rossy A M, et al. Nickel-based superalloy single crystals fabricated via electron beam melting [J]. Acta Mater., 2021, 216: 117133
|
18 |
Körner C, Ramsperger M, Meid C, et al. Microstructure and mechanical properties of CMSX-4 single crystals prepared by additive manufacturing [J]. Metall. Mater. Trans., 2018, 49A: 3781
|
19 |
Li Y, Yu Y F, Wang Z B, et al. Additive manufacturing of nickel-based superalloy single crystals with IN-738 alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 369
|
20 |
Matuszewski K, Rettig R, Matysiak H, et al. Effect of ruthenium on the precipitation of topologically close packed phases in Ni-based superalloys of 3rd and 4th generation [J]. Acta Mater., 2015, 95: 274
|
21 |
Li J K, Zhang Z W, Yang Y Q, et al. Single-track morphology, crystal orientation and microstructure of DD91 nickel-based single crystal superalloy fabricated by selective laser melting [J]. Chin. J. Lasers, 2022, 49: 1402103
|
21 |
李继康, 张振武, 杨源祺 等. 激光选区熔化DD91镍基单晶高温合金的单道形貌, 晶体取向和微观组织 [J]. 中国激光, 2022, 49: 1402103
|
22 |
Guo C, Li G, Li S, et al. Additive manufacturing of Ni-based superalloys: Residual stress, mechanisms of crack formation and strategies for crack inhibition [J]. Nano Mater. Sci., 2023, 5: 53
|
23 |
Li Y, Xu H J, Li K, et al. Effect of volumetric energy density on microstructure and properties of Hastelloy X alloy manufactured by selective laser melting [J]. Mater. Mech. Eng., 2020, 44(5): 38
|
23 |
李 勇, 许鹤君, 李 凯 等. 体能量密度对选区激光熔化成形Hastelloy X合金组织及性能的影响 [J]. 机械工程材料, 2020, 44(5): 38
|
24 |
Wei Q S, Xie Y, Teng Q, et al. Crack types, mechanisms, and suppression methods during high-energy beam additive manufacturing of nickel-based superalloys: A review [J]. Chin. J. Mech. Eng.: Addit. Manuf. Front., 2022, 1: 100055
|
25 |
Jin T, Sun X F, Zhao N R, et al. Laser glazing rapidly solidified microstructure of DD8 single crystal Ni-based superalloy [J]. Acta Metall. Sin., 2009, 45: 711
|
25 |
金 涛, 孙晓峰, 赵乃仁 等. 单晶镍基高温合金DD8激光快速熔凝组织 [J]. 金属学报, 2009, 45: 711
|
26 |
Liang J J, Yang Y H, Zhou Y Z, et al. Microstructures of nickel-base single-crystal superalloy prepared by laser solid forming [J]. Rare Met. Mater. Eng., 2017, 46: 3753
|
26 |
梁静静, 杨彦红, 周亦胄 等. 激光立体成形镍基单晶高温合金显微组织研究 [J]. 稀有金属材料与工程, 2017, 46: 3753
|
27 |
Anderson T D, Dupont J N, Debroy T. Origin of stray grain formation in single-crystal superalloy weld pools from heat transfer and fluid flow modeling [J]. Acta Mater., 2010, 58: 1441
|
28 |
Rappaz M, David S A, Vitek J M, et al. Development of microstructures in Fe-15Ni-15Cr single crystal electron beam welds [J]. Metall. Trans., 1989, 20A: 1125
|
29 |
Yang J J, Li F Z, Pan A Q, et al. Microstructure and grain growth direction of SRR99 single-crystal superalloy by selective laser melting [J]. J. Alloys Compd., 2019, 808: 151740
|
30 |
Zhang P Y, Zhou X, Zhang W Q, et al. Effects of melt-pool geometry on the oriented to misoriented transition in directed energy deposition of a single-crystal superalloy [J]. Addit. Manuf., 2022, 60: 103253
|
31 |
Shi R P, Khairallah S A, Roehling T T, et al. Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy [J]. Acta Mater., 2020, 184: 284
|
32 |
Wang G W, Liang J J, Zhou Y Z, et al. Variation of crystal orientation during epitaxial growth of dendrites by laser deposition [J]. J. Mater. Sci. Technol., 2018, 34: 732
doi: 10.1016/j.jmst.2017.05.002
|
33 |
Tönhardt R, Amberg G. Phase-field simulation of dendritic growth in a shear flow [J]. J. Cryst. Growth, 1998, 194: 406
|
34 |
Zhou Z P, Lei Q, Yan Z, et al. Effects of process parameters on microstructure and cracking susceptibility of a single crystal superalloy fabricated by directed energy deposition [J]. Mater. Des., 2021, 198: 109296
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|