Please wait a minute...
金属学报  2025, Vol. 61 Issue (5): 699-716    DOI: 10.11900/0412.1961.2023.00289
  研究论文 本期目录 | 过刊浏览 |
BFe-Cr-B-C合金凝固行为、强韧性及耐磨性的影响
赵广迪1(), 李阳1, 姚晓雨2, 王亮3, 李渭滨3, 潘玉华1, 李维娟1, 王兆宇1
1 辽宁科技大学 材料与冶金学院 鞍山 114051
2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3 辽宁丰德耐磨新材料制品有限公司 鞍山 114018
Effect of Boron on Solidification Behavior, Strength-Toughness, and Wear Resistance of Fe-Cr-B-C Alloy
ZHAO Guangdi1(), LI Yang1, YAO Xiaoyu2, WANG Liang3, LI Weibin3, PAN Yuhua1, LI Weijuan1, WANG Zhaoyu1
1 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Liaoning Fengde Wear Resistant New Material Product Co. Ltd., Anshan 114018, China
引用本文:

赵广迪, 李阳, 姚晓雨, 王亮, 李渭滨, 潘玉华, 李维娟, 王兆宇. BFe-Cr-B-C合金凝固行为、强韧性及耐磨性的影响[J]. 金属学报, 2025, 61(5): 699-716.
Guangdi ZHAO, Yang LI, Xiaoyu YAO, Liang WANG, Weibin LI, Yuhua PAN, Weijuan LI, Zhaoyu WANG. Effect of Boron on Solidification Behavior, Strength-Toughness, and Wear Resistance of Fe-Cr-B-C Alloy[J]. Acta Metall Sin, 2025, 61(5): 699-716.

全文: PDF(7631 KB)   HTML
摘要: 

为提高Fe-Cr-B-C合金在铸态下的强韧性和耐磨性,研究了B含量对其凝固行为、铸态组织、硬度、冲击韧性和耐磨性的作用机理。结果表明,提高B含量显著降低了液相线温度和析出相形成温度,扩大了析出相形成温度区间,使凝固温度区间先增大后减小。当B含量为0.0006% (质量分数)时,凝固过程为L→δγ枝晶→初生Nb(C, B)→[γ + Cr7C3]共晶。凝固结束后,枝晶臂为马氏体组织,枝晶间由残余γ和微量Nb(C, B)、[γ + Cr7C3]构成。B含量增至0.51%时,可显著阻碍γ枝晶生长并细化枝晶组织。凝固过程为L→γ枝晶→初生(Fe, Cr)2(B, C)→初生Nb(C, B)→[γ + (Fe, Cr)2(B, C)]共晶。凝固后,枝晶间和枝晶臂均发生马氏体相变,沿枝晶间形成连续网状硼碳化物。当B含量继续增至2.89%时,在凝固初期就析出大量硼碳化物,枝晶组织消失。凝固过程为L→初生γ→初生(Fe, Cr)2(B, C)→[γ + (Fe, Cr)2(B, C)]共晶→[γ + (Fe, Cr)2(B, C) + (Fe, Cr)3(C, B)]包晶。凝固后,γ基体未发生马氏体相变。B含量为0.0006%时合金的冲击韧性最高,Rockwell硬度和耐磨性居中。B含量为0.51%的合金的Rockwell硬度最高,耐磨性最佳,冲击韧性居中。B含量为2.89%的合金的Rockwell硬度和冲击韧性均最小,耐磨性最差。硼碳化物特征的变化及基体的马氏体相变导致3种B含量合金强韧性和耐磨性产生显著差异。

关键词 Fe-Cr-B-C合金B凝固行为硼碳化物强韧性耐磨性    
Abstract

The Fe-Cr-B-C alloy is a new wear-resistant boron cast iron alloy developed from high-chromium cast iron. This alloy is inexpensive, easy to process, and exhibits excellent wear resistance and good formability, making it suitable for the manufacturing of wear-resistant parts with high dimensional accuracy. The Fe-Cr-B-C alloy has great potential for application and is gradually replacing chromium wear-resistant alloys. In recent years, studies have shown that after composition optimization, the Fe-Cr-B-C alloy can be directly used in the as-cast state without subsequent heat treatment, resulting in a significant decrease in cost. Thus, optimization of the composition of the Fe-Cr-B-C alloy is of great significance for the development of wear-resistant materials. The strength-toughness and wear resistance of the boron cast iron mainly depend on the characteristics of the B-rich precipitates. Reasonable control of the B addition can optimize the characteristic of the B-rich precipitates, thereby improving the service properties of the as-cast Fe-Cr-B-C alloy. However, the role of B in the Fe-Cr-B-C alloy has been scarcely investigated. Therefore, the effects of B content on the solidification behavior, as-cast microstructure, hardness, impact toughness, and wear resistance of the Fe-Cr-B-C alloy were examined in this study. The results show that with increasing B content, the liquidus temperature and formation temperature of precipitates significantly decrease, the formation range of precipitates expands, and the solidification temperature range first increases and then decreases. At a B content of 0.0006% (mass fraction), the solidification of the Fe-Cr-B-C alloy proceeds as follows: L→δγ dendrite→primary Nb(C, B)→eutectic [γ + Cr7C3]. After solidification, the dendrite arm comprised of martensite, and the interdendritic region was composed of residual γ and trace amounts of Nb(C, B), [γ + Cr7C3]. With the increase in the B content to 0.51%, the growth of γ dendrites was significantly hindered, resulting in the refinement of the dendritic structure. The solidification process changed to L→γ dendrite→primary (Fe, Cr)2(B, C)→primary Nb(C, B)→eutectic [γ + (Fe, Cr)2(B, C)]. After solidification, martensitic transformation occurred in both the interdendritic region and dendrite arms, and a continuous boron-carbide network was formed along the interdendritic region. With the further increase in B content to 2.89%, a large amount of boron-carbide was formed at the initial stage of solidification, which not only caused the disappearance of the dendritic structure but also consumed most of the B atoms, seriously reducing the hardenability of γ matrix and inhibiting its martensite transformation. The solidification process changed to L→primary γ→primary (Fe, Cr)2(B, C)→eutectic [γ + (Fe, Cr)2(B, C)]→peritectic [γ + (Fe, Cr)2(B, C) + (Fe, Cr)3(C, B)]. The alloy with a B content of 0.0006% possesses the highest impact toughness, and moderate Rockwell hardness and wear resistance. The alloy with a B content of 0.51% possesses the highest Rockwell hardness, optimal wear resistance, and moderate impact toughness. The alloy with a B content of 2.89% possesses the lowest Rockwell hardness and impact toughness, and the poorest wear resistance. The change in boron-carbide characteristic and the martensitic transformation of matrix are the main reasons for the significant differences in strength-toughness and wear resistance among these alloys. The obtained results provide a theoretical basis for optimizing the composition and improving the wear resistance of the as-cast Fe-Cr-B-C alloy.

Key wordsFe-Cr-B-C alloy    B    solidification behavior    boron-carbide    strength-toughness    wear resistance
收稿日期: 2023-07-07     
ZTFLH:  TG113.1  
基金资助:国家自然科学基金项目(51904146)
通讯作者: 赵广迪,gdzhao12s@alum.imr.ac.cn,主要从事金属材料组织性能调控研究
Corresponding author: ZHAO Guangdi, Tel: (0412)5929381, E-mail: gdzhao12s@alum.imr.ac.cn
作者简介: 赵广迪,男,1989年生,博士
图1  铸锭中的取样位置和尺寸示意图
图2  3种B含量Fe-Cr-B-C合金中平衡析出相质量分数与温度的关系(JMatPro计算结果)
图3  3种B含量Fe-Cr-B-C合金的XRD谱
图4  3种B含量Fe-Cr-B-C合金铸锭显微组织的OM像
图5  3种B含量Fe-Cr-B-C合金铸锭显微组织的背散射电子(BSE)像
图6  图5中各点的EDS结果
图7  3种B含量Fe-Cr-B-C合金的差热分析(DTA)冷却曲线
图8  3种B含量Fe-Cr-B-C合金凝固后DTA试样的OM像
图9  3种B含量Fe-Cr-B-C合金凝固后DTA试样枝晶间区域的BSE像及EDS元素面分布图
图10  3种B含量Fe-Cr-B-C合金水淬组织的OM像
图11  3种B含量Fe-Cr-B-C合金水淬组织的BSE像
图12  图11a中条状析出相上圆点处及图11b~d中沿黄色箭头方向的EDS结果
Alloy

Rockwell hardness

HRC

Impact toughness

J·cm-2

No.156.67 ± 0.568.40 ± 0.30
No.260.07 ± 0.173.40 ± 0.25
No.341.43 ± 0.131.80 ± 0.17
表1  3种B含量Fe-Cr-B-C合金铸锭的平均Rockwell硬度和冲击韧性
AlloyInterdendritic region

Dendrite

arm

γ matrix[γ + Cr7C3]

Primary

(Fe, Cr)2(B, C)

[γ + (Fe, Cr)2(B, C)][γ + (Fe, Cr)2(B, C) + (Fe, Cr)3(C, B)]
No.1421 ± 38848 ± 35-571 ± 56---
No.2739 ± 23851 ± 89--1540 ± 51599 ± 76-
No.3--275 ± 74-2245 ± 537550 ± 137603 ± 115
表2  3种B含量Fe-Cr-B-C合金铸锭不同区域的平均显微Vickers硬度
图13  3种B含量Fe-Cr-B-C合金铸锭的冲击断口形貌
图14  3种B含量Fe-Cr-B-C合金铸锭冲击断口表面析出相的EDS结果
图15  3种B含量Fe-Cr-B-C合金铸锭的摩擦系数-时间曲线
图16  3种B含量Fe-Cr-B-C合金铸锭的磨痕形貌
1 Wang Y L, Li Y J. The friction and wear properties of TiN coating on the surface of the general parts [J]. Equip. Manuf. Technol., 2017, (12): 143
1 王永林, 李迎吉. TiN涂层在一般零件表面的摩擦磨损性能 [J]. 装备制造技术, 2017, (12): 143
2 Wei S Z, Xu L J. Review on research progress of steel and iron wear-resistant materials [J]. Acta. Metall. Sin., 2020, 56: 523
doi: 10.11900/0412.1961.2019.00370
2 魏世忠, 徐流杰. 钢铁耐磨材料研究进展 [J]. 金属学报, 2020, 56: 523
doi: 10.11900/0412.1961.2019.00370
3 Wang C R. Research progress on microstructure and properties of wear resistance boron cast iron [J]. Hot Work. Technol., 2013, 42(12): 11
3 王春荣. 硼系铁基耐磨铸造合金的组织与性能研究进展 [J]. 热加工工艺, 2013, 42(12): 11
4 Fu H G, Hu K H. Progress of research on high boron wear resistant cast alloys [J]. Mod. Cast Iron, 2005, (3): 32
4 符寒光, 胡开华. 高硼铸造耐磨合金研究的进展 [J]. 现代铸铁, 2005, (3): 32
5 Chrisodoulou P, Graham E, Griffiths J. Development of iron-boron alloys as high-performance, cost-effective tooling materials [R]. Brisbane: CSIRO Division of Manufacturing Technology, 1995
6 Lakeland K D, Graham E, Heron A. Mechanical properties and microstructures of a series of FCB alloys [R]. Brisbane: The University of Queensland, 1992
7 Jin B, Wang T Y, Guo C Q, et al. Research on microstructure characteristics of cladding layer of medium manganese Fe-Cr-B/42CrMo composite roll [J]. Foundry, 2018, 67: 231
7 金 波, 王天瑶, 郭长庆 等. 中锰Fe-Cr-B/42CrMo复合轧辊包覆层显微组织特征的研究 [J]. 铸造, 2018, 67: 231
8 Zhao S L, Zhang Y X, Wang S Z. Experimental study on high strength and toughness of Fe-Cr-B-C casting alloy [J]. Foundry, 2019, 68: 977
8 赵尚丽, 张月霞, 王守忠. 铸造高强韧性Fe-Cr-B-C合金的试验研究 [J]. 铸造, 2019, 68: 977
9 Mu N, Lu J, Wang G, et al. Rapid cooling microstructure and properties of hypereutectic Fe-Cr-B-C alloy [J]. Hot. Work. Technol., 2018, 47(18): 63
9 牟 楠, 卢 静, 王 冠 等. 过共晶Fe-Cr-B-C合金的快冷组织与性能 [J]. 热加工工艺, 2018, 47(18): 63
10 Aso S, Hachisuka M, Goto S. Phase transformation of iron matrix of Fe-15 mass% Cr-C-B alloys [J]. J. Japan Inst. Metals., 1997, 61(7): 567
10 麻生節夫, 蜂須賀盛希, 後藤正治. Fe-15 mass%Cr-C-B合金における鉄基地の相変態 [J]. 日本金属学会誌, 1997, 61(7): 567
11 Wang S L, Cui L, He D Y, et al. Microstructure and wear resistance of hypoeutectic Fe-Cr-B-C hardfacing alloys [J]. Hot Work. Technol., 2016, 45(1): 30
11 汪圣林, 崔 丽, 贺定勇 等. 亚共晶Fe-Cr-B-C系堆焊合金的组织及耐磨性 [J]. 热加工工艺, 2016, 45(1): 30
12 Cho Y R, Seong B S. Effect of boron addition on the microstructure and mechanical properties of low-carbon steels [J]. AISE Steel Technol., 2004, 1: 46
13 Gu J, Zhang H B, Fu H G, et al. Effect of boron content on the structure and property of Fe-B-C alloy [J]. Found. Technol., 2011, 32: 1376
13 顾 建, 张海滨, 符寒光 等. 硼含量对Fe-B-C合金组织和性能的影响 [J]. 铸造技术, 2011, 32: 1376
14 Liu Z L, Li Y X, Chen X, et al. Effect of boron and carbon content on microstructure and properties of high boron iron-based alloy [J]. Iron Steel, 2007, 42(6): 78
14 刘仲礼, 李言祥, 陈 祥 等. 硼、碳含量对高硼铁基合金组织和性能的影响 [J]. 钢铁, 2007, 42(6): 78
15 Guo C Q, Gao S Z. New Fe-base wear-resistant material FCB alloys [J]. Foundry, 2004, 53: 761
15 郭长庆, 高守忠. 新型铁基耐磨材料FCB合金 [J]. 铸造, 2004, 53: 761
16 Ren X Y, Fu H G, Xing J D, et al. Effect of boron concentration on microstructures and properties of Fe-B-C alloy steel [J]. J. Mater. Res., 2017, 32: 3078
17 Sang P, Fu H, Qu Y, et al. Effect of boron concentration on solidification structure and hardness of Fe-B-C wear-resistant alloy [J]. Materialwiss. Werkstofftech., 2015, 46: 962
18 Zhang H, Fu H, Jiang Y, et al. Effect of boron concentration on the solidification microstructure and properties of Fe-Cr-B alloy [J]. Materialwiss. Werkstofftech., 2011, 42: 765
19 Gong J X, Li D, Xiao Y F, et al. Microstructure and wear resistance of Fe-Cr-B-C hardfacing alloys [J]. Trans. Mater. Heat Treat., 2010, 31(3): 136
19 龚建勋, 李 丹, 肖逸锋 等. Fe-Cr-B-C堆焊合金的显微组织及耐磨性 [J]. 材料热处理学报, 2010, 31(3): 136
20 Zhao G D, Yu L X, Yang G L, et al. The role of boron in modifying the solidification and microstructure of nickel-base alloy U720Li [J]. J. Alloys Compd., 2016, 686: 194
21 Yan B C, Zhang J, Lou L H. Effect of boron additions on the microstructure and transverse properties of a directionally solidified superalloy [J]. Mater. Sci. Eng., 2008, A474: 39
22 Shi X L. A research on shape control of hard phases and properties improvement for a Fe-Cr-B-C system high boron iron based alloy [D]. Kunming: Kunming University of Science and Technology, 2016
22 师晓莉. Fe-Cr-B-C系高硼铁基合金硬质相形态控制及其对性能影响研究 [D]. 昆明: 昆明理工大学, 2016
23 Liu Z L, Li Y X, Chen X, et al. Effect of copper on properties of high boron iron-base alloy [J]. Found. Technol., 2007, 28: 175
23 刘仲礼, 李言祥, 陈 祥 等. 铜对高硼铁基合金性能的影响 [J]. 铸造技术, 2007, 28: 175
24 Chkhartishvili L, Mikeladze A, Tsagareishvili O, et al. Boron-containing nanocrystalline ceramic and metal-ceramic materials [A]. Handbook of Nanomaterials for Industrial Applications [M]. Amsterdam: Elsevier, 2018: 13
25 Zhang X J. Microstructures and properties study on Nb-based composites of Nb-Ti-C-B system and their oxidation resistance coatings [D]. Harbin: Harbin Institute of Technology, 2014
25 张新疆. Nb-Ti-C-B系铌基复合材料及其抗氧化涂层的微观组织与性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014
26 Zhao G D, Zang X M, Sun W R. Role of carbon in modifying solidification and microstructure of a Ni-based superalloy with high Al and Ti contents [J]. J. Iron Steel Res. Int., 2021, 28: 98
27 Jin X, Chen B, Feng K. Effect of chromium on microstructure and wear resistance of Fe-Cr-C hardfacing alloys [J]. Mater. Sci. Forum, 2020, 1001: 41
28 Ma S Q, Pan W J, Xing J D, et al. Microstructure and hardening behavior of Al-modified Fe-1.5 wt%B-0.4 wt%C high-speed steel during heat treatment [J]. Mater. Charact., 2017, 132: 1
29 Tian Y, Ju J, Fu H G, et al. Effect of chromium content on microstructure, hardness, and wear resistance of as-cast Fe-Cr-B alloy [J]. J. Mater. Eng. Perform., 2019, 28: 6428
doi: 10.1007/s11665-019-04369-5
30 Zhang Y T, Zou H. Solidification segregation behavior of Nb-containing 310S steel [J]. J. Iron Steel Res. Int., 2023, 30: 82
31 Shankar V, Gill T P S, Mannan S L, et al. Solidification cracking in austenitic stainless steel welds [J]. Sadhana, 2003, 28: 359
32 Zhou J Y, Zhao W X, Zheng Z, et al. Effect of boron content on solidification behavior of IC10 superalloy [J]. J. Mater. Eng., 2014, (8): 90
32 周静怡, 赵文侠, 郑 真 等. 硼含量对IC10高温合金凝固行为的影响 [J]. 材料工程, 2014, (8): 90
doi: 10.11868/j.issn.1001-4381.2014.08.017
33 Hu Q, Liu L, Zhao X B, et al. Effect of carbon and boron additions on segregation behavior of directionally solidified nickel-base superalloys with rhenium [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 3257
34 Cutler E R, Wasson A J, Fuchs G E. Effect of minor alloying additions on the carbide morphology in a single crystal Ni-base superalloy [J]. Scr. Mater., 2008, 58: 146
35 Li Y Z, Liu S F, Xue T, et al. Comparison of wear behavior of GCr15 bearing steel prepared by selective laser melting (SLM) and electron beam melting (EBM) [J]. Mater. Lett., 2021, 305: 130726
36 Massalski T B, Okamoto H, Subramanian P R, et al. Binary Alloy Phase Diagrams [M]. 2nd Ed., Materials Park, OH: ASM International, 1990: 12
37 Herlach D M. Non-equilibrium solidification of undercooled metallic metls [J]. Mater. Sci. Eng., 1994, R12: 177
38 Christian J W. The Theory of Transformations in Metals and Alloys [M]. 3rd Ed., Boston: Pergamon, 2002: 16
39 Keown S R, Pickering F B. Some aspects of the occurrence of boron in alloy steels [J]. Met. Sci., 1977, 11: 225
40 Holt R T, Wallace W. Impurities and trace elements in nickel-base superalloys [J]. Int. Met. Rev., 1976, 21: 1
41 Wang Z C, Han F S. Effect of B and RE-Si modification on the structure and properties of high Cr-Mn white cast iron [J]. Foundry, 1985, (3): 1
41 王兆昌, 韩福生. B与RE-Si变质处理对高Cr-Mn白口铸铁的组织及性能的影响 [J]. 铸造, 1985, (3): 1
42 Zhu W D, Liu R P, Pan P. Effect of boron on formability and wear resistance of carbon arc hardfacing layer with Fe-based alloy blocks [J]. Mater. Mech. Eng., 2010, 34(3): 57
42 朱文东, 刘仁培, 潘 攀. 硼对铁基合金粉块碳弧堆焊层成形性和耐磨性的影响 [J]. 机械工程材料, 2010, 34(3): 57
43 Wu B P, Li L H, Wu J T, et al. Effect of boron addition on the microstructure and stress-rupture properties of directionally solidified superalloys [J]. Int. J. Miner. Metall. Mater., 2014, 21: 1120
44 Da Rosa G, Maugis P, Portavoce A, et al. Grain-boundary segregation of boron in high-strength steel studied by nano-SIMS and atom probe tomography [J]. Acta Mater., 2020, 182: 226
doi: 10.1016/j.actamat.2019.10.029
45 Huang X, Chaturvedi M C, Richards N L, et al. The effect of grain boundary segregation of boron in cast alloy 718 on HAZ microfissuring—A SIMS analysis [J]. Acta Mater., 1997, 45: 3095
46 Takaki S, Akama D, Nakada N, et al. Effect of grain boundary segregation of interstitial elements on Hall-Petch coefficient in steels [J]. Mater. Trans., 2014, 55: 28
47 Asahi H. Effects of Mo addition and austenitizing temperature on hardenability of low alloy B-added steels [J]. ISIJ Int., 2002, 42: 1150
48 Titova T I, Shulgan N A, Malykhina I Y. Effect of boron microalloying on the structure and hardenability of building steel [J]. Met. Sci. Heat Treat., 2007, 49: 39
49 Wang Z H, Wan G L, He D Y, et al. Microstructures and wear resistance of Fe-Cr-B-C hardfacing alloys [J]. J. Mater. Eng., 2014, (9): 57
49 王智慧, 万国力, 贺定勇 等. Fe-Cr-B-C堆焊合金的组织与耐磨性 [J]. 材料工程, 2014, (9): 57
doi: 10.11868/j.issn.1001-4381.2014.09.010
[1] 杨康, 辛越, 姜自滔, 刘侠, 薛召露, 张世宏. 纳米ZrB2 增强CoNiCrAlY复合粉末的机械合金化制备及其涂层的组织与性能[J]. 金属学报, 2025, 61(4): 619-631.
[2] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[3] 曾小勤, 于铭迪, 王静雅. 镁合金的多系滑移与塑性调控[J]. 金属学报, 2025, 61(3): 361-371.
[4] 吴炀, 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb奥氏体不锈钢中NbC的液态Pb-Bi共晶腐蚀行为及其对氧化层形成的影响[J]. 金属学报, 2025, 61(2): 287-296.
[5] 杨林, 马长松, 刘连杰, 李金富. 过冷(Fe1 -x Co x)79.3B20.7 合金的凝固[J]. 金属学报, 2025, 61(1): 99-108.
[6] 王叶青, 付珂, 赵永柱, 苏礼季, 陈正. Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61(1): 143-153.
[7] 王彬杉, 徐光, 任睿, 张强, 单召辉, 樊建锋. 脉冲电流对AZ91镁合金温挤压过程中动态析出和微观组织的影响[J]. 金属学报, 2025, 61(1): 129-142.
[8] 黄曾鑫, 蒋逸航, 赖春明, 吴庆捷, 刘大海, 杨亮. 基于原子模拟的金属Fe晶界能与晶界取向相关性分析[J]. 金属学报, 2024, 60(9): 1289-1298.
[9] 张乾坤, 胡小锋, 姜海昌, 戎利建. Si对一种9Cr铁素体/马氏体钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(9): 1200-1212.
[10] 王瀚铭, 杜银, 裴旭辉, 王海丰. 共晶组织强化NbMoZrVSi x 难熔高熵合金的摩擦磨损性能及磨损机理[J]. 金属学报, 2024, 60(7): 937-946.
[11] 马芳, 陆星宇, 周丽娜, 杜宁宇, 类承帅, 刘宏伟, 李殿中. M50钢中 M2C一次碳化物高温转变机制[J]. 金属学报, 2024, 60(7): 901-914.
[12] 高瞻, 张泽荣, 程军胜, 王秋良. Nb3Sn超导线材中Ta层的去除及腐蚀机理[J]. 金属学报, 2024, 60(7): 968-976.
[13] 周彦余, 李江旭, 刘晨, 赖俊文, 高强, 马会, 孙岩, 陈星秋. 金属间化合物Pt7Sb投影Berry相位与析氢催化关联的第一性原理计算[J]. 金属学报, 2024, 60(6): 837-847.
[14] 谢云, Zhang Jianqiang, 彭晓. Ni-Cr合金在富CO2 气氛中的高温腐蚀研究进展[J]. 金属学报, 2024, 60(6): 731-742.
[15] 潘霞, 张洋鹏, 董志宏, 陈胜虎, 姜海昌, 戎利建. 预氧化处理对12Cr铁素体/马氏体钢耐Pb-Bi腐蚀性能的影响[J]. 金属学报, 2024, 60(5): 639-649.