Please wait a minute...
金属学报  2024, Vol. 60 Issue (12): 1656-1666    DOI: 10.11900/0412.1961.2022.00541
  研究论文 本期目录 | 过刊浏览 |
3%Cu低碳马氏体不锈钢0Cr13Ni4Mo的显微组织及耐腐蚀性能
杨彬彬1,2, 宋元元1(), 郝龙1, 姜海昌1, 戎利建1
1 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
2 太原科技大学 材料科学与工程学院 太原 030024
Microstructure and Corrosion Resistance of Low-Carbon Martensitic Stainless Steel 0Cr13Ni4Mo with 3%Cu Addition
YANG Binbin1,2, SONG Yuanyuan1(), HAO Long1, JIANG Haichang1, RONG Lijian1
1 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
引用本文:

杨彬彬, 宋元元, 郝龙, 姜海昌, 戎利建. 含3%Cu低碳马氏体不锈钢0Cr13Ni4Mo的显微组织及耐腐蚀性能[J]. 金属学报, 2024, 60(12): 1656-1666.
Binbin YANG, Yuanyuan SONG, Long HAO, Haichang JIANG, Lijian RONG. Microstructure and Corrosion Resistance of Low-Carbon Martensitic Stainless Steel 0Cr13Ni4Mo with 3%Cu Addition[J]. Acta Metall Sin, 2024, 60(12): 1656-1666.

全文: PDF(3971 KB)   HTML
摘要: 

Cu元素合金化可以提高低碳马氏体不锈钢的力学性能,但其对该材料耐腐蚀性能的影响尚没有一致的认识。本工作采用SEM、XRD、TEM、APT以及电化学测试等手段研究了添加3%Cu (3Cu)对低碳马氏体不锈钢0Cr13Ni4Mo显微组织及耐腐蚀性能的影响,并与不含Cu不锈钢进行了对比分析。结果表明,经过1050℃固溶处理后,Cu均匀地分布在板条马氏体基体上;400℃回火后,Cu形成了极小的纳米团簇,其中偏聚了大量的Fe原子等;500℃回火后,Cu纳米团簇长大为尺寸为5~10 nm的富Cu析出相,核心处主要偏聚Cu原子,且与基体处于共格关系,而碳化物则由富Fe的纳米团簇生长成富Cr的析出相。3Cu低碳马氏体不锈钢经过500℃回火后表现出优异的耐腐蚀性能,这是因为富Cu析出相的长大过程中伴随着向周边基体排出Cr原子,减少了由富Cr碳化物造成的贫Cr区,从而降低了3Cu低碳马氏体不锈钢的腐蚀敏感性。

关键词 0Cr13Ni4Mo富Cu析出相耐腐蚀性能原子探针层析技术    
Abstract

Low-carbon martensitic stainless steel 0Cr13Ni4Mo is widely used in hydraulic turbine runners, oil and gas storage, high-pressure pipes in power generation, and other fields owing to its high strength, good corrosion resistance, and good welding properties. However, to enhance its performance under different environments, there is a need to improve its strength and corrosion resistance. Previous studies have found that adding Cu to 0Cr13Ni4Mo steel enhances its strength through the formation of Cu-rich precipitation. However, the impact of Cu on the corrosion behavior of the 0Cr13Ni4Mo steel is not yet well understood. This study aims to investigate the effect of adding 3%Cu (mass fraction) on the microstructure and corrosion resistance of low-carbon martensitic stainless steel 0Cr13Ni4Mo using various techniques such as SEM, XRD, TEM, APT, and electrochemical testing. The results show that after solution treatment at 1050oC, Cu is uniformly distributed on the lath martensite matrix. After tempering at 400oC, Cu forms minute nanoclusters with a large number of Fe atoms segregated. On the other hand, tempering at 500oC leads to the growth of Cu-rich precipitates with a size of 5-10 nm, where Cu atoms are mainly segregated at the core of the precipitates and are in a coherent relationship with the martensitic matrix. Carbides grow from Fe-rich nanoclusters to Cr-rich precipitates during the tempering process. The addition of 3%Cu to low-carbon martensitic stainless steel shows excellent corrosion resistance after tempering at 500oC. This may be due to the emission of Cr atoms to the surrounding matrix during the growth of Cu-rich precipitates, which reduces the Cr-depleted zone caused by Cr-rich carbides in the matrix, thus reducing the corrosion sensitivity of 0Cr13Ni4Mo martensitic stainless steel with 3%Cu addition. These findings provide a better understanding of the role of Cu-rich precipitates on the corrosion performance of low-carbon martensitic stainless steels and provide guidance for the design of corrosion resistant steels.

Key words0Cr13Ni4Mo    Cu-rich precipitation    corrosion resistance    atomic probe tomography
收稿日期: 2022-10-24     
ZTFLH:  TG142  
基金资助:吉林省与中国科学院科技合作高新技术产业化专项项目(2024SYHZ0004);辽宁省自然科学基金项目(2020-MS-08)
通讯作者: 宋元元,songyuanyuan@imr.ac.cn,主要从事金属材料微观组织结构研究
Corresponding author: SONG Yuanyuan, assistant professor, Tel: (024)23971976, E-mail: songyuanyuan@imr.ac.cn
作者简介: 杨彬彬,男,1998年生,博士生
SteelCCrNiMoSiMnCuPSFe

0Cu

3Cu

0.051

0.056

12.87

13.03

4.06

4.12

0.47

0.48

0.43

0.51

0.68

0.66

0.01

2.82

0.005

0.005

0.0041

0.0050

Bal.

Bal.

表1  2种低碳马氏体不锈钢的化学成分 (mass fraction / %)
图1  不同热处理工艺下0Cu钢和3Cu钢基体组织的SEM像
图2  0Cu钢和3Cu钢经不同热处理后的XRD谱
图3  3Cu不锈钢经过500℃回火2 h后的TEM分析
图4  不同热处理工艺下0Cu钢和3Cu钢在3.5%NaCl溶液中的动电位极化曲线
SteelHeat treatmentEcorr / VSCEicorr / (nA·cm-2)Eb / VSCE
0CuSolution treated-0.17362.1-0.019
0Cu400oC tempered-0.16166.60.069
0Cu500oC tempered-0.18165.70.097
3CuSolution treated-0.16264.00.080
3Cu400oC tempered-0.14457.50.051
3Cu500oC tempered-0.14742.30.109
表2  不同热处理工艺下0Cu钢和3Cu钢在3.5%NaCl溶液中的动电位极化曲线特征值
图5  不同热处理工艺下0Cu钢和3Cu钢在3.5%NaCl溶液中的EIS
图6  不同热处理工艺下0Cu钢和3Cu钢在3.5%NaCl溶液中的等效电路图
SteelHeat treatment

Rs

Ω·cm2

Rf

kΩ·cm2

Qf

10-5 Ω-1·cm-2·s-1

nf

Rct

Ω·cm2

Cdl

10-5 Ω-1·cm-2·s-1

0CuSolution treated4.00838.895.9120.8852320.667.02
0Cu400oC tempered4.12424.335.8380.8811194.671.53
0Cu500oC tempered4.76613.746.4020.8659211.357.93
3CuSolution treated3.88011.565.2930.8712322.099.60
3Cu400oC tempered4.12926.165.8660.8792331.672.57
3Cu500oC tempered3.95448.355.8340.8643447.274.91
表3  不同热处理工艺下0Cu钢和3Cu钢在3.5%NaCl溶液中EIS的等效电路拟合参数
图7  3Cu钢经过1050℃固溶2 h后Fe、Cr、Ni、Mn、Mo、C和Cu原子的三维空间分布图及Cu原子最近邻分布曲线
图8  3Cu钢经过400℃保温2 h回火后Fe、Cr、Ni、Mn、Mo、C和Cu原子的三维空间分布图,1.3%C和4%Cu原子的等浓度面分布图以及相应团簇的成分分布
图9  3Cu钢经过500℃保温2 h回火后Fe、Cr、Ni、Mn、Mo、C和Cu原子的三维空间分布图,3%C原子和15%Cu原子的等浓度面分布图以及相应团簇的成分分布
图10  经500℃回火处理后0Cu钢与3Cu钢的腐蚀机制示意图
1 Ye W P, Liu Z L. Effect of structure of martensitic stainless cast steel ZG06Cr13Ni4Mo on properties [J]. Spec. Steel, 1998, 19(5): 13
1 叶卫平, 刘祖林. ZG06Cr13Ni4Mo马氏体不锈铸钢组织对性能的影响 [J]. 特殊钢, 1998, 19(5): 13
2 Zhou S F, Wang Y C, Li X Y, et al. Microstructure and mechanical properties in simulated HAZ of 0Cr13Ni5Mo martensitic stainless steel [J]. Trans. China Weld. Inst., 2004, 25(4): 63
2 周世锋, 王昱成, 李向阳 等. ZG0Cr13Ni5Mo马氏体不锈钢模拟焊接HAZ组织与性能 [J]. 焊接学报, 2004, 25(4): 63
3 Deleu E, Dhooge A. Weldability assessment of thick super-martensitic 13Cr stainless steel welds made with matching consumables [J]. Weld World, 2005, 49(5): 34
4 Bhagat A N, Pabi S K, Ranganathan S, et al. Aging behaviour in copper bearing high strength low alloy steels [J]. ISIJ Int., 2004, 44: 115
5 Fine M E, Isheim D. Origin of copper precipitation strengthening in steel revisited [J]. Scr. Mater., 2005, 53: 115
6 Isheim D, Gagliano M S, Fine M E, et al. Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale [J]. Acta Mater., 2006, 54: 841
7 Heo Y U, Kim Y K, Kim J S, et al. Phase transformation of Cu precipitates from bcc to fcc in Fe-3Si-2Cu alloy [J]. Acta Mater., 2013, 61: 519
8 Wen Y R, Hirata A, Zhang Z W, et al. Microstructure characterization of Cu-rich nanoprecipitates in a Fe-2.5Cu-1.5Mn-4.0Ni-1.0Al multicomponent ferritic alloy [J]. Acta Mater., 2013, 61: 2133
9 Wang Z M, Li H, Shen Q, et al. Nano-precipitates evolution and their effects on mechanical properties of 17-4 precipitation-hardening stainless steel [J]. Acta Mater., 2018, 156: 158
10 Isheim D, Kolli R P, Fine M E, et al. An atom-probe tomographic study of the temporal evolution of the nanostructure of Fe-Cu based high-strength low-carbon steels [J]. Scr. Mater., 2006, 55: 35
11 Zhang Z W, Liu C T, Wang X L, et al. Effects of proton irradiation on nanocluster precipitation in ferritic steel containing fcc alloying additions [J]. Acta Mater., 2012, 60: 3034
12 Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels [J]. Acta Mater., 2013, 61: 5996
13 Zhang Z W, Liu C T, Miller M K, et al. A nanoscale co-precipitation approach for property enhancement of Fe-base alloys [J]. Sci. Rep., 2013, 3: 1327
doi: 10.1038/srep01327 pmid: 23429646
14 Jiao Z B, Luan J H, Miller M K, et al. Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era [J]. Mater. Today, 2017, 20: 142
15 Zhang Z Y, Chai F, Luo X B, et al. The strengthening mechanism of Cu bearing high strength steel as-quenched and tempered and Cu precipitation behavior in steel [J]. Acta Metall. Sin., 2019, 55: 783
doi: 10.11900/0412.1961.2018.00485
15 张正延, 柴 锋, 罗小兵 等. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为 [J]. 金属学报, 2019, 55: 783
doi: 10.11900/0412.1961.2018.00485
16 Luo H, Yu Q, Dong C F, et al. Influence of the aging time on the microstructure and electrochemical behaviour of a 15-5PH ultra-high strength stainless steel [J]. Corros. Sci., 2018, 139: 185
17 Peng X Y, Zhou X L, Hua X Z. Aging hardening behavior and corrosion resistance of 15-5PH stainless steel [J]. Chin. J. Nonferrous Met., 2017, 27: 988
17 彭新元, 周贤良, 华小珍. 15-5PH不锈钢的时效硬化行为及耐蚀性能 [J]. 中国有色金属学报, 2017, 27: 988
18 Jang Y W, Hong J H, Kim J G. Effects of copper on the corrosion properties of low-alloy steel in an acid-chloride environment [J]. Met. Mater. Int., 2009, 15: 623
19 Brigham R J, Tozer E W. Effect of alloying additions on the pitting resistance of 18% Cr austenitic stainless steel [J]. Corrosion, 1974, 30: 161
20 Lizlovs E A. Effects of Mo, Cu, Si and P on anodic behavior of 17Cr steels [J]. Corrosion, 1966, 22: 297
21 Ma J, Song Y Y, Jiang H C, et al. Effect of Cu on the microstructure and mechanical properties of a low-carbon martensitic stainless steel [J]. Materials, 2022, 15: 8849
22 Marquis E A, Bachhav M, Chen Y M, et al. On the current role of atom probe tomography in materials characterization and materials science [J]. Curr. Opin. Solid State Mater. Sci., 2013, 17: 217
23 Barroo C, Akey A J, Bell D C. Atom probe tomography for catalysis applications: A review [J]. Appl. Sci., 2019, 9: 2721
24 Bagot P A J, Silk O B W, Douglas J O, et al. An atom probe tomography study of site preference and partitioning in a nickel-based superalloy [J]. Acta Mater., 2017, 125: 156
25 Larson D J, Prosa T J, Ulfig R M, et al. Local Electrode Atom Probe Tomography: A User's Guide [M]. New York: Springer, 2013: 238
26 Chen W J, Hao L, Dong J H, et al. Effect of SO2 on corrosion evolution of Q235B steel in simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2014, 50: 802
26 陈文娟, 郝 龙, 董俊华 等. 模拟工业-海岸大气中SO2对Q235B钢腐蚀行为的影响 [J]. 金属学报, 2014, 50: 802
doi: 10.3724/SP.J.1037.2013.00738
27 Lei X W, Feng Y R, Zhang J X, et al. Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel [J]. Electrochim. Acta, 2016, 191: 640
28 Thee C, Hao L, Dong J H, et al. Numerical approach for atmospheric corrosion monitoring based on EIS of a weathering steel [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 261
29 Pan C C, Zhang X, Yang F, et al. Corrosion and cavitation erosion behavior of GLNN/Cu composite in simulated seawater [J]. Acta Metall. Sin., 2022, 58: 599
doi: 10.11900/0412.1961.2021.00333
29 潘成成, 张 翔, 杨 帆 等. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为 [J]. 金属学报, 2022, 58: 599
doi: 10.11900/0412.1961.2021.00333
30 Song Y Y, Zhao M J, Rong L J. Study on the precipitation of γ' in a Fe-Ni base alloy during ageing by APT [J]. Acta Metall. Sin., 2018, 54: 1236
30 宋元元, 赵明久, 戎利建. Fe-Ni基合金时效过程中γ'相析出的原子探针层析技术研究 [J]. 金属学报, 2018, 54: 1236
doi: 10.11900/0412.1961.2017.00563
31 Lu S Y, Yao K F, Chen Y B, et al. The effect of tempering temperature on the microstructure and electrochemical properties of a 13wt.% Cr-type martensitic stainless steel [J]. Electrochim. Acta, 2015, 165: 45
32 Wei G Y, Lu S Y, Li S X, et al. Unmasking of the temperature window and mechanism for “loss of passivation” effect of a Cr-13 type martensite stainless steel [J]. Corros. Sci., 2020, 177: 108951
33 Nakamichi H, Sato K, Miyata Y, et al. Quantitative analysis of Cr-depleted zone morphology in low carbon martensitic stainless steel using FE-(S)TEM [J]. Corros. Sci., 2008, 50: 309
34 Kaneko K, Fukunaga T, Yamada K, et al. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel [J]. Scr. Mater., 2011, 65: 509
35 Si Y L, Xue J T, Wang X F, et al. Effect of Cr addition on the corrosion behavior of twinning-induced plasticity steel [J]. Acta Metall. Sin., 2023, 59: 905
doi: 10.11900/0412.1961.2021.00418
35 司永礼, 薛金涛, 王幸福 等. Cr添加对孪生诱发塑性钢腐蚀行为的影响 [J]. 金属学报, 2023, 59: 905
doi: 10.11900/0412.1961.2021.00418
36 Olsson C O A, Landolt D. Passive films on stainless steels—Chemistry, structure and growth [J]. Electrochim. Acta, 2003, 48: 1093
37 Milošev I, Kovačević N, Kovač J, et al. The roles of mercapto, benzene and methyl groups in the corrosion inhibition of imidazoles on copper: I. Experimental characterization [J]. Corros. Sci., 2015, 98: 107
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[3] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[4] 宋元元, 赵明久, 戎利建. Fe-Ni基合金时效过程中γ'相析出的原子探针层析技术研究[J]. 金属学报, 2018, 54(9): 1236-1244.
[5] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[6] 徐伟,路新,杜艳霞,孟庆宇,黎鸣,曲选辉. 粉末冶金制备Ti-Fe二元合金的耐腐蚀性能[J]. 金属学报, 2017, 53(1): 38-46.
[7] 沈琴,王晓姣,赵安宇,何益锋,方旭磊,马佳荣,刘文庆. Mn对钢中富Cu相和NiAl相复合析出过程的影响*[J]. 金属学报, 2016, 52(5): 513-518.
[8] 王波阳,周邦新,王桢,黄娇,姚美意,周军. Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金在500 ℃过热蒸汽中的耐腐蚀性能*[J]. 金属学报, 2015, 51(12): 1545-1552.
[9] 汪波, 王晓姣, 宋辉, 严菊杰, 邱涛, 刘文庆, 李慧. Al-Mg-Si合金时效早期显微组织演变及其对强化的影响*[J]. 金属学报, 2014, 50(6): 685-690.
[10] 王晓姣, 沈琴, 严菊杰, 邱涛, 汪波, 李慧, 刘文庆. 沉淀强化钢中两相区NiAl相和富Cu相的析出特点[J]. 金属学报, 2014, 50(11): 1305-1310.
[11] 刘文庆,刘庆冬,顾剑锋. 原子探针层析技术(APT)最新进展及应用[J]. 金属学报, 2013, 49(9): 1025-1031.
[12] 韦天国,龙冲生,苗志,刘云明,栾佰峰. Zr-0.4Fe-1.0Cr-x Mo合金在500℃和10.3 MPa水蒸汽中的腐蚀行为[J]. 金属学报, 2013, 49(6): 717-724.
[13] 张金龙,谢兴飞,姚美意,周邦新,彭剑超,梁雪. Zr-1Nb-0.7Sn-0.03Fe-xGe合金在360 ℃ LiOH水溶液中耐腐蚀性能的研究[J]. 金属学报, 2013, 29(4): 443-450.
[14] 牛云松,魏杰,赵健,胡家秀,于志明. 超声辅助电镀法纳米叠层Ni镀膜的制备与性能[J]. 金属学报, 2013, 49(12): 1617-1622.
[15] 朱莉,姚美意,孙国成,陈文觉,张金龙,周邦新. 添加Bi对Zr-1Nb合金在360 ℃和18.6 MPa去离子水中耐腐蚀性能的影响[J]. 金属学报, 2013, 49(1): 51-57.