Please wait a minute...
金属学报  2024, Vol. 60 Issue (5): 639-649    DOI: 10.11900/0412.1961.2022.00267
  研究论文 本期目录 | 过刊浏览 |
预氧化处理对12Cr铁素体/马氏体钢耐Pb-Bi腐蚀性能的影响
潘霞1,2, 张洋鹏1,3(), 董志宏1, 陈胜虎1,3, 姜海昌1,3, 戎利建1,3
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
3 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
Effect of Pre-Oxidation Treatment on the Corrosion Resistance in Stagnant Liquid Pb-Bi Eutectic of 12Cr Ferritic/Martensitic Steel
PAN Xia1,2, ZHANG Yangpeng1,3(), DONG Zhihong1, CHEN Shenghu1,3, JIANG Haichang1,3, RONG Lijian1,3
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

潘霞, 张洋鹏, 董志宏, 陈胜虎, 姜海昌, 戎利建. 预氧化处理对12Cr铁素体/马氏体钢耐Pb-Bi腐蚀性能的影响[J]. 金属学报, 2024, 60(5): 639-649.
Xia PAN, Yangpeng ZHANG, Zhihong DONG, Shenghu CHEN, Haichang JIANG, Lijian RONG. Effect of Pre-Oxidation Treatment on the Corrosion Resistance in Stagnant Liquid Pb-Bi Eutectic of 12Cr Ferritic/Martensitic Steel[J]. Acta Metall Sin, 2024, 60(5): 639-649.

全文: PDF(3762 KB)   HTML
摘要: 

针对液态Pb-Bi共晶(LBE)冷却快堆开发了一种新型高硅12Cr铁素体/马氏体钢,为进一步增强其耐Pb-Bi腐蚀性能,提升燃料组件的安全性,采用预氧化法对其进行了表面防护处理,表征了预氧化膜的结构,分析了预氧化处理对12Cr铁素体/马氏体钢耐550℃饱和氧LBE的腐蚀性能的影响。结果表明,该钢在720℃、1%O2 + 99%N2气氛中预氧化1 h时形成的氧化膜主要是(Fe, Cr)2O3和MnCr2O4氧化物,此氧化膜可有效阻止钢中Fe元素的向外扩散和LBE中O元素的向内扩散,进而提升了材料的耐LBE腐蚀性能。但由于Mn较高的扩散速率和在LBE中较高的溶解度,预氧化膜中的Mn元素会逐渐扩散和溶解至LBE,导致部分氧化膜失效并形成局部腐蚀区,当LBE腐蚀1000 h后,合金表面的局部腐蚀区可达60%。本工作揭示了新型高硅12Cr铁素体/马氏体钢中预氧化膜的微观结构、保护效果和失效机制,为进一步提升其预氧化膜的有效性和稳定性指明了方向。

关键词 Pb-Bi共晶冷却快堆铁素体/马氏体钢表面处理Pb-Bi腐蚀预氧化膜    
Abstract

Lead-cooled fast reactors using liquid lead or lead-bismuth eutectic (LBE) alloy coolants have attracted international attention due to their unique advantages in safety, economy, and sustainable development. The availability of suitable core materials is one of the key challenges restricting the development and application of the lead-cooled fast reactor technology. Ferritic/martensitic steel is one of the important candidates for nuclear reactor fuel cladding, but the dissolution of Cr and Ni occurs in it upon contact with high-temperature LBE, resulting in cladding failure. Adding Si can improve corrosion resistance, and based on this property, previous work developed a high-Si ferritic/martensitic steel for LBE alloy-cooled fast reactor. Recently, pre-oxidation treatment was proposed to further improve the corrosion performance of steel in contact with LBE. However, the structure of the oxide film formed after the pre-oxidation of 12Cr ferritic/martensitic steel, the effect on corrosion resistance, and the failure mechanism are not clear. In this study, a pre-oxidized film was formed on the steel surface and its structure was characterized. Steel corrosion experiments using oxygen-saturated LBE at 550oC were also performed to analyze the influence of pre-oxidation treatment on the LBE alloy coolant corrosion resistance of steel. The results demonstrated that the oxide films formed when steel is pre-oxidized at 720oC in 1%O2 + 99%N2 atmosphere for 1 h are mainly (Fe, Cr)2O3 and MnCr2O4 oxides. The oxide films can effectively prevent the outward diffusion of Fe in steel and the inward diffusion of O in LBE, thereby improving the corrosion resistance of steel to stagnant oxygen-saturated LBE alloy coolant at 550oC. However, due to the high diffusion rate of Mn and its high solubility in LBE alloys, the Mn in the pre-oxidized film will gradually diffuse and dissolve into the LBE alloy, rendering subsequently a part of the oxide film ineffective and forming a localized corrosion zone. After 1000 h of Pb-Bi corrosion, the local corrosion area on the alloy surface can reach 60%. This study revealed the microstructure, protective effect, and failure mechanism of the pre-oxidized film on the surface of high-Si ferritic/martensitic steel, and suggested research directions for further improving the effectiveness and stability of the pre-oxidized film.

Key wordslead-bismuth eutectic cooled fast reactor    ferritic/martensitic steel    surface treatment    Pb-Bi corrosion    pre-oxidized film
收稿日期: 2022-05-31     
ZTFLH:  TG142.7  
基金资助:国家自然科学基金项目(51871218);辽宁省博士科研启动基金项目(2020-BS-006)
通讯作者: 张洋鹏,ypzhang@imr.ac.cn,主要从事核用结构材料研究
Corresponding author: ZHANG Yangpeng, associate professor, Tel: (024)23971985, E-mail: ypzhang@imr.ac.cn
作者简介: 潘 霞,女,1998年生,硕士生
图1  高真空电阻炉示意图
图2  静态Pb-Bi共晶(LBE)腐蚀装置示意图
图3  预氧化的12Cr铁素体/马氏体钢样品表面氧化膜的SEM像
图4  预氧化的12Cr铁素体/马氏体钢样品的XRD谱
图5  预氧化的12Cr铁素体/马氏体钢样品截面形貌及元素分布
图6  未预氧化和预氧化的12Cr铁素体/马氏体钢样品在550℃经饱和氧LBE腐蚀500和1000 h后腐蚀层截面形貌的SEM-BSE像
图7  未预氧化的12Cr铁素体/马氏体钢样品经550℃饱和氧LBE腐蚀500 h后腐蚀层形貌及元素分布
图8  预氧化的12Cr铁素体/马氏体钢样品经550℃饱和氧LBE腐蚀1000 h后腐蚀层的EPMA面扫描结果
图9  未预氧化和预氧化处理的12Cr铁素体/马氏体钢样品经550℃饱和氧LBE腐蚀500 h后的表面SEM-BSE像
图10  预氧化的12Cr铁素体/马氏体钢样品腐蚀机制示意图
1 Yvon P. Structural Materials for Generation IV Nuclear Reactors[M]. Amsterdam: Woodhead Publishing, 2017: 651
2 OECD/NEA Nuclear Science Committee, translated by Rong L J, Zhang Y T, Lu S P, et al. Handbook on Lead-Bismuth Eutectic Alloy and Lead: Properties, Materials Compatibility, Thermalhydraulics and Technologies[M]. Beijing: Science Press, 2007: 3
2 OECD/NEA Nuclear Science Committee著, 戎利建, 张玉妥, 陆善平等译. 铅与铅铋共晶合金手册——性能、材料相容性、热工水力学和技术[M]. 北京: 科学出版社, 2007: 3
3 Alemberti A, Smirnov V, Smith C F, et al. Overview of lead-cooled fast reactor activities[J]. Prog. Nucl. Energy, 2014, 77: 300
doi: 10.1016/j.pnucene.2013.11.011
4 Alemberti A. The lead fast reactor: An opportunity for the future?[J]. Engineering, 2016, 2: 59
doi: 10.1016/J.ENG.2016.01.022
5 Tian S J, Zhang J W. Corrosion behavior of 316L and T91 steels in stagnant lead-bismuth eutectic at 550oC[J]. J. Univ. Sci. Technol. China, 2015, 45: 751
5 田书建, 张建武. 316L和T91不锈钢在550℃静态铅铋合金中的腐蚀行为[J]. 中国科学技术大学学报, 2015, 45: 751
6 Eliseeva O I, Tsisar V P. Effect of temperature on the interaction of ÉP823 steel with lead melts saturated with oxygen[J]. Mater. Sci., 2007, 43: 230
doi: 10.1007/s11003-007-0026-z
7 Yang K, Yan W, Wang Z G, et al. Development of a novel structural material (SIMP steel) for nuclear equipment with balanced resistances to high temperature, radiation and liquid metal corrosion[J]. Acta Metall. Sin., 2016, 52: 1207
7 杨 柯, 严 伟, 王志光 等. 核用新型耐高温、抗辐照、耐液态金属腐蚀结构材料——SIMP钢的研究进展[J]. 金属学报, 2016, 52: 1207
8 Lu Y H, Song Y Y, Chen S H, et al. Effects of Al and Si on mechanical properties and corrosion resistance in liquid Pb-Bi eutectic of 9Cr2WVTa steel[J]. Acta Metall. Sin., 2016, 52: 298
doi: 10.11900/0412.1961.2015.00348
8 鲁艳红, 宋元元, 陈胜虎 等. Al和Si对9Cr2WVTa钢力学性能及耐Pb-Bi腐蚀性能的影响[J]. 金属学报, 2016, 52: 298
doi: 10.11900/0412.1961.2015.00348
9 Yang H Y, Zhang Y P, Xu H T, et al. A kind of high-silicon and high-chromium ferritic/martensitic heat-resistant steel resistant to liquid lead or lead-bismuth corrosion and preparation method thereof[P]. Chin Pat, 202110724403.0, 2021
9 杨红义, 张洋鹏, 徐海涛 等. 一种耐液态铅或铅铋腐蚀高硅高铬铁素体/马氏体耐热钢及其制备方法[P]. 中国专利, 202110724403.0, 2021
10 Chen S H, Rong L J. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel[J]. J. Nucl. Mater., 2015, 459: 13
doi: 10.1016/j.jnucmat.2015.01.004
11 Wang J, Lu S P, Rong L J, et al. Effect of silicon contents on the microstructures and mechanical properties of heat affected zones for 9Cr2WVTa steels[J]. J. Nucl. Mater., 2016, 470: 1
doi: 10.1016/j.jnucmat.2015.11.055
12 Yaskiv O I, Kukhar I S, Fedirko V M. Effect of preliminary diffusion oxidation on mechanical properties of ferritic steel in oxygen-containing lead[J]. Fusion Eng. Des., 2015, 101: 134
doi: 10.1016/j.fusengdes.2015.10.006
13 Lillard R S, Valot C, Hill M A, et al. Influence of preoxidation on the corrosion of steels in liquid lead-bismuth eutectic[J]. Corrosion, 2004, 60: 1031
doi: 10.5006/1.3299217
14 Xu S, Long F, Persaud S Y, et al. Oxidation behavior of 9Cr-4.5Al ODS steel in 600oC supercritical water and the effect of pre-oxidation[J]. Corros. Sci., 2020, 165: 108380
doi: 10.1016/j.corsci.2019.108380
15 Yas'kiv O I, Eliseeva O I, Kharkhalis A Y, et al. Influence of preliminary oxidation on the corrosion resistance of ferritic-martensitic steels in lead melts[J]. Mater. Sci., 2016, 51: 854
16 Abe F, Kutsumi H, Haruyama H, et al. Improvement of oxidation resistance of 9 mass% chromium steel for advanced-ultra supercritical power plant boilers by pre-oxidation treatment[J]. Corros. Sci., 2017, 114: 1
doi: 10.1016/j.corsci.2016.10.008
17 Lehmusto J, Lindberg D, Yrjas P, et al. The effect of temperature on the formation of oxide scales regarding commercial superheater steels[J]. Oxid. Met., 2018, 89: 251
doi: 10.1007/s11085-017-9785-6
18 Deshmukh P R, Sohn Y, Shin W G. Electrochemical performance of facile developed aqueous asymmetric (Fe,Cr)2O3//MnO2 supercapacitor[J]. Electrochim. Acta, 2018, 285: 381
doi: 10.1016/j.electacta.2018.07.197
19 Cheng X W, Jiang Z Y, Wei D B, et al. Characteristics of oxide scale formed on ferritic stainless steels in simulated reheating atmosphere[J]. Surf. Coat. Technol., 2014, 258: 257
doi: 10.1016/j.surfcoat.2014.09.019
20 Ellingham H J T. Reducibility of oxides and sulphides in metallurgical processes[J]. J. Soc. Chem. Ind., 1944, 63: 125
doi: 10.1002/jctb.v63:5
21 Jin X J, Chen S H, Rong L J. Effects of Mn on the mechanical properties and high temperature oxidation of 9Cr2WVTa steel[J]. J. Nucl. Mater., 2017, 494: 103
doi: 10.1016/j.jnucmat.2017.07.024
22 Saeki I, Konno H, Furuichi R, et al. The effect of the oxidation atmosphere on the initial oxidation of type 430 stainless steel at 1273 K[J]. Corros. Sci., 1998, 40: 191
doi: 10.1016/S0010-938X(97)00113-3
23 Bowen A W, Leak G M. Diffusion in bcc iron base alloys[J]. Metall. Trans., 1970, 1: 2767
24 Kirkaldy J S, Smith P N, Sharma R C. Diffusion of manganese in paramagnetic BCC iron[J]. Metall. Mater. Trans., 1973, 4: 624
25 Lobnig R E, Schmidt H P, Hennesen K, et al. Diffusion of cations in chromia layers grown on iron-base alloys[J]. Oxid. Met., 1992, 37: 81
doi: 10.1007/BF00665632
26 Lambrinou K, Koch V, Coen G, et al. Corrosion scales on various steels after exposure to liquid lead-bismuth eutectic[J]. J. Nucl. Mater., 2014, 450: 244
doi: 10.1016/j.jnucmat.2013.09.034
27 Shi Q Q, Liu J, Luan H, et al. Oxidation behavior of ferritic/martensitic steels in stagnant liquid LBE saturated by oxygen at 600oC[J]. J. Nucl. Mater., 2015, 457: 135
doi: 10.1016/j.jnucmat.2014.11.018
28 Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part I)[J]. Corros. Sci., 2008, 50: 2523
doi: 10.1016/j.corsci.2008.06.050
29 Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of an Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy at 470oC (Part II)[J]. Corros. Sci., 2008, 50: 2537
doi: 10.1016/j.corsci.2008.06.051
30 Martinelli L, Balbaud-Célérier F, Picard G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part III)[J]. Corros. Sci., 2008, 50: 2549
doi: 10.1016/j.corsci.2008.06.049
31 Xiao J, Gong X, Xiang C Y, et al. A refined oxidation mechanism proposed for ferritic-martensitic steels exposed to oxygen-saturated liquid lead-bismuth eutectic at 400oC for 500 h[J]. J. Nucl. Mater., 2021, 549: 152852
doi: 10.1016/j.jnucmat.2021.152852
32 Huang J H. Diffusion in Metals and Alloys[M]. Beijing: Metallurgical Industry Press, 1996: 27
32 黄继华. 金属及合金中的扩散[M]. 北京: 冶金工业出版社, 1996: 27
33 Parakh A, Vaidya M, Kumar N, et al. Effect of crystal structure and grain size on corrosion properties of AlCoCrFeNi high entropy alloy[J]. J. Alloys Compd., 2021, 863: 158056
doi: 10.1016/j.jallcom.2020.158056
34 Yu Z, Lu J T, Chen M H, et al. Effect of pre-oxidation on hot corrosion resistance of HR3C stainless steel in sulfate salt with or without Fe2O3 [J]. Corros. Sci., 2021, 192: 109789
doi: 10.1016/j.corsci.2021.109789
35 Föhl H. Ionic crystals[EB/OL]. http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_2/basics/b2_1_6.html
36 International Atomic Energy Agency. Comparative assessment of thermophysical and thermohydraulic characteristics of lead, lead-bismuth and sodium coolants for fast reactors[R]. Vienna: IAEA, 2002: 24
[1] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[2] 王浩伟, 赵德超, 汪明亮. 原位自生TiB2/Al基复合材料的腐蚀防护技术研究现状[J]. 金属学报, 2022, 58(4): 428-443.
[3] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[4] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[5] 鲁艳红, 宋元元, 陈胜虎, 戎利建. Al和Si对9Cr2WVTa钢力学性能及耐Pb-Bi腐蚀性能的影响*[J]. 金属学报, 2016, 52(3): 298-306.
[6] 陈书,赵九洲. 偏晶合金在激光表面处理条件下的凝固行为研究[J]. 金属学报, 2013, 49(5): 537-543.
[7] 佟振峰 戴勇 杨文 杨启法. 辐照与He协同作用对低活度铁素体/马氏体钢F82H微观结构的影响[J]. 金属学报, 2011, 47(7): 965-970.
[8] 莫春立; 张罡; 王琛元; 武晓娟 . 强流脉冲离子束辐照45钢表面热效应的模拟[J]. 金属学报, 2008, 44(7): 831-836 .
[9] 花均社; 孙玉珍; 王文皓; 孙文生; 才庆魁; 胡壮麒 . 次亚磷酸钠对贮氢合金活化性能的影响[J]. 金属学报, 2001, 37(5): 522-526 .
[10] 林建国; 吴国清; 魏浩岩; 肖葵; 黄正 . γ-TiAl基合金超塑扩散焊接[J]. 金属学报, 2001, 37(2): 221-224 .
[11] 潘文霞; 吴承康 . 氮化铝基板与Cu和Al的接合及其表面改质效果[J]. 金属学报, 2000, 36(1): 67-71 .
[12] 唐兆麟;王福会;吴维. 磷酸处理对TiAl金属间化合物抗氧化性能的影响[J]. 金属学报, 1998, 34(10): 1084-1088.
[13] 朱祖铭;石南林;王中光;梁勇. SiC纤维表面改性对SiC_w/Al复合材料界面强度的影响[J]. 金属学报, 1996, 32(9): 1003-1008.