Please wait a minute...
金属学报  2024, Vol. 60 Issue (11): 1471-1486    DOI: 10.11900/0412.1961.2023.00230
  研究论文 本期目录 | 过刊浏览 |
搭接工艺对选区激光熔化镍基单晶高温合金DD491晶体取向与微观组织的影响
张振武1, 李继康1(), 许文贺1, 沈沐宇1, 戚磊一1, 郑可盈1, 李伟2, 魏青松1()
1 华中科技大学 材料科学与工程学院 材料成形与模具技术全国重点实验室 武汉 430074
2 武汉科技大学 机械自动化学院 冶金装备及其控制教育部重点实验室 武汉 430081
Effects of Overlapping Process on Grain Orientation and Microstructure of Nickel-Based Single-Crystal Superalloy DD491 Fabricated by Selective Laser Melting
ZHANG Zhenwu1, LI Jikang1(), XU Wenhe1, SHEN Muyu1, QI Leiyi1, ZHENG Keying1, LI Wei2, WEI Qingsong1()
1 State Key Laboratory of Material Processing and Die & Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, School of Mechanical and Automation, Wuhan University of Science and Technology, Wuhan 430081, China
引用本文:

张振武, 李继康, 许文贺, 沈沐宇, 戚磊一, 郑可盈, 李伟, 魏青松. 搭接工艺对选区激光熔化镍基单晶高温合金DD491晶体取向与微观组织的影响[J]. 金属学报, 2024, 60(11): 1471-1486.
Zhenwu ZHANG, Jikang LI, Wenhe XU, Muyu SHEN, Leiyi QI, Keying ZHENG, Wei LI, Qingsong WEI. Effects of Overlapping Process on Grain Orientation and Microstructure of Nickel-Based Single-Crystal Superalloy DD491 Fabricated by Selective Laser Melting[J]. Acta Metall Sin, 2024, 60(11): 1471-1486.

全文: PDF(6572 KB)   HTML
摘要: 

镍基单晶高温合金是制造航空发动机单晶涡轮叶片的关键材料,选区激光熔化(SLM)制造单晶组织和复杂结构具有技术优势和可行性。在SLM中,熔道与熔道之间的搭接质量对单晶组织的完整性至关重要。本工作在4种激光功率和扫描速率的组合工艺下,探究了扫描间距(0.06、0.09、0.12和0.15 mm)对第四代镍基单晶高温合金DD491熔道微观形貌、冶金缺陷、晶体取向和微观组织的影响。结果表明,低功率、低速率和高功率、高速率的工艺参数能够为晶体定向生长提供稳定的几何形态和冶金条件,熔道底部晶体能够延续基底取向实现[001]定向生长。熔道内不同区域存在不同类型的晶体取向缺陷,包括顶部中间等轴晶、顶部[010]和[100]柱状杂晶、内部小角度取向偏差等。较小扫描间距的熔道重熔率较高,有利于减少熔道两侧的杂晶缺陷。

关键词 选区激光熔化镍基单晶高温合金晶体取向搭接    
Abstract

Aero-engine turbine blades are operated under harsh conditions such as high temperature, pressure, and load. Therefore, weak grain boundaries at high temperatures should be eliminated from the turbine blades, whereas convection channels inside the blades should be added to dissipate heat. Achieving integrated manufacturing of specialized microstructure in complex components has been a long-term research priority in turbine blade manufacturing. Nickel-based single-crystal superalloys are key materials for manufacturing single-crystal turbine blades for aero-engines, and selective laser melting (SLM) is feasible and technically advantageous for manufacturing complex components with single-crystal microstructures. Owing to the extremely high temperature gradient and scanning speed during SLM, the melt pool is unstable, thereby interrupting directional crystal growth. The metallurgical environment of SLM is further complicated by the large number of overlapping tracks and stacking layers. The quality of the overlaps is critical for the integrity of the single-crystal structure during SLM. Herein, the effects of scanning hatch (h = 0.06, 0.09, 0.12, and 0.15 mm) on the melt track morphology, metallurgical defects, crystal orientation, and microstructure of DD491 fourth-generation nickel-based single-crystal superalloy were investigated. Directionally solidified and solution-aged DD6 single-crystal superalloy rods were used as the substrate, and DD491 powder was coated to a thickness of 40 μm. Electron backscatter diffraction was used to characterize the crystal orientation of the samples. Results show that low power/low speed (S1) and high power/high speed (S4) combinations of laser power and scanning speed provide geometrically and metallurgically stable conditions for directional crystal growth, and the grains at the bottom of the melt track can orient the substrate to achieve [001] directional growth. Different types of crystal orientation defects were observed in different regions, including equiaxed stray grains in the top middle region, [010] and [100] columnar stray grains in the top side regions, and small orientation deviation in the internal region. The scanning hatch affected the crystal orientation in the overlapping regions mainly through the remelted proportion of the old melt pool and the substrate microstructure of the new melt pool during solidification. The higher overlapping ratio with a smaller scanning hatch was beneficial for reducing stray grain defects on both sides of the melt tracks. The role of residual heat on solidification conditions was related to the heat gradient vector of laser input, and multitrack overlapping samples under the S1 process accommodated higher residual heat without causing orientation deviation in the overlapping regions. The multitrack overlapping samples under S1, h = 0.06 and0.09 mm, had maximum pole densities along the y-z plane as high as 47.66 and 46.85, respectively, exhibiting a typical [001] single-crystal structure.

Key wordsselective laser melting    nickel-based single-crystal superalloy    crystal orientation    overlap
收稿日期: 2023-05-24     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金项目(52275333);中国航空制造技术研究院稳定支持项目(KZ571801);武汉市知识创新专项项目(2022010801010302)
通讯作者: 魏青松,wqs_xn@hust.edu.cn,主要从事金属激光增材制造和粘结剂喷射增材制造研究;
李继康,lijikang@hust.edu.cn,主要从事金属激光增材制造研究
Corresponding author: WEI Qingsong, professor, Tel: (027)87558155, E-mail: wqs_xn@hust.edu.cn;
LI Jikang, Tel: (027)87558155, E-mail: lijikang@hust.edu.cn
作者简介: 张振武,男,1999年生,硕士生
AlloyCoCr + W + Mo + TaReRuAlHfNi
DD49112.019.05.43.05.80.1Bal.
DD69.021.82.0-5.60.1Bal.
表1  镍基单晶高温合金DD491和DD6的名义化学成分 (mass fraction / %)
图1  镍基单晶高温合金DD491粉末的微观形貌和粒径分布
ProcessesP / Wv / (mm·s-1)h / mm
S1: low power, low speed2605000.06, 0.09, 0.12, 0.15
S2: low power, medium speed2606000.06, 0.09, 0.12, 0.15
S3: high power, medium speed3106000.06, 0.09, 0.12, 0.15
S4: high power, high speed3107000.06, 0.09, 0.12, 0.15
表2  选区激光熔化(SLM)成形单道和多道搭接试样的工艺参数
图2  不同工艺参数下SLM成形的单道、多道搭接试样实物图和示意图
图3  4种工艺参数下的单道试样x-y面和y-z面形貌的SEM像
图4  不同扫描间距的多道搭接试样x-y面形貌的SEM像
图5  多道搭接试样凝固热裂纹、固态裂纹微观形貌的SEM像和元素分布
图6  不同扫描间距的多道搭接试样y-z面形貌的SEM像
图7  多道搭接熔池示意图和熔池几何特征与工艺参数的关系
图8  S1工艺下不同扫描间距多道搭接试样的y-z面晶体取向图
图9  S4工艺下不同扫描间距多道搭接试样的y-z面晶体取向图和取向偏差
图10  S1和S4工艺下不同扫描间距多道搭接试样y-z面的晶体取向反极图
图11  S1工艺下不同扫描间距多道搭接试样的SEM像
图12  S4工艺下不同扫描间距多道搭接试样的SEM像
图13  熔池内晶粒形态演变与固-液凝固界面成分过冷关系示意图
图14  激光扫描方向、熔池内凝固界面移动方向和晶体择优生长方向关系示意图
图15  熔池内[001]、[010]、[100]晶体生长方向示意图
图16  扫描间距h影响搭接区晶体生长示意图
1 Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55: 1077
1 张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55: 1077
2 Xia W S, Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44: 76
doi: 10.1016/j.jmst.2020.01.026
3 Zhao X B, Gao S F, Yang C B, et al. Influence of crystal orientation on microstructure and mechanical properties and its control for nickel-base single crystal superalloys [J]. Mater. China, 2013, 32: 24
3 赵新宝, 高斯峰, 杨初斌 等. 镍基单晶高温合金晶体取向的选择及其控制 [J]. 中国材料进展, 2013, 32: 24
4 Liu L, Sun D J, Huang T W, et al. Directional solidification under high thermal gradient and its application in superalloys processing [J]. Acta Metall. Sin., 2018, 54: 615
doi: 10.11900/0412.1961.2018.00075
4 刘 林, 孙德建, 黄太文 等. 高梯度定向凝固技术及其在高温合金制备中的应用 [J]. 金属学报, 2018, 54: 615
5 Li J G, Meng X B, Liu J D, et al. Common solidification defects and inhibition methods in single crystal superalloy turbine blades [J]. Spec. Cast. Nonferrous Alloys, 2021, 41: 1321
5 李金国, 孟祥斌, 刘纪德 等. 单晶高温合金涡轮叶片的常见凝固缺陷及控制方法 [J]. 特种铸造及有色合金, 2021, 41: 1321
doi: 10.15980/j.tzzz.2021.11.001
6 Bondarenko Y A, Kablov E N. Directional crystallization of high-temperature alloys with elevated temperature gradient [J]. Met. Sci. Heat Treat., 2002, 44: 288
7 Kong X C, Zhang Z Q, Zhu J Q, et al. Research progress on cooling structure of aeroengine air-cooled turbine blade [J]. J. Prop. Technol., 2022, 43(5): 1
7 孔祥灿, 张子卿, 朱俊强 等. 航空发动机气冷涡轮叶片冷却结构研究进展 [J]. 推进技术, 2022, 43(5): 1
8 Song B, Zhang J L, Zhang Y J, et al. Research progress of materials design for metal laser additive manufacturing [J]. Acta Metall. Sin., 2023, 59: 1
doi: 10.11900/0412.1961.2022.00026
8 宋 波, 张金良, 章媛洁 等. 金属激光增材制造材料设计研究进展 [J]. 金属学报, 2023, 59: 1
9 DeBroy T, Mukherjee T, Wei H L, et al. Metallurgy, mechanistic models and machine learning in metal printing [J]. Nat. Rev. Mater., 2021, 6: 48
10 Liu J, To A C. Quantitative texture prediction of epitaxial columnar grains in additive manufacturing using selective laser melting [J]. Addit. Manuf., 2017, 16: 58
11 Kalidindi S R, Bronkhorst C A, Anand L. Crystallographic texture evolution in bulk deformation processing of FCC metals [J]. J. Mech. Phys. Solids, 1992, 40: 537
12 Liu L T, Chen C Y, Li X, et al. Research progress in laser additive manufacturing technology of single crystal superalloy [J]. J. Netshape Forming Eng., 2019, 11(4): 73
12 刘龙涛, 陈超越, 李 霞 等. 激光增材制造单晶高温合金研究进展 [J]. 精密成形工程, 2019, 11(4): 73
13 Gäumann M, Bezençon C, Canalis P, et al. Single-crystal laser deposition of superalloys: Processing-microstructure maps [J]. Acta Mater., 2001, 49: 1051
14 Lu N N. Single crystal growth controling of CMSX-10 superalloy via laser melting deposition [D]. Harbin: Harbin Institute of Technology, 2021
14 卢楠楠. CMSX-10高温合金激光熔化沉积单晶生长控制 [D]. 哈尔滨: 哈尔滨工业大学, 2021
15 Ci S W. Study on microstructure and mechanical properties of nickel-based single crystal supertalloy by laser additive manufacturing [D]. Hefei: University of Science and Technology of China, 2021
15 慈世伟. 激光增材制造镍基单晶高温合金显微组织和力学性能研究 [D]. 合肥: 中国科学技术大学, 2021
16 Liu X X, Cheng X, Wang H M, et al. Influence of processing conditions on formation of stray grains in DD5 single-crystal superalloys by laser melting multi-traced deposition [J]. Chin. J. Lasers, 2017, 44: 0602009
16 刘小欣, 程 序, 王华明 等. 不同工艺条件对激光熔化多道沉积DD5单晶高温合金杂晶的影响 [J]. 中国激光, 2017, 44: 0602009
17 Fernandez-Zelaia P, Kirka M M, Rossy A M, et al. Nickel-based superalloy single crystals fabricated via electron beam melting [J]. Acta Mater., 2021, 216: 117133
18 Körner C, Ramsperger M, Meid C, et al. Microstructure and mechanical properties of CMSX-4 single crystals prepared by additive manufacturing [J]. Metall. Mater. Trans., 2018, 49A: 3781
19 Li Y, Yu Y F, Wang Z B, et al. Additive manufacturing of nickel-based superalloy single crystals with IN-738 alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 369
20 Matuszewski K, Rettig R, Matysiak H, et al. Effect of ruthenium on the precipitation of topologically close packed phases in Ni-based superalloys of 3rd and 4th generation [J]. Acta Mater., 2015, 95: 274
21 Li J K, Zhang Z W, Yang Y Q, et al. Single-track morphology, crystal orientation and microstructure of DD91 nickel-based single crystal superalloy fabricated by selective laser melting [J]. Chin. J. Lasers, 2022, 49: 1402103
21 李继康, 张振武, 杨源祺 等. 激光选区熔化DD91镍基单晶高温合金的单道形貌, 晶体取向和微观组织 [J]. 中国激光, 2022, 49: 1402103
22 Guo C, Li G, Li S, et al. Additive manufacturing of Ni-based superalloys: Residual stress, mechanisms of crack formation and strategies for crack inhibition [J]. Nano Mater. Sci., 2023, 5: 53
23 Li Y, Xu H J, Li K, et al. Effect of volumetric energy density on microstructure and properties of Hastelloy X alloy manufactured by selective laser melting [J]. Mater. Mech. Eng., 2020, 44(5): 38
23 李 勇, 许鹤君, 李 凯 等. 体能量密度对选区激光熔化成形Hastelloy X合金组织及性能的影响 [J]. 机械工程材料, 2020, 44(5): 38
24 Wei Q S, Xie Y, Teng Q, et al. Crack types, mechanisms, and suppression methods during high-energy beam additive manufacturing of nickel-based superalloys: A review [J]. Chin. J. Mech. Eng.: Addit. Manuf. Front., 2022, 1: 100055
25 Jin T, Sun X F, Zhao N R, et al. Laser glazing rapidly solidified microstructure of DD8 single crystal Ni-based superalloy [J]. Acta Metall. Sin., 2009, 45: 711
25 金 涛, 孙晓峰, 赵乃仁 等. 单晶镍基高温合金DD8激光快速熔凝组织 [J]. 金属学报, 2009, 45: 711
26 Liang J J, Yang Y H, Zhou Y Z, et al. Microstructures of nickel-base single-crystal superalloy prepared by laser solid forming [J]. Rare Met. Mater. Eng., 2017, 46: 3753
26 梁静静, 杨彦红, 周亦胄 等. 激光立体成形镍基单晶高温合金显微组织研究 [J]. 稀有金属材料与工程, 2017, 46: 3753
27 Anderson T D, Dupont J N, Debroy T. Origin of stray grain formation in single-crystal superalloy weld pools from heat transfer and fluid flow modeling [J]. Acta Mater., 2010, 58: 1441
28 Rappaz M, David S A, Vitek J M, et al. Development of microstructures in Fe-15Ni-15Cr single crystal electron beam welds [J]. Metall. Trans., 1989, 20A: 1125
29 Yang J J, Li F Z, Pan A Q, et al. Microstructure and grain growth direction of SRR99 single-crystal superalloy by selective laser melting [J]. J. Alloys Compd., 2019, 808: 151740
30 Zhang P Y, Zhou X, Zhang W Q, et al. Effects of melt-pool geometry on the oriented to misoriented transition in directed energy deposition of a single-crystal superalloy [J]. Addit. Manuf., 2022, 60: 103253
31 Shi R P, Khairallah S A, Roehling T T, et al. Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy [J]. Acta Mater., 2020, 184: 284
32 Wang G W, Liang J J, Zhou Y Z, et al. Variation of crystal orientation during epitaxial growth of dendrites by laser deposition [J]. J. Mater. Sci. Technol., 2018, 34: 732
doi: 10.1016/j.jmst.2017.05.002
33 Tönhardt R, Amberg G. Phase-field simulation of dendritic growth in a shear flow [J]. J. Cryst. Growth, 1998, 194: 406
34 Zhou Z P, Lei Q, Yan Z, et al. Effects of process parameters on microstructure and cracking susceptibility of a single crystal superalloy fabricated by directed energy deposition [J]. Mater. Des., 2021, 198: 109296
[1] 黄曾鑫, 蒋逸航, 赖春明, 吴庆捷, 刘大海, 杨亮. 基于原子模拟的金属Fe晶界能与晶界取向相关性分析[J]. 金属学报, 2024, 60(9): 1289-1298.
[2] 蔡宣明, 张伟, 范志强, 高玉波, 王俊元, 张柱军. AlSi10Mg多孔结构在不同加载应变率下的损伤模式及响应机制[J]. 金属学报, 2024, 60(7): 857-868.
[3] 张楠, 张海武, 王淼辉. 微米级选区激光熔化316L不锈钢的拉伸力学性能[J]. 金属学报, 2024, 60(2): 211-219.
[4] 刘静, 张思倩, 王栋, 王莉, 陈立佳. Ta对一种抗热腐蚀镍基单晶高温合金长时热暴露组织和蠕变性能的影响[J]. 金属学报, 2024, 60(2): 179-188.
[5] 刘悦, 姚文轩, 刘大晖, 丁琳, 杨正伟, 刘微, 于涛, 施思齐. 高质量文本数据驱动的命名实体识别加速镍基单晶高温合金材料知识发现[J]. 金属学报, 2024, 60(10): 1429-1438.
[6] 陈玉勇, 时国浩, 杜之明, 张宇, 常帅. 增材制造TiAl合金的研究进展[J]. 金属学报, 2024, 60(1): 1-15.
[7] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[8] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[9] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[10] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[11] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[12] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[13] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[14] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[15] 王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.