Please wait a minute...
金属学报  2024, Vol. 60 Issue (12): 1667-1677    DOI: 10.11900/0412.1961.2023.00036
  研究论文 本期目录 | 过刊浏览 |
闪速加热对2000 MPa级热成形钢显微组织和力学性能的影响
谢泽东, 丁灿灿, 温鹏宇, 罗海文()
北京科技大学 冶金与生态工程学院 北京 100083
Effect of Flash Heating on Microstructure and Mechanical Properties of 2000 MPa Hot Stamping Steel
XIE Zedong, DING Cancan, WEN Pengyu, LUO Haiwen()
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

谢泽东, 丁灿灿, 温鹏宇, 罗海文. 闪速加热对2000 MPa级热成形钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(12): 1667-1677.
Zedong XIE, Cancan DING, Pengyu WEN, Haiwen LUO. Effect of Flash Heating on Microstructure and Mechanical Properties of 2000 MPa Hot Stamping Steel[J]. Acta Metall Sin, 2024, 60(12): 1667-1677.

全文: PDF(4150 KB)   HTML
摘要: 

对2000 MPa级热成形钢的研究大多关注成分、加热温度和时间对力学性能的影响,而很少关注加热过程。本工作引入闪速加热,研究了一种新型2000 MPa级热成形钢以150℃/s闪速加热至850~950℃后再回火的显微组织和拉伸力学性能。结果表明,与常规加热工艺相比,在相同温度下闪速加热可同时改善材料的强度和塑性。2000 MPa级热成形钢经闪速加热至950℃可获得最佳力学性能,抗拉强度为2180 MPa、延伸率为13%,较相同温度下常规加热样品分别提高了约200 MPa和4%,这是由于闪速加热导致淬火后形成的马氏体组织显著细化、位错密度更高且残余奥氏体更多。残余奥氏体的增多主要与初始组织中富C/Mn渗碳体在闪速加热时固溶形成的C/Mn富集区未及时扩散均匀化相关。随着闪速加热温度升高,更多渗碳体可以固溶,因此残余奥氏体体积分数逐渐增大。奥氏体逆转变动力学模拟计算结果也证实了这一点。

关键词 热成形钢闪速加热力学性能渗碳体残余奥氏体    
Abstract

Hot stamping steels (HSSs) have been widely used in automobiles, to reduce weight and improve safety due to their ultrahigh strength and ease of synthesis at high temperatures. At present, steel sheets with high strength and good ductility are needed to further reduce the weight of manufactured products. The most popular HSS grade in use at present is 22MnB5, which has an ultimate tensile strength (UTS) of 1500 MPa, but it has a ductility of less than 7%, which is quite poor. Driven by the demand for weight reduction in the automotive industries, a 2000 MPa HSS have been developed by employing a new alloying design and an ultrafast heating process. The latter has received much less attention than the former, although it demonstrates huge potential for improving mechanical properties and production efficiency of HSSs. In this study, the effect of heating processes, including conventional and flash heating, at a ramp of 150oC/s in the temperature range of 850-950oC before tempering at 150oC on the microstructures and mechanical properties of a new type of 2000 MPa HSS were studied. Compared with the conventional heating at a relatively low ramp rate, the flash heating improved the strength and ductility of 2000 MPa HSS, simultaneously. Moreover, their best tensile properties were achieved after flash heating to 950oC: UTS was 2180 MPa and total elongation was 13%, which were approximately 200 MPa and 4% higher than those obtained using conventional heating, respectively. This is because flash heating results in the formation of a more refined hierarchical martensite structure after quenching, with a higher dislocation density and a larger fraction of retained austenite (RA). RA was formed by dissolving cementite particles containing high C/Mn concentrations, which were then inherited in the formed austenite after quenching due to insufficient time for the homogenization of solute C/Mn by diffusion during the flash heating. The volume fraction of RA increased gradually with an increase in the flash heating temperature, then, more cementite particles were dissolved. This was also confirmed by kinetic simulations that reversed the austenitization on the dissolving cementite. Finally, it was proposed that flash heating technology is a promising technology for the production of ultra-strong and ductile HSS sheets.

Key wordshot stamping steel    flash heating    mechanical property    cementite    retained austenite
收稿日期: 2023-02-02     
ZTFLH:  TG142  
基金资助:国家自然科学基金项目(51831002);国家自然科学基金项目(52233018);中央高校基本科研业务费项目(FRF-TP-18-002C2)
通讯作者: 罗海文,luohaiwen@ustb.edu.cn,主要从事先进钢铁材料的制备与研究
Corresponding author: LUO Haiwen, professor, Tel: (010)62332911, E-mail: luohaiwen@ustb.edu.cn
作者简介: 谢泽东,男,1995年生,硕士
图1  热成形钢制备工艺及闪速加热(FH)和常规加热(CH)模拟热成形工艺流程示意图以及热成形钢加热和冷却时的膨胀曲线
图2  热轧退火板的TEM像和渗碳体EDS分析及冷轧板的SEM像
图3  经不同工艺制备的热成形钢与22MnB5钢[18]的工程应力-应变曲线
SpecimenYS / MPaUTS / MPaTE / %Product of UTS and TE / (GPa·%)
22MnB5[18]1130157011.513.0
CH8501540 ± 202025 ± 3011.1 ± 0.222.4
CH9001555 ± 222050 ± 3510.6 ± 0.321.7
CH9501485 ± 281975 ± 2510.1 ± 0.319.9
FH8501590 ± 262070 ± 3013.7 ± 0.228.4
FH9001655 ± 212155 ± 2013.4 ± 0.228.9
FH9501675 ± 252180 ± 2513.7 ± 0.429.9
表1  经不同工艺制备的热成形钢和22MnB5钢[18]力学性能总结
图4  热成形钢闪速加热和常规加热至不同温度后形成的组织与析出相
图5  FH950和CH950样品的EBSD质量图和原奥晶界叠加图、大角度晶界EBSD像及原奥氏体晶粒和大角度晶粒尺寸统计分布图
SpecimenPrior austenite grain sizeHigh-angle grain size
CH8503.71 ± 0.360.94 ± 0.12
CH9004.88 ± 0.281.26 ± 0.18
CH9506.21 ± 0.321.37 ± 0.16
FH8501.42 ± 0.190.62 ± 0.16
FH9001.46 ± 0.230.71 ± 0.15
FH9501.52 ± 0.210.76 ± 0.11
表2  不同工艺样品中原奥氏体晶粒及大角度晶粒尺寸 (μm)
图6  FH950和CH950样品的EBSD质量图和相分布叠加图、FH950样品Auger能谱、不同热成形工艺样品的XRD谱及残余奥氏体体积分数
图7  冷轧板在850、900和950℃闪速加热5 s后的微观组织演变示意图
图8  热成形钢在闪速加热至不同温度的(200) γ 晶面衍射峰强度与不同热成形工艺样品的位错密度
图9  奥氏体逆转变动力学计算模型示意图,热成形钢在不同温度下闪速加热5 s时渗碳体、铁素体和奥氏体之间的界面移动,以及850℃下界面边界随时间发展的浓度分布
1 Jhajj K S, Slezak S R, Daun K J. Inferring the specific heat of an ultra high strength steel during the heating stage of hot forming die quenching, through inverse analysis [J]. Appl. Therm. Eng., 2015, 83: 98
2 Jin X J, Gong Y, Han X H, et al. A review of current state and prospect of the manufacturing and application of advanced hot stamping automobile steels [J]. Acta Metall. Sin., 2020, 56: 411
doi: 10.11900/0412.1961.2019.00381
2 金学军, 龚 煜, 韩先洪 等. 先进热成形汽车钢制造与使用的研究现状与展望 [J]. 金属学报, 2020, 56: 411
doi: 10.11900/0412.1961.2019.00381
3 Karbasian H, Tekkaya A E. A review on hot stamping [J]. J. Mater. Process. Technol., 2010, 210: 2103
4 Wen P Y, Han J S, Luo H W. Application of flash processing in advanced high strength steels [J]. J. Iron Steel Res., 2020, 32: 1050
doi: 10.13228/j.boyuan.issn1001-0963.20200140
4 温鹏宇, 韩建胜, 罗海文. 闪速加热工艺在先进高强钢领域的应用 [J]. 钢铁研究学报, 2020, 32: 1050
doi: 10.13228/j.boyuan.issn1001-0963.20200140
5 Karimi Y, Hossein Nedjad S, Shirazi H, et al. Cold rolling and intercritical annealing of C-Mn steel sheets with different initial microstructures [J]. Mater. Sci. Eng., 2018, A736: 392
6 Wen P Y, Hu B, Han J S, et al. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97: 54
doi: 10.1016/j.jmst.2021.04.035
7 Wan X H, Liu G, Yang Z G, et al. Flash annealing yields a strong and ductile medium Mn steel with heterogeneous microstructure [J]. Scr. Mater., 2021, 198: 113819
8 Wen P Y, Han J S, Luo H W, et al. Effect of flash processing on recrystallization behavior and mechanical performance of cold-rolled IF steel [J]. Int. J. Miner. Metall. Mater., 2020, 27: 1234
9 Liu G, Li T, Yang Z G, et al. On the role of chemical heterogeneity in phase transformations and mechanical behavior of flash annealed quenching & partitioning steels [J]. Acta Mater., 2020, 201: 266
10 Mori K, Bariani P F, Behrens B A, et al. Hot stamping of ultra-high strength steel parts [J]. CIRP Ann., 2017, 66: 755
11 Min J Y, Lin J P, Min Y A, et al. On the ferrite and bainite transformation in isothermally deformed 22MnB5 steels [J]. Mater. Sci. Eng., 2012, A550: 375
12 Yi H L, Chang Z Y, Cai H L, et al. Strength, ductility and fracture strain of press-hardening steels [J]. Acta Metall. Sin., 2020, 56: 429
12 易红亮, 常智渊, 才贺龙 等. 热冲压成形钢的强度与塑性及断裂应变 [J]. 金属学报, 2020, 56: 429
doi: 10.11900/0412.1961.2020.00003
13 Hu K H, Mao X P, Zhou G F, et al. Effect of Si and Mn contents on the microstructure and mechanical properties of ultra-high strength press hardening steel [J]. Acta Metall. Sin., 2018, 54: 1105
doi: 10.11900/0412.1961.2017.00487
13 胡宽辉, 毛新平, 周桂峰 等. Si和Mn含量对超高强度热成形钢组织和性能的影响 [J]. 金属学报, 2018, 54: 1105
doi: 10.11900/0412.1961.2017.00487
14 Liang J T, Lu H Z, Zhang L L, et al. A 2000 MPa grade Nb bearing hot stamping steel with ultra-high yield strength [J]. Mater. Sci. Eng., 2021, A801: 140419
15 Naderi M, Ketabchi M, Abbasi M, et al. Analysis of microstructure and mechanical properties of different high strength carbon steels after hot stamping [J]. J. Mater. Process. Technol., 2011, 211: 1117
16 Taylor T, Fourlaris G, Evans P, et al. New generation ultrahigh strength boron steel for automotive hot stamping technologies [J]. Mater. Sci. Technol., 2014, 30: 818
17 Ding C C, Hu K H, Chen H, et al. A dual-phase press-hardening steel with improved mechanical properties and superior oxidation resistance [J]. Metall. Mater. Trans., 2022, 53A: 1934
18 Järvinen H, Isakov M, Nyyssönen T, et al. The effect of initial microstructure on the final properties of press hardened 22MnB5 steels [J]. Mater. Sci. Eng., 2016, A676: 109
19 Han J, Lee Y K. The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels [J]. Acta Mater., 2014, 67: 354
20 Luo H W, Wang X H, Liu Z B, et al. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel [J]. J. Mater. Sci. Technol., 2020, 51: 130
doi: 10.1016/j.jmst.2020.04.001
21 Zhou T, Lu J, Hedström P. Mechanical behavior of fresh and tempered martensite in a CrMoV-alloyed steel explained by microstructural evolution and strength modeling [J]. Metall. Mater. Trans., 2020, 51A: 5077
22 Liu G, Dai Z B, Yang Z G, et al. Kinetic transitions and Mn partitioning during austenite growth from a mixture of partitioned cementite and ferrite: Role of heating rate [J]. J. Mater. Sci. Technol., 2020, 49: 70
doi: 10.1016/j.jmst.2020.01.051
23 Chen W J, Gao P F, Wang S, et al. Strengthening mechanisms of Nb and V microalloying high strength hot-stamped steel [J]. Mater. Sci. Eng., 2020, A797: 140115
24 Yong Q L. The Second Phase in Steel [M]. Beijing: Metallurgical Industry Press, 2006: 5
24 雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 5
25 Shintani T, Murata Y. Evaluation of the dislocation density and dislocation character in cold rolled Type 304 steel determined by profile analysis of X-ray diffraction [J]. Acta Mater., 2011, 59: 4314
26 Wang Y J, Sun J J, Jiang T, et al. A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility [J]. Acta Mater., 2018, 158: 247
27 Hansen N. Hall-Petch relation and boundary strengthening [J]. Scr. Mater., 2004, 51: 801
28 Wang Y, Hu B, Liu X Y, et al. Influence of annealing temperature on both mechanical and damping properties of Nb-alloyed high Mn steel [J]. Acta Metall. Sin., 2021, 57: 1588
doi: 10.11900/0412.1961.2021.00020
28 王 玉, 胡 斌, 刘星毅 等. 退火温度对含Nb高锰钢力学和阻尼性能的影响 [J]. 金属学报, 2021, 57: 1588
29 Shibata A, Yonezawa H, Yabuuchi K, et al. Relation between martensite morphology and volume change accompanying fcc to bcc martensitic transformation in Fe-Ni-Co alloys [J]. Mater. Sci. Eng., 2006, A438-440: 241
30 Li S S, Wen P Y, Li S L, et al. A novel medium-Mn steel with superior mechanical properties and marginal oxidization after press hardening [J]. Acta Mater., 2021, 205: 116567
31 Luo H W, Liu J H, Dong H. A novel observation on cementite formed during intercritical annealing of medium Mn steel [J]. Metall. Mater. Trans., 2016, 47A: 3119
32 Shen G H, Hu B, Yang Z B, et al. Influence of tempering temperature on mechanical properties and microstructures of high-Al-contained medium Mn steel having δ-ferrite [J]. Acta Metall. Sin., 2022, 58: 165
32 沈国慧, 胡 斌, 杨占兵 等. 回火温度对含δ铁素体高铝中锰钢力学性能和显微组织的影响 [J]. 金属学报, 2022, 58: 165
doi: 10.11900/0412.1961.2021.00089
33 Liu G, Zhang S G, Li J, et al. Fast-heating for intercritical annealing of cold-rolled quenching and partitioning steel [J]. Mater. Sci. Eng., 2016, A669: 387
34 Azizi-Alizamini H, Militzer M, Poole W J. Formation of ultrafine grained dual phase steels through rapid heating [J]. ISIJ Int., 2011, 51: 958
35 Nakada N, Tsukahara M, Fukazawa K, et al. Very fine structured DP steel with tempered-martensite matrix fabricated by fast heating [J]. Mater. Trans., 2018, 59: 166
36 Xu D C, Li J, Meng Q G, et al. Effect of heating rate on microstructure and mechanical properties of TRIP-aided multiphase steel [J]. J. Alloys Compd., 2014, 614: 94
37 Mohanty R R, Girina O A, Fonstein N M. Effect of heating rate on the austenite formation in low-carbon high-strength steels annealed in the intercritical region [J]. Metall. Mater. Trans., 2011, 42A: 3680
[1] 张乾坤, 胡小锋, 姜海昌, 戎利建. Si对一种9Cr铁素体/马氏体钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(9): 1200-1212.
[2] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[3] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
[4] 孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.
[5] 许仁杰, 屠鑫, 胡斌, 罗海文. Cu-V双合金化3Mn钢的组织和力学性能[J]. 金属学报, 2024, 60(6): 817-825.
[6] 谢丽文, 张立龙, 刘艳艳, 张明阳, 王绍钢, 焦大, 刘增乾, 张哲峰. 不锈钢纤维增强镁基仿生复合材料制备与力学性能[J]. 金属学报, 2024, 60(6): 760-769.
[7] 汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
[8] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
[9] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[10] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
[11] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[12] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[13] 杨杰, 黄森森, 尹慧, 翟瑞志, 马英杰, 向伟, 罗恒军, 雷家峰, 杨锐. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J]. 金属学报, 2024, 60(3): 333-347.
[14] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
[15] 南勇, 关旭, 闫海乐, 唐帅, 贾楠, 赵骧, 左良. B微合金化对CoNiV中熵合金微观组织和力学性能的影响及其机理[J]. 金属学报, 2024, 60(12): 1647-1655.