Please wait a minute...
金属学报  2025, Vol. 61 Issue (2): 278-286    DOI: 10.11900/0412.1961.2022.00612
  研究论文 本期目录 | 过刊浏览 |
Zn-2.0Al-1.5Mg镀层在模拟海洋大气中的腐蚀行为
顾天真1,2,3, 刘雨薇1,3(), 彭灿1,2,3, 张鹏4, 王振尧1,3(), 汪川1,3, 马成4, 曹宏玮4
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
3 中国科学院金属研究所 辽宁沈阳土壤大气环境材料腐蚀国家野外科学观测研究站 沈阳 110016
4 河钢集团钢研总院 石家庄 050023
Corrosion Behavior of Zn-2.0Al-1.5Mg Coatings in Simulated Marine Atmosphere
GU Tianzhen1,2,3, LIU Yuwei1,3(), PENG Can1,2,3, ZHANG Peng4, WANG Zhenyao1,3(), WANG Chuan1,3, MA Cheng4, CAO Hongwei4
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Liaoning Shenyang Soil and Atmosphere Corrosion of Materials National Observation and Research Station, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4 HBIS Group Technology Research Institute, Shijiazhuang 050023, China
引用本文:

顾天真, 刘雨薇, 彭灿, 张鹏, 王振尧, 汪川, 马成, 曹宏玮. Zn-2.0Al-1.5Mg镀层在模拟海洋大气中的腐蚀行为[J]. 金属学报, 2025, 61(2): 278-286.
Tianzhen GU, Yuwei LIU, Can PENG, Peng ZHANG, Zhenyao WANG, Chuan WANG, Cheng MA, Hongwei CAO. Corrosion Behavior of Zn-2.0Al-1.5Mg Coatings in Simulated Marine Atmosphere[J]. Acta Metall Sin, 2025, 61(2): 278-286.

全文: PDF(2422 KB)   HTML
摘要: 

为了推动Zn-2.0Al-1.5Mg镀层在腐蚀性较重的海洋大气环境下服役,本工作采用室内干/湿交替循环腐蚀试验(CCT)方法、腐蚀失重、SEM、XRD、EIS和动电位极化等手段,对Zn-2.0Al-1.5Mg镀层在模拟海洋大气中的腐蚀行为(腐蚀动力学、腐蚀产物演化、腐蚀形貌、电化学行为等)进行研究。结果表明:腐蚀168 h,腐蚀产物为ZnO,随着腐蚀时间的延长,腐蚀产物主要为Zn5(OH)8Cl2·H2O,到1848 h,腐蚀产物中还有少量的Zn(OH)2·0.5H2O;ZnO出现的主要原因之一是干/湿交替时间缩短,而Zn(OH)2·0.5H2O的出现与腐蚀后期Mg或Al元素的消耗有关。在模拟海洋大气中,Zn-2.0Al-1.5Mg镀层腐蚀速率随时间呈M型变化,腐蚀速率变化与腐蚀产物的演化密切相关。840 h前腐蚀速率大体呈上升趋势,仅在336~504 h 阶段腐蚀速率减小,其原因可能与腐蚀产物ZnO的消失和Zn5(OH)8Cl2·H2O的比例增多有关。

关键词 Zn-2.0Al-1.5Mg镀层海洋大气大气腐蚀腐蚀产物演化    
Abstract

As the service environment changes, the widely used galvanized coating faces challenges due to its overly thick coating and insufficient corrosion resistance. Zn-2.0Al-1.5Mg coatings have emerged as an alternative to conventional galvanizing because of their excellent corrosion resistance and are extensively used in buildings, home appliances, and automobiles in harsh environments. The marine environment, known for its high corrosiveness, faces considerable material corrosion problems. Highly resistant materials, such as Zn-2.0Al-1.5Mg coating, stainless steel, have found applications in the marine environment. However, the development period of Zn-2.0Al-1.5Mg coating is short, and further research is required to determine its suitability for highly corrosive marine atmospheric environments. Consequently, the laboratory dry-wet alternating cycle corrosion test method, corrosion mass loss, SEM, XRD, EIS, and potentiodynamic polarization were used to investigate the corrosion behavior (e.g., corrosion kinetics, corrosion product evolution, corrosion morphology, and electrochemical behavior) of Zn-2.0Al-1.5Mg coatings in a simulated marine atmosphere. Results show that the initial corrosion product is ZnO at 168 h, with Zn5(OH)8Cl2·H2O appearing after 168 h of corrosion cycles (336, 504, 672, 840, and 1848 h). The emergence of ZnO at 168 h is attributed to the shortened dry-wet alternating cycle time, while that of Zn(OH)2·0.5H2O at 1848 h is attributed to the depletion of Mg or Al elements. The corrosion rate of Zn-2.0Al-1.5Mg coatings in the simulated marine atmosphere exhibited an M-shaped curve over time, closely related to the evolution of corrosion products. Between 0 and 840 h, the corrosion rate increased, except for a decrease between 336 and 504 h; this trend may be attributed to the disappearance of ZnO and an increase in the amount of Zn5(OH)8Cl2·H2O. Combined with the electrochemical results, it is speculated that the corrosion will accelerate with further exposure after 1848 h.

Key wordsZn-2.0Al-1.5Mg coating    marine atmosphere    atmospheric corrosion    corrosion products evolution
收稿日期: 2022-12-01     
ZTFLH:  TG172.3  
基金资助:河北省自然科学基金项目(E2021318006)
通讯作者: 刘雨薇,ywliu12s@imr.ac.cn,主要从事大气腐蚀研究;
王振尧,zhywang@imr.ac.cn,主要从事自然环境腐蚀研究
Corresponding author: LIU Yuwei, associate professor, Tel: (024)23893544, E-mail: ywliu12s@imr.ac.cn;
WANG Zhenyao, professor, Tel: (024)23893544, E-mail: zhywang@imr.ac.cn
作者简介: 顾天真,女,1995年生,博士生
图1  Zn-2.0Al-1.5Mg镀层在模拟海洋大气环境中腐蚀失重和平均腐蚀速率随腐蚀时间的变化
图2  Zn-2.0Al-1.5Mg镀层腐蚀不同时间的XRD谱
图3  Zn-2.0Al-1.5Mg镀层在模拟海洋大气环境中腐蚀不同时间的宏观形貌
图4  Zn-2.0Al-1.5Mg镀层在模拟海洋大气环境中腐蚀不同时间后表面形貌的SEM像
图5  Zn-2.0Al-1.5Mg镀层在模拟海洋大气环境中腐蚀不同时间后截面形貌的SEM像
图6  Zn-2.0Al-1.5Mg镀层在模拟海洋大气环境中腐蚀1848 h后截面形貌的SEM像和EDS元素分布
图7  Zn-2.0Al-1.5Mg镀层腐蚀不同时间的动电位极化曲线
图8  Zn-2.0Al-1.5Mg镀层腐蚀不同时间的腐蚀电流密度(icorr)
图9  Zn-2.0Al-1.5Mg镀层腐蚀不同时间的Nyquist和Bode图
图10  电化学阻抗谱(EIS)等效电路

Time

h

Rs

Ω·cm2

Qr

Rr

Ω·cm2

Qdl

Rct

Ω·cm2

Chi-squared

Rp (= Rr + Rct)

Ω·cm2

yr

Ω-1·cm-2·Snr

nr

ydl

Ω-1·cm-2·Sndl

ndl
04.33 × 1011.30 × 10-56.56 × 10-17.20 × 1036.26 × 10-59.71 × 10-16.44 × 1039.29 × 10-31.36 × 104
1685.05 × 1011.48 × 10-56.81 × 10-18.26 × 1022.05 × 10-35.23 × 10-18.94 × 1025.87 × 10-31.72 × 103
3368.53 × 10-42.02 × 10-54.65 × 10-12.31 × 1026.74 × 10-79.60 × 10-12.87 × 1042.39 × 10-22.89 × 104
5042.51 × 1011.07 × 10-56.95 × 10-12.84 × 1031.19 × 10-46.36 × 10-15.52 × 1037.11 × 10-38.36 × 103
6724.21 × 10-33.03 × 10-54.58 × 10-17.89 × 1022.09 × 10-71.00 × 1006.33 × 1036.47 × 10-37.12 × 103
8403.07 × 1011.77 × 10-55.50 × 10-15.52 × 1034.13 × 10-48.78 × 10-14.59 × 1034.34 × 10-21.01 × 104
18483.14 × 10-231.51 × 10-38.38 × 10-24.70 × 10-194.63 × 10-77.34 × 10-15.95 × 1027.36 × 10-45.95 × 102
表1  EIS参数拟合结果
图11  1/ Rp随腐蚀时间的变化
图12  NaCl溶液中Cl-的平衡浓度(CCl-)随相对湿度的变化[37]
1 Gong J J, Li W T, Zhou Y. Development of hot dip galvanized aluminum and magnesium coated plate and application status of Hegang and Tangshan Steel [J]. Hebei Metall., 2020, 12: 9
1 弓俊杰, 李文田, 周 研. 热镀锌铝镁镀层板发展及河钢唐钢应用现状 [J]. 河北冶金, 2020, 12: 9
2 Prosek T, Nazarov A, Goodwin F, et al. Improving corrosion stability of Zn-Al-Mg by alloying for protection of car bodies [J]. Surf. Coat. Technol., 2016, 306: 439
3 Prosek T, Nazarov A, Le Gac A, et al. Coil-coated Zn-Mg and Zn-Al-Mg: Effect of climatic parameters on the corrosion at cut edges [J]. Prog. Org. Coat., 2015, 83: 26
4 LeBozec N, Thierry D, Peltola A, et al. Corrosion performance of Zn-Mg-Al coated steel in accelerated corrosion tests used in the automotive industry and field exposures [J]. Mater. Corros., 2013, 64: 969
5 Ahmadi M, Salgın B, Kooi B J, et al. Genesis and mechanism of microstructural scale deformation and cracking in ZnAlMg coatings [J]. Mater. Des., 2020, 186: 108364
6 Van Schaik M, Dane C, Berkhout B. MagiZinc—The new high performance coating for steel in the BIW and closures [A]. SAE 2016 World Congress and Exhibition [C]. New York: SAE, 2016: 0537
7 Schürz S, Luckeneder G H, Fleischanderl M, et al. Chemistry of corrosion products on Zn-Al-Mg alloy coated steel [J]. Corros. Sci., 2010, 52: 3271
8 Prosek T, Larché N, Vlot M, et al. Corrosion performance of Zn-Al-Mg coatings in open and confined zones in conditions simulating automotive applications [J]. Mater. Corros., 2010, 61: 412
9 Thierry D, LeBozec N, Le Gac A, et al. Long-term atmospheric corrosion rates of hot dip galvanised steel and zinc-aluminium-magnesium coated steel [J]. Mater. Corros., 2019, 70: 2220
10 Keppert T A, Luckeneder G, Stellnberger K H, et al. The effect of sulphate, phosphate, nitrate and acetate on the corrosion behaviour of Zn-Al-Mg hot-dip galvanised steel [J]. Mater. Corros., 2014, 65: 560
11 Bobzin K, Oete M, Linke T F, et al. Corrosion of wire arc sprayed ZnMgAl [J]. Mater. Corros., 2015, 66: 520
12 Dutta M, Halder A K, Singh S B. Morphology and properties of hot dip Zn-Mg and Zn-Mg-Al alloy coatings on steel sheet [J]. Surf. Coat. Technol., 2010, 205: 2578
13 Yao C Z, Tay S L, Zhu T P, et al. Effects of Mg content on microstructure and electrochemical properties of Zn-Al-Mg alloys [J]. J. Alloys Compd., 2015, 645: 131
14 Schuerz S, Fleischanderl M, Luckeneder G H, et al. Corrosion behaviour of Zn-Al-Mg coated steel sheet in sodium chloride-containing environment [J]. Corros. Sci., 2009, 51: 2355
15 Liu Y, Ooi A, Tada E, et al. Electrochemical monitoring of the degradation of galvanized steel in simulated marine atmosphere [J]. Corros. Sci., 2019, 147: 273
doi: 10.1016/j.corsci.2018.11.013
16 Zhang X, Leygraf C, Wallinder I O. Atmospheric corrosion of Galfan coatings on steel in chloride-rich environments [J]. Corros. Sci., 2013, 73: 62
17 Wallinder I O, Leygraf C. A critical review on corrosion and runoff from zinc and zinc-based alloys in atmospheric environments [J]. Corrosion, 2017, 73: 1060
18 Xie Y X, Jin X Y, Wang L. Development and application of hot-dip galvanized zinc-aluminum-magnesium coating [J]. J. Iron Steel Res., 2017, 29: 167
18 谢英秀, 金鑫焱, 王 利. 热浸镀锌铝镁镀层开发及应用进展 [J]. 钢铁研究学报, 2017, 29: 167
doi: 10.13228/j.boyuan.issn10010963.20160359
19 Sullivan J, Cooze N, Gallagher C, et al. In situ monitoring of corrosion mechanisms and phosphate inhibitor surface deposition during corrosion of zinc-magnesium-aluminium (ZMA) alloys using novel time-lapse microscopy [J]. Faraday Discuss., 2015, 180: 361
doi: 10.1039/c4fd00251b pmid: 25912828
20 Sullivan J, Mehraban S, Elvins J. In situ monitoring of the microstructural corrosion mechanisms of zinc-magnesium-aluminium alloys using time lapse microscopy [J]. Corros. Sci., 2011, 53: 2208
21 Li F, Lv J S, Yang H G, et al. The corrosion behavior for Zn-Al-Mg coating in NaCl system [J]. China Surf. Eng., 2011, 24(4): 25
21 李 锋, 吕家舜, 杨洪刚 等. 锌铝镁镀层在NaCl体系中的腐蚀行为 [J]. 中国表面工程, 2011, 24(4): 25
22 Oh M S, Kim S H, Kim J S, et al. Surface and cut-edge corrosion behavior of Zn-Mg-Al Alloy-coated steel sheets as a function of the alloy coating microstructure [J]. Met. Mater. Int., 2016, 22: 26
23 Zhou H, Zhao A M, Xiao J, et al. Advances in continuous hot dip galvanizing of advanced high strength steels [A]. The Chinese Society for Metals. The 13th China Steel Annual Conference 5. Surface and Coating [C]. Beijing: Metallurgical Industry Press, 2022: 119
23 周 欢, 赵爱民, 肖 俊 等. 先进高强钢连续热浸镀锌铝镁技术的研究进展 [A]. 中国金属学会. 第十三届中国钢铁年会论文集—— 5. 表面与涂渡 [C]. 北京: 冶金工业出版社, 2022: 119
24 Persson D, Prosek T, LeBozec N, et al. Initial SO2-induced atmospheric corrosion of ZnAlMg coated steel studied with in situ Infrared Reflection Absorption Spectroscopy [J]. Corros. Sci., 2015, 90: 276
25 Prosek T, Hagström J, Persson D, et al. Effect of the microstructure of Zn-Al and Zn-Al-Mg model alloys on corrosion stability [J]. Corros. Sci., 2016, 110: 71
26 Salgueiro Azevedo M, Allély C, Ogle K, et al. Corrosion mechanisms of Zn(Mg,Al) coated steel: The effect of HCO 3 - and NH 4 + ions on the intrinsic reactivity of the coating [J]. Electrochim. Acta, 2015, 153: 159
27 Thierry D, Persson D, Luckeneder G, et al. Atmospheric corrosion of ZnAlMg coated steel during long term atmospheric weathering at different worldwide exposure sites [J]. Corros. Sci., 2019, 148: 338
28 Salgueiro Azevedo M, Allély C, Ogle K, et al. Corrosion mechanisms of Zn(Mg, Al) coated steel: 2. The effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes [J]. Corros. Sci., 2015, 90: 482
29 Volovitch P, Vu T N, Allély C, et al. Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn-Al-Mg coatings on steel [J]. Corros. Sci., 2011, 53: 2437
30 Salgueiro Azevedo M, Allély C, Ogle K, et al. Corrosion mechanisms of Zn(Mg, Al) coated steel in accelerated tests and natural exposure: 1. The role of electrolyte composition in the nature of corrosion products and relative corrosion rate [J]. Corros. Sci., 2015, 90: 472
31 Diler E, Rouvellou B, Rioual S, et al. Characterization of corrosion products of Zn and Zn-Mg-Al coated steel in a marine atmosphere [J]. Corros. Sci., 2014, 87: 111
32 Li F, Lv J S, Yang H G, et al. Research on ZnAlMg coated steel sheet [J]. Steel Rolling, 2013, 30(2): 45
32 李 锋, 吕家舜, 杨洪刚 等. 锌铝镁镀层钢板的研究进展 [J]. 轧钢, 2013, 30(2): 45
33 Liu Y W, Zhao H T, Wang Z Y. Initial corrosion behavior of carbon steel and weathering steel in Nansha Marine atmosphere [J]. Acta Metall. Sin., 2020, 56: 1247
doi: 10.11900/0412.1961.2020.00013
33 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1247
doi: 10.11900/0412.1961.2020.00013
34 Liu Y W, Gu T Z, Wang Z Y, et al. Corrosion behavior of Q235 and Q450NQR1 exposed to marine atmospheric environment in Nansha, China for 34 months [J]. Acta Metall. Sin., 2022, 58: 1623
doi: 10.11900/0412.1961.2021.00576
34 刘雨薇, 顾天真, 王振尧 等. Q235和Q450NQR1在中国南沙海洋大气环境中暴晒34个月后的腐蚀行为 [J]. 金属学报, 2022, 58: 1623
doi: 10.11900/0412.1961.2021.00576
35 Hosking N C, Ström M A, Shipway P H, et al. Corrosion resistance of zinc-magnesium coated steel [J]. Corros. Sci., 2007, 49: 3669
36 Bernard M C, Goff A H L, Phillips N. In situ Raman study of the corrosion of zinc-coated steel in the presence of chloride: I. Characterization and stability of zinc corrosion products [J]. J. Electrochem. Soc., 1995, 142: 2162
37 Graedel T E. Corrosion mechanisms for zinc exposed to the atmosphere [J]. J. Electrochem. Soc., 1989, 136: 193C
38 Chen Z Y, Cui F, Kelly R G. Calculations of the cathodic current delivery capacity and stability of crevice corrosion under atmospheric environments [J]. J. Electrochem. Soc., 2008, 155: C360
39 Gu T Z, Zhang P, Guo M X, et al. Corrosion behavior of zinc-aluminum-magnesium coated steel in simulated marine atmosphere [J]. Int. J. Electrochem. Sci., 2022, 17: 22054
[1] 闫茂鑫, 李杰, 王哲超, 姚旭, 胡秉晨, 葛峰, 崔中雨, 王昕, 崔洪芝. 南极大气环境下Q460Q690 低合金钢的腐蚀行为[J]. 金属学报, 2025, 61(2): 297-308.
[2] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[3] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[4] 刘雨薇, 顾天真, 王振尧, 汪川, 曹公望. Q235Q450NQR1在中国南沙海洋大气环境中暴晒34个月后的腐蚀行为[J]. 金属学报, 2022, 58(12): 1623-1632.
[5] 黄松鹏, 彭灿, 曹公望, 王振尧. BTA保护的白铜在模拟工业大气环境中的腐蚀行为[J]. 金属学报, 2021, 57(3): 317-326.
[6] 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(9): 1247-1254.
[7] 宋学鑫, 黄松鹏, 汪川, 王振尧. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10): 1355-1365.
[8] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[9] 陈星晨, 王杰, 陈德任, 钟舜聪, 王向峰. Na对于Al早期大气腐蚀的影响[J]. 金属学报, 2019, 55(4): 529-536.
[10] 郭明晓, 潘晨, 王振尧, 韩薇. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究[J]. 金属学报, 2018, 54(1): 65-75.
[11] 韩军科,严红,黄耀,周鲁军,杨善武. 耐候钢表面氧化皮的结构特征及其对大气腐蚀行为的影响[J]. 金属学报, 2017, 53(2): 163-174.
[12] 马宏驰, 杜翠薇, 刘智勇, 郝文魁, 李晓刚, 刘超. E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究*[J]. 金属学报, 2016, 52(3): 331-340.
[13] 陈文娟, 郝龙, 董俊华, 柯伟, 文怀梁. 模拟工业-海岸大气中pH值对Q235B钢腐蚀行为的影响*[J]. 金属学报, 2015, 51(2): 191-200.
[14] 陈文娟, 郝龙, 董俊华, 柯伟, 文怀梁. 模拟工业-海岸大气中SO2对Q235B钢腐蚀行为的影响*[J]. 金属学报, 2014, 50(7): 802-810.
[15] 王彬彬, 王振尧, 曹公望, 刘艳洁, 柯伟. 2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为*[J]. 金属学报, 2014, 50(1): 49-56.