|
|
含3%Cu低碳马氏体不锈钢0Cr13Ni4Mo的显微组织及耐腐蚀性能 |
杨彬彬1,2, 宋元元1( ), 郝龙1, 姜海昌1, 戎利建1 |
1 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 2 太原科技大学 材料科学与工程学院 太原 030024 |
|
Microstructure and Corrosion Resistance of Low-Carbon Martensitic Stainless Steel 0Cr13Ni4Mo with 3%Cu Addition |
YANG Binbin1,2, SONG Yuanyuan1( ), HAO Long1, JIANG Haichang1, RONG Lijian1 |
1 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China |
引用本文:
杨彬彬, 宋元元, 郝龙, 姜海昌, 戎利建. 含3%Cu低碳马氏体不锈钢0Cr13Ni4Mo的显微组织及耐腐蚀性能[J]. 金属学报, 2024, 60(12): 1656-1666.
Binbin YANG,
Yuanyuan SONG,
Long HAO,
Haichang JIANG,
Lijian RONG.
Microstructure and Corrosion Resistance of Low-Carbon Martensitic Stainless Steel 0Cr13Ni4Mo with 3%Cu Addition[J]. Acta Metall Sin, 2024, 60(12): 1656-1666.
1 |
Ye W P, Liu Z L. Effect of structure of martensitic stainless cast steel ZG06Cr13Ni4Mo on properties [J]. Spec. Steel, 1998, 19(5): 13
|
1 |
叶卫平, 刘祖林. ZG06Cr13Ni4Mo马氏体不锈铸钢组织对性能的影响 [J]. 特殊钢, 1998, 19(5): 13
|
2 |
Zhou S F, Wang Y C, Li X Y, et al. Microstructure and mechanical properties in simulated HAZ of 0Cr13Ni5Mo martensitic stainless steel [J]. Trans. China Weld. Inst., 2004, 25(4): 63
|
2 |
周世锋, 王昱成, 李向阳 等. ZG0Cr13Ni5Mo马氏体不锈钢模拟焊接HAZ组织与性能 [J]. 焊接学报, 2004, 25(4): 63
|
3 |
Deleu E, Dhooge A. Weldability assessment of thick super-martensitic 13Cr stainless steel welds made with matching consumables [J]. Weld World, 2005, 49(5): 34
|
4 |
Bhagat A N, Pabi S K, Ranganathan S, et al. Aging behaviour in copper bearing high strength low alloy steels [J]. ISIJ Int., 2004, 44: 115
|
5 |
Fine M E, Isheim D. Origin of copper precipitation strengthening in steel revisited [J]. Scr. Mater., 2005, 53: 115
|
6 |
Isheim D, Gagliano M S, Fine M E, et al. Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale [J]. Acta Mater., 2006, 54: 841
|
7 |
Heo Y U, Kim Y K, Kim J S, et al. Phase transformation of Cu precipitates from bcc to fcc in Fe-3Si-2Cu alloy [J]. Acta Mater., 2013, 61: 519
|
8 |
Wen Y R, Hirata A, Zhang Z W, et al. Microstructure characterization of Cu-rich nanoprecipitates in a Fe-2.5Cu-1.5Mn-4.0Ni-1.0Al multicomponent ferritic alloy [J]. Acta Mater., 2013, 61: 2133
|
9 |
Wang Z M, Li H, Shen Q, et al. Nano-precipitates evolution and their effects on mechanical properties of 17-4 precipitation-hardening stainless steel [J]. Acta Mater., 2018, 156: 158
|
10 |
Isheim D, Kolli R P, Fine M E, et al. An atom-probe tomographic study of the temporal evolution of the nanostructure of Fe-Cu based high-strength low-carbon steels [J]. Scr. Mater., 2006, 55: 35
|
11 |
Zhang Z W, Liu C T, Wang X L, et al. Effects of proton irradiation on nanocluster precipitation in ferritic steel containing fcc alloying additions [J]. Acta Mater., 2012, 60: 3034
|
12 |
Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels [J]. Acta Mater., 2013, 61: 5996
|
13 |
Zhang Z W, Liu C T, Miller M K, et al. A nanoscale co-precipitation approach for property enhancement of Fe-base alloys [J]. Sci. Rep., 2013, 3: 1327
doi: 10.1038/srep01327
pmid: 23429646
|
14 |
Jiao Z B, Luan J H, Miller M K, et al. Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era [J]. Mater. Today, 2017, 20: 142
|
15 |
Zhang Z Y, Chai F, Luo X B, et al. The strengthening mechanism of Cu bearing high strength steel as-quenched and tempered and Cu precipitation behavior in steel [J]. Acta Metall. Sin., 2019, 55: 783
doi: 10.11900/0412.1961.2018.00485
|
15 |
张正延, 柴 锋, 罗小兵 等. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为 [J]. 金属学报, 2019, 55: 783
doi: 10.11900/0412.1961.2018.00485
|
16 |
Luo H, Yu Q, Dong C F, et al. Influence of the aging time on the microstructure and electrochemical behaviour of a 15-5PH ultra-high strength stainless steel [J]. Corros. Sci., 2018, 139: 185
|
17 |
Peng X Y, Zhou X L, Hua X Z. Aging hardening behavior and corrosion resistance of 15-5PH stainless steel [J]. Chin. J. Nonferrous Met., 2017, 27: 988
|
17 |
彭新元, 周贤良, 华小珍. 15-5PH不锈钢的时效硬化行为及耐蚀性能 [J]. 中国有色金属学报, 2017, 27: 988
|
18 |
Jang Y W, Hong J H, Kim J G. Effects of copper on the corrosion properties of low-alloy steel in an acid-chloride environment [J]. Met. Mater. Int., 2009, 15: 623
|
19 |
Brigham R J, Tozer E W. Effect of alloying additions on the pitting resistance of 18% Cr austenitic stainless steel [J]. Corrosion, 1974, 30: 161
|
20 |
Lizlovs E A. Effects of Mo, Cu, Si and P on anodic behavior of 17Cr steels [J]. Corrosion, 1966, 22: 297
|
21 |
Ma J, Song Y Y, Jiang H C, et al. Effect of Cu on the microstructure and mechanical properties of a low-carbon martensitic stainless steel [J]. Materials, 2022, 15: 8849
|
22 |
Marquis E A, Bachhav M, Chen Y M, et al. On the current role of atom probe tomography in materials characterization and materials science [J]. Curr. Opin. Solid State Mater. Sci., 2013, 17: 217
|
23 |
Barroo C, Akey A J, Bell D C. Atom probe tomography for catalysis applications: A review [J]. Appl. Sci., 2019, 9: 2721
|
24 |
Bagot P A J, Silk O B W, Douglas J O, et al. An atom probe tomography study of site preference and partitioning in a nickel-based superalloy [J]. Acta Mater., 2017, 125: 156
|
25 |
Larson D J, Prosa T J, Ulfig R M, et al. Local Electrode Atom Probe Tomography: A User's Guide [M]. New York: Springer, 2013: 238
|
26 |
Chen W J, Hao L, Dong J H, et al. Effect of SO2 on corrosion evolution of Q235B steel in simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2014, 50: 802
|
26 |
陈文娟, 郝 龙, 董俊华 等. 模拟工业-海岸大气中SO2对Q235B钢腐蚀行为的影响 [J]. 金属学报, 2014, 50: 802
doi: 10.3724/SP.J.1037.2013.00738
|
27 |
Lei X W, Feng Y R, Zhang J X, et al. Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel [J]. Electrochim. Acta, 2016, 191: 640
|
28 |
Thee C, Hao L, Dong J H, et al. Numerical approach for atmospheric corrosion monitoring based on EIS of a weathering steel [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 261
|
29 |
Pan C C, Zhang X, Yang F, et al. Corrosion and cavitation erosion behavior of GLNN/Cu composite in simulated seawater [J]. Acta Metall. Sin., 2022, 58: 599
doi: 10.11900/0412.1961.2021.00333
|
29 |
潘成成, 张 翔, 杨 帆 等. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为 [J]. 金属学报, 2022, 58: 599
doi: 10.11900/0412.1961.2021.00333
|
30 |
Song Y Y, Zhao M J, Rong L J. Study on the precipitation of γ' in a Fe-Ni base alloy during ageing by APT [J]. Acta Metall. Sin., 2018, 54: 1236
|
30 |
宋元元, 赵明久, 戎利建. Fe-Ni基合金时效过程中γ'相析出的原子探针层析技术研究 [J]. 金属学报, 2018, 54: 1236
doi: 10.11900/0412.1961.2017.00563
|
31 |
Lu S Y, Yao K F, Chen Y B, et al. The effect of tempering temperature on the microstructure and electrochemical properties of a 13wt.% Cr-type martensitic stainless steel [J]. Electrochim. Acta, 2015, 165: 45
|
32 |
Wei G Y, Lu S Y, Li S X, et al. Unmasking of the temperature window and mechanism for “loss of passivation” effect of a Cr-13 type martensite stainless steel [J]. Corros. Sci., 2020, 177: 108951
|
33 |
Nakamichi H, Sato K, Miyata Y, et al. Quantitative analysis of Cr-depleted zone morphology in low carbon martensitic stainless steel using FE-(S)TEM [J]. Corros. Sci., 2008, 50: 309
|
34 |
Kaneko K, Fukunaga T, Yamada K, et al. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel [J]. Scr. Mater., 2011, 65: 509
|
35 |
Si Y L, Xue J T, Wang X F, et al. Effect of Cr addition on the corrosion behavior of twinning-induced plasticity steel [J]. Acta Metall. Sin., 2023, 59: 905
doi: 10.11900/0412.1961.2021.00418
|
35 |
司永礼, 薛金涛, 王幸福 等. Cr添加对孪生诱发塑性钢腐蚀行为的影响 [J]. 金属学报, 2023, 59: 905
doi: 10.11900/0412.1961.2021.00418
|
36 |
Olsson C O A, Landolt D. Passive films on stainless steels—Chemistry, structure and growth [J]. Electrochim. Acta, 2003, 48: 1093
|
37 |
Milošev I, Kovačević N, Kovač J, et al. The roles of mercapto, benzene and methyl groups in the corrosion inhibition of imidazoles on copper: I. Experimental characterization [J]. Corros. Sci., 2015, 98: 107
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|