|
|
TC17合金超高周疲劳裂纹萌生机理 |
刘汉青1, 何超2, 黄志勇1( ), 王清远1,2 |
1四川大学空天科学与工程学院 成都 610065 2成都大学建筑与土木工程学院 成都 610106 |
|
Very High Cycle Fatigue Failure Mechanism of TC17 Alloy |
Hanqing LIU1, Chao HE2, Zhiyong HUANG1( ), Qingyuan WANG1,2 |
1 School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China 2 School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China |
引用本文:
刘汉青, 何超, 黄志勇, 王清远. TC17合金超高周疲劳裂纹萌生机理[J]. 金属学报, 2017, 53(9): 1047-1054.
Hanqing LIU,
Chao HE,
Zhiyong HUANG,
Qingyuan WANG.
Very High Cycle Fatigue Failure Mechanism of TC17 Alloy[J]. Acta Metall Sin, 2017, 53(9): 1047-1054.
[1] | Sakai T, Sato Y, Nagano Y, et al.Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading[J]. Int. J. Fatigue, 2006, 28: 1547 | [2] | Furuya Y, Takeuchi E.Gigacycle fatigue properties of Ti-6Al-4V alloy under tensile mean stress[J]. Mater. Sci. Eng., 2014, A598: 135 | [3] | Schuller R, Karr U, Irrasch D, et al.Mean stress sensitivity of spring steel in the very high cycle fatigue regime[J]. J. Mater. Sci., 2015, 50: 5514 | [4] | Liu X L, Sun C Q, Hong Y S.Effects of stress ratio on high-cycle and very-high-cycle fatigue behavior of a Ti-6Al-4V alloy[J]. Mater. Sci. Eng., 2015, A622: 228 | [5] | Mughrabi H.On ‘multi-stage’ fatigue life diagrams and the relevant life-controlling mechanisms in ultrahigh-cycle fatigue[J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25: 755 | [6] | Lei Z Q, Hong Y S, Xie J J, et al.Effects of inclusion size and location on very-high-cycle fatigue behavior for high strength steels[J]. Mater. Sci. Eng., 2012, A558: 234 | [7] | Marines I, Dominguez G, Baudry G, et al.Ultrasonic fatigue tests on bearing steel AISI-SAE 52100 at frequency of 20 and 30 kHz[J]. Int. J. Fatigue, 2003, 25: 1037 | [8] | Wang Q Y, Bathias C, Kawagoishi N, et al.Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength[J]. Int. J. Fatigue, 2002, 24: 1269 | [9] | Phung N L, Favier V, Ranc N, et al.Very high cycle fatigue of copper: evolution, morphology and locations of surface slip markings[J]. Int. J. Fatigue, 2014, 63: 68 | [10] | Stanzl-Tschegg S E, Sch?nbauer B. Mechanisms of strain localization, crack initiation and fracture of polycrystalline copper in the VHCF regime[J]. Int. J. Fatigue, 2010, 32: 886. | [11] | Huang Z Y, Liu H Q, Wang C, et al.Fatigue life dispersion and thermal dissipation investigations for titanium alloy TC17 in very high cycle regime[J]. Fatigue Fract. Eng. Mater. Struct., 2015, 38: 1285 | [12] | Bantounas I, Dye D, Lindley T C.The role of microtexture on the faceted fracture morphology in Ti-6Al-4V subjected to high-cycle fatigue[J]. Acta Mater., 2010, 58: 3908 | [13] | Jha S K, Szczepanski C J, John R, et al.Deformation heterogeneities and their role in life-limiting fatigue failures in a two-phase titanium alloy[J]. Acta Mater., 2015, 82: 378 | [14] | Efstathiou C, Sehitoglu H, Lambros J.Multiscale strain measurements of plastically deforming polycrystalline titanium: Role of deformation heterogeneities[J]. Int. J. Plast., 2010, 26: 93 | [15] | Drugan W J, Willis J R.A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites[J]. J. Mech. Phys. Solids, 1996, 44: 497 | [16] | Gusev A A.Representative volume element size for elastic composites: a numerical study[J]. J. Mech. Phys. Solids, 1997, 45: 1449 | [17] | Ren Z Y, Zheng Q S.Effects of grain sizes, shapes, and distribution on minimum sizes of representative volume elements of cubic polycrystals[J]. Mech. Mater., 2004, 36: 1217 | [18] | Ranganathan S I, Ostoja-Starzewski M.Scale-dependent homogenization of inelastic random polycrystals[J]. J. Appl. Mech., 2008, 75: 883 | [19] | Stroh A N.The formation of cracks as a result of plastic flow[J]. Proc. R. Soc. London, 1954, 223: 404 | [20] | Echlin M L P, Stinville J C, Miller V M, et al. Incipient slip and long range plastic strain localization in microtextured Ti-6Al-4V titanium[J]. Acta Mater., 2016, 114: 164 | [21] | Britton T B, Birosca S, Preuss M, et al.Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti-6Al-4V alloy[J]. Scr. Mater., 2010, 62: 639 | [22] | Bridier F, Villechaise P, Mendez J.Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales[J]. Acta Mater., 2008, 56: 3951 | [23] | Wang Q Y, Berard J Y, Rathery S, et al.Technical note High-cycle fatigue crack initiation and propagation behaviour of high-strength sprin steel wires[J]. Fatigue Fract. Eng. Mater. Struct., 2003, 22: 673 | [24] | Hong Y S, Lei Z Q, Sun C Q, et al.Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels[J]. Int. J. Fatigue, 2014, 58: 144 | [25] | Yoshinaka F, Nakamura T, Takaku K.Effects of vacuum environment on small fatigue crack propagation in Ti-6Al-4V[J]. Int. J. Fatigue, 2016, 91: 29 | [26] | Sugano M, Kanno S, Satake T.Fatigue behavior of titanium in vacuum[J]. Acta Metall., 1989, 37: 1811 | [27] | Murakam Y, Nomoto T, Ueda T.Factors influencing the mechanism of superlong fatigue failure in steels[J]. Fatigue Fract. Eng. Mater. Struct., 1999, 22: 581 | [28] | Murakami Y, Endo M.Effects of defects, inclusions and in homogeneities on fatigue strength[J]. Int. J. Fatigue, 1994, 16: 163 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|