|
|
第一性原理研究钛合金中的沉淀强化 |
程坤1,2, 陈树明1,2, 曹烁1, 刘建荣1, 马英杰1, 范群波3, 程兴旺3, 杨锐1, 胡青苗1( ) |
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 2 中国科学技术大学 材料科学与工程学院 沈阳 110016 3 北京理工大学 材料学院 冲击环境材料技术重点实验室 北京 100081 |
|
Precipitation Strengthening in Titanium Alloys from First Principles Investigation |
CHENG Kun1,2, CHEN Shuming1,2, CAO Shuo1, LIU Jianrong1, MA Yingjie1, FAN Qunbo3, CHENG Xingwang3, YANG Rui1, HU Qingmiao1( ) |
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3 National Key Laboratory of Science and Technology on Materials Under Shock and Impact, School of Materials Science and Technology, Beijing University of Technology, Beijing 100081, China |
引用本文:
程坤, 陈树明, 曹烁, 刘建荣, 马英杰, 范群波, 程兴旺, 杨锐, 胡青苗. 第一性原理研究钛合金中的沉淀强化[J]. 金属学报, 2024, 60(4): 537-547.
Kun CHENG,
Shuming CHEN,
Shuo CAO,
Jianrong LIU,
Yingjie MA,
Qunbo FAN,
Xingwang CHENG,
Rui YANG,
Qingmiao HU.
Precipitation Strengthening in Titanium Alloys from First Principles Investigation[J]. Acta Metall Sin, 2024, 60(4): 537-547.
1 |
Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Mater. Sci. Eng., 1996, A213: 103
|
2 |
Lütjering G, Williams J C. Titanium[M]. 2nd Ed., Berlin: Springer, 2007: 431
|
3 |
Banerjee D, Williams J C. Perspectives on titanium science and technology[J]. Acta Mater., 2013, 61: 844
doi: 10.1016/j.actamat.2012.10.043
|
4 |
Zhang B, Tian D, Song Z M, et al. Research progress in dwell fatigue service reliability of titanium alloys for pressure shell of deep-sea submersible[J]. Acta Metall. Sin., 2023, 59: 713
doi: 10.11900/0412.1961.2022.00441
|
4 |
张 滨, 田 达, 宋竹满 等. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59: 713
|
5 |
Yang R, Ma Y J, Lei J F, et al. Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure[J]. Acta Metall. Sin., 2021, 57: 1455
doi: 10.11900/0412.1961.2021.00353
|
5 |
杨 锐, 马英杰, 雷家峰 等. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57: 1455
|
6 |
Yan S C. Numerical simulation for the isothermal forging processes of complex structural component of Ti-1023 alloy[D]. Xi'an: Northwestern Polytechnical University, 2005
|
6 |
闫世成. Ti-1023合金复杂结构件等温锻造过程的数值模拟[D]. 西安: 西北工业大学, 2005
|
7 |
Ivasishin O M, Markovsky P E, Matviychuk Y V, et al. A comparative study of the mechanical properties of high-strength β-titanium alloys[J]. J. Alloys Compd., 2008, 457: 296
doi: 10.1016/j.jallcom.2007.03.070
|
8 |
Coakley J, Vorontsov V A, Jones A G, et al. Precipitation processes in the beta-titanium alloy Ti-5Al-5Mo-5V-3Cr[J]. J. Alloys Compd., 2015, 646: 946
doi: 10.1016/j.jallcom.2015.05.251
|
9 |
Kelly P M. Progress report on recent advances in physical metallurgy: (C) The quantitative relationship between microstructure and properties in two-phase alloys[J]. Int. Metall. Rev., 1973, 18: 31
doi: 10.1179/imr.1973.18.1.31
|
10 |
Melander A, Persson P Å. The strength of a precipitation hardened AlZnMg alloy[J]. Acta Metall., 1978, 26: 267
doi: 10.1016/0001-6160(78)90127-X
|
11 |
Russell K C, Brown L M. A dispersion strengthening model based on differing elastic moduli applied to the iron-copper system[J]. Acta Metall., 1972, 20: 969
doi: 10.1016/0001-6160(72)90091-0
|
12 |
Zhang S Z, Cui H, Li M M, et al. First-principles study of phase stability and elastic properties of binary Ti-xTM (TM= V, Cr, Nb, Mo) and ternary Ti-15TM-yAl alloys[J]. Mater. Des., 2016, 110: 80
doi: 10.1016/j.matdes.2016.07.120
|
13 |
Benoit M, Tarrat N, Morillo J. Density functional theory investigations of titanium γ-surfaces and stacking faults[J]. Modell. Simul. Mater. Sci. Eng., 2013, 21: 015009
|
14 |
Hutchinson C R, Gouné M, Redjaïmia A. Selecting non-isothermal heat treatment schedules for precipitation hardening systems: An example of coupled process-property optimization[J]. Acta Mater., 2007, 55: 213
doi: 10.1016/j.actamat.2006.07.028
|
15 |
Vitos L. Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications[M]. 2nd Ed., London: Springer, 2007: 14
|
16 |
Hill R. The elastic behaviour of a crystalline aggregate[J]. Proc. Phys. Soc., 1952, 65A: 349
|
17 |
Martin R M. Electronic Structure: Basic Theory and Practical Methods[M]. New York: Cambridge University Press, 2004: 119
|
18 |
Vitos L, Abrikosov I A, Johansson B. Anisotropic lattice distortions in random alloys from first-principles theory[J]. Phys. Rev. Lett., 2001, 87: 156401
doi: 10.1103/PhysRevLett.87.156401
|
19 |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865
pmid: 10062328
|
20 |
Zhou W C, Sahara R, Tsuchiya K. First-principles study of the phase stability and elastic properties of Ti-X alloys (X = Mo, Nb, Al, Sn, Zr, Fe, Co, and O)[J]. J. Alloys Compd., 2017, 727: 579
doi: 10.1016/j.jallcom.2017.08.128
|
21 |
Yu H, Cao S, Youssef S S, et al. Generalized stacking fault energies and critical resolved shear stresses of random α-Ti-Al alloys from first-principles calculations[J]. J. Alloys Compd., 2021, 850: 156314
doi: 10.1016/j.jallcom.2020.156314
|
22 |
Ikehata H, Nagasako N, Furuta T, et al. First-principles calculations for development of low elastic modulus Ti alloys[J]. Phys. Rev., 2004, 70B: 174113
|
23 |
Barret C S, Massalski T B. Structure of Metals: Crystallographic Methods, Principles and Data[M]. 3rd Ed., New York: Pergamon Press, 1980: 654
|
24 |
Lynch J F, Tanaka J. Thermodynamics of the solid solution of hydrogen in β-titanium alloys: β-TiMo and β-Ti/Re[J]. Acta Metall., 1981, 29: 537
doi: 10.1016/0001-6160(81)90077-8
|
25 |
Sun K, Yuan X Z, Wu E D, et al. Neutron diffraction study of the deuterides of Ti-Mo alloy[J]. Physica, 2006, 385-386B: 141
|
26 |
Denton A R, Ashcroft N W. Vegard's law[J]. Phys. Rev., 1991, 43A: 3161
|
27 |
Zhao Y F, Fu Y C, Hu Q M, et al. First-principles investigations of lattice parameters, bulk moduli and phase stabilities of Ti1- x V x and Ti1- x Nb x alloys[J]. Acta Metall. Sin., 2009, 45: 1042
|
27 |
赵宇飞, 符跃春, 胡青苗 等. Ti1- x V x 及Ti1- x Nb x 合金晶格参数、体模量及相稳定性的第一原理研究[J]. 金属学报, 2009, 45: 1042
|
28 |
Fisher E S, Renken C J. Single-crystal elastic moduli and the hcp→bcc transformation in Ti, Zr, and Hf[J]. Phys. Rev., 1964, 135: A482
doi: 10.1103/PhysRev.135.A482
|
29 |
Simmons G, Wang H. Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook[M]. 2nd Ed., Cambridge: MIT Press, 1971: 323
|
30 |
Trinkle D R, Jones M D, Hennig R G, et al. Empirical tight-binding model for titanium phase transformations[J]. Phys. Rev., 2006, 73B: 094123
|
31 |
Ahmed M, Li T, Casillas G, et al. The evolution of microstructure and mechanical properties of Ti-5Al-5Mo-5V-2Cr-1Fe during ageing[J]. J. Alloys Compd., 2015, 629: 260
doi: 10.1016/j.jallcom.2015.01.005
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|