金属学报, 2024, 60(3): 323-332 DOI: 10.11900/0412.1961.2022.00036

研究论文

脉冲电流辅助等离子弧焊Al-Mg合金晶粒细化机理

袁涛, 赵晓虎, 蒋晓青,, 任学磊, 李博阳

北京工业大学 汽车结构部件先进制造技术教育部工程研究中心 北京 100124

Mechanism of Grain Refinement of Pulse Current Assisted Plasma Arc Welded Al-Mg Alloy

YUAN Tao, ZHAO Xiaohu, JIANG Xiaoqing,, REN Xuelei, LI Boyang

Engineering Research Center of Advanced Manufacturing Technology for Automotive Components, Ministry of Education, Beijing University of Technology, Beijing 100124, China

通讯作者: 蒋晓青,xqj225@hotmail.com,主要从事焊接冶金、搅拌摩擦焊等方面的研究

责任编辑: 李海兰

收稿日期: 2022-01-25   修回日期: 2022-03-14  

基金资助: 国家自然科学基金项目(51704013)
北京市教委基金项目(KM201810005016)
北京工业大学科技基金项目(ykj-2018-00325)

Corresponding authors: JIANG Xiaoqing, Tel: 13240290506, E-mail:xqj225@hotmail.com

Received: 2022-01-25   Revised: 2022-03-14  

Fund supported: National Natural Science Foundation of China(51704013)
Beijing Municipal Education Commission Fund(KM201810005016)
Technology Fund of Beijing University of Technology(ykj-2018-00325)

作者简介 About authors

袁 涛,男,1987年生,副教授,博士

摘要

在焊接热处理过程中,通过施加电流脉冲对熔池附加的振动效果可以有效改善焊缝成形差、晶粒粗大等问题。本工作通过对常规焊缝、传统脉冲电流焊缝以及复合脉冲电流焊缝的晶粒尺寸分析,探讨了脉冲电流对Al-Mg合金组织细化的影响及晶粒细化的机制。对于传统脉冲电流,当频率由0 Hz升高到100 Hz时,平均晶粒尺寸由78.2 μm降至53.3 μm,细化程度提高约30%。在传统脉冲电流波形上复合了低频脉冲电流后,晶粒尺寸最小可达到48.2 μm,细化效果达到近40%。对各焊缝区显微组织的EBSD结果表明,施加脉冲电流后小尺寸晶粒分布明显增加,且大角度晶界占比明显增加。热力学以及EDS分析结果表明晶粒细化的主要机制为枝晶破碎。

关键词: 等离子弧焊; Al-Mg合金; 复合脉冲电流; 晶粒细化; 枝晶破碎

Abstract

During welding, the vibration effect of applying a pulse current on the molten pool can effectively improve weld formation and refine grains. The effect of pulse current on grain refinement and its mechanism were studied for Al-Mg alloy welds fabricated by conventional plasma welding (PAW), PAW with conventional pulse current, and PAW with composite pulse current. The grain size produced by conventional PAW was 78.2 μm, whereas the average grain size was reduced from 78.2 μm to 53.3 μm with increasing conventional pulse current frequency from 0 Hz to 100 Hz; in addition, the degree of grain refinement increased by about 30%. However, the minimum grain size was 48.2 μm, and the grain refinement effect can reach nearly 40% by combining low-frequency pulse current with conventional pulse current. The proportion of small grains and high-angle grain boundaries increased significantly after applying the composite pulse current. The additional oscillation effect of the composite pulse current can effectively eliminate coarse grains during the solidification of the weld pool. The main mechanism of grain refinement is dendrite fragmentation, which is discussed through thermodynamics and composition.

Keywords: PAW; Al-Mg alloy; composite pulse current; grain refinement; dendrite fragmentation

PDF (4118KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

袁涛, 赵晓虎, 蒋晓青, 任学磊, 李博阳. 脉冲电流辅助等离子弧焊Al-Mg合金晶粒细化机理[J]. 金属学报, 2024, 60(3): 323-332 DOI:10.11900/0412.1961.2022.00036

YUAN Tao, ZHAO Xiaohu, JIANG Xiaoqing, REN Xuelei, LI Boyang. Mechanism of Grain Refinement of Pulse Current Assisted Plasma Arc Welded Al-Mg Alloy[J]. Acta Metallurgica Sinica, 2024, 60(3): 323-332 DOI:10.11900/0412.1961.2022.00036

Al-Mg合金具有高比强度、良好的热稳定性和耐腐蚀等特点,被广泛应用于航空、航天及其他运载工具上,属于铝合金中应用较为广泛的合金之一[1,2]。然而由于铝合金材料表面易产生氧化膜、线膨胀系数大和焊接接头易软化等问题,严重影响了其焊接性;且铝合金在焊接过程中存在晶粒粗大、气孔倾向性高及接头强度低等问题,制约了其在工业领域的大规模应用[3~5]。科研人员发现通过细化凝固组织,可以降低一些焊接缺陷,且能明显提高焊接接头性能,因此对细晶强化这一机理展开了大量研究[6~9]

由于晶粒细化对材料性能强大的优化能力[10,11],人们通过各种物理或化学技术以获得和控制晶粒细化。有研究者[12]提出通过超声波处理可导致强烈的熔体流动,快速将热量和组分传递到整个熔融熔体中,并在Mg、Al、Ti等合金的焊接过程中,获得有效的晶粒细化效果。然而,对于大型或复杂的零件,超声波或电磁搅拌焊接工艺在实际工业应用中可能很困难。除上述方法外,还有研究者[13~16]在焊缝中引入异质颗粒,从而促进形核以细化晶粒。但由于添加异质颗粒的种类、尺寸、润湿性和物理特性等都会对焊缝的组织性能起到影响[17~19],且会伴随着复杂的析出相等因素,导致焊缝热力学性能不可预测[20,21]

基于上述原因,Kou和Le[22]提出了利用热源振荡优化焊缝凝固组织的方法。目前为止,焊接热源振荡已成为细化凝固组织、减少焊缝内部冶金缺陷的有效方法[8,23]。由于热源的快速局部移动不仅可以促进液态金属的流动,而且可以实现热源的更均匀加载,因此利用焊接热源振荡来细化晶粒、抑制缺陷是十分可行的[24]。Yuan等[23]通过电弧摆动促进了枝晶破碎和成分过冷的增加,明显细化了晶粒。而施加脉冲电流也可以有效振荡热源和熔池,且由于其优异的性能,早在1960s就已经被应用在焊接当中[25]。与恒电流焊接相比,脉冲电流焊接具有许多独特的优势,例如更高的电弧稳定性、更高的焊缝深宽比、更窄的热影响区范围、更低的热裂纹敏感性、细晶粒度、更低的孔隙率和改善力学性能等[26,27]。此外,脉冲电流焊接提供了更高的生产效率和优异的液滴转移控制能力[28,29]

尽管脉冲电流焊接有许多优点,但由于脉冲电流频率值具有唯一可调性,使得其对熔池的搅拌作用十分有限[29]。传统的脉冲电流逐渐不能完全满足工业需求。因此人们提出了高频脉冲电流变极性焊接、复合(双)脉冲电流焊接等。高频脉冲电流变极性焊接具有焊接过程稳定和阴极清洁效果的优点[30],但由于其具有低能量密度的自由发散电弧,焊接生产效率相对较低[31,32]。而复合脉冲电流焊接具有高效、降低孔隙率、降低裂纹敏感性、精确的电流调节等优点,逐渐被人们关注[33~35]。Liu等[29]探究了复合脉冲电流对铝合金焊缝轮廓、几何形状的影响,Yao等[36]探究了不同工艺参数对复合脉冲电流的熔化极气体保护焊(GMAW)焊缝成形的影响。Wang等[37]对AA6061和ER4043合金的复合脉冲电流GMAW进行了研究,发现复合脉冲电流对材料组织性能的优化要大于单脉冲电流。Wang等[38]对双脉冲电流的电弧形态以及焊缝的宏观成形进行了研究,发现焊缝晶粒有细化效果,但是并未针对具体的晶粒细化效果、参数影响规律、晶粒细化机制等展开探讨;Wang等[39]重点分析了双脉冲电流作用下的热循环规律及其对气孔溢出和裂纹敏感性的影响规律等,但是并未对脉冲电流对晶粒尺度的影响规律进行研究。

综上所述,现阶段的研究主要集中在脉冲电流对焊缝的形貌以及性能的影响,而关于脉冲电流对焊缝晶粒细化的形核机制以及复合脉冲电流焊接频率对晶粒细化的影响鲜有报道。本工作通过分析无脉冲电流、传统脉冲电流和复合脉冲电流情况下以及不同脉冲电流频率对铝合金等离子弧焊的微观组织的影响,探究铝合金复合脉冲电流等离子弧焊的晶粒细化机制。

1 实验方法

采用5 mm厚5A06铝合金轧制板材作为研究对象,其化学成分(质量分数,%)为:Mg 6.8,Si 0.04,Fe 0.4,Cu 0.1,Mn 0.5,Zn 0.02,Ti 0.02,Al余量。如图1所示,本实验采用Dynasy700焊机,其电流输出范围为5~700 A,直流脉冲电流频率范围为0.1~5 kHz,传统脉冲电流可通过焊机的自有功能获得。同时在基本脉冲电流信号(小脉冲电流)的基础上,利用复合脉冲电流信号控制系统作用一组频率相对较低的附加脉冲电流信号(大脉冲电流),2者共同作用产生双脉冲电流焊接电流信号。复合脉冲电流信号控制程序基于6251采集卡,用LabView编写而成,同时利用单片机来输出频率和占空比都可调的PWM波形,对Dynasy700焊机电流实施控制,并制作相应的电流采集板实时监控焊接电流,实现闭环回路控制。图1bc所示为本工作设计的脉冲电流波形。其中,图1b为传统脉冲电流波形,周期内包含峰值和基值2个阶段,通过占空比调节峰值与基值所占脉冲电流周期的比例;图1c为复合脉冲电流波形,其脉冲电流波形由大脉冲电流与小脉冲电流复合而成。图1de所示分别为本工作实时采集到的传统脉冲电流波形和复合脉冲电流波形,与本工作对脉冲电流波形的设计相符,说明控制是有效的。

图1

图1   实验焊接设备及常规脉冲电流和复合脉冲电流的电流波形

Fig.1   Welding equipment (a), current waveforms of conventional pulse (b) and composite pulse (c), current acquisition waveforms of conventional pulse (d) and composite pulse (e), and sampling positions (f) (PAW—plasm arc welding)


第一部分实验主要研究传统脉冲电流频率对晶粒细化的影响,实验设计方案如表1所示。固定附加脉冲电流(大脉冲电流)频率为0,逐级改变基本脉冲电流(小脉冲电流)频率设定值(样品记为S1~S5)。第二部分实验主要研究复合脉冲电流对焊缝晶粒细化效果的影响规律,其他参数不变,调节复合脉冲电流中低频脉冲电流的频率,实验设计方案如表2所示(样品记为D1~D5)。作为对比实验的常规无脉冲电流等离子弧焊试样记为C0。

表1   等离子传统脉冲电流方法的晶粒细化效果探究实验设计

Table 1  Experimental design of the conventional plasma pulse current

Sample

No.

Base

current / A

Peak

current / A

First pulse frequency / HzFirst peak time percent / %

Plasma gas

flux / (L·min-1)

Shielding gas

flux / (L·min-1)

C0180- -1010
S19021020751010
S29021040751010
S39021060751010
S49021080751010
S590210100751010

新窗口打开| 下载CSV


表2   等离子复合脉冲电流方法的晶粒细化效果探究实验设计

Table 2  Experimental design of the plasma composite pulse current

Sample

No.

Base

current / A

Peak

current / A

First pulse frequency / HzSecond pulse frequency / HzFirst peak time percent / %Second peak time percent / %
C0180----
D1902105027550
D2902105047550
D3902105067550
D4902105087550
D59021050107550

新窗口打开| 下载CSV


焊接完成后,对焊缝进行切割、打磨和抛光制备金相试样,切割位置如图1f矩形框所示,不同参数所得焊缝的取样位置相同。观察面为焊缝的上表面和横截面。为了方便分析晶粒尺寸,焊接试样利用含氟硼酸(HFB4)与蒸馏水的腐蚀液进行电解抛光。利用BX51-P偏光显微镜观察焊缝的宏观形貌、微观组织,统计气孔数量。由于不同晶粒在偏光显微镜中显示为不同的颜色,由此可以更清晰地辨别晶粒的尺寸,本工作根据ASTM E112—2013标准线性截距法在焊缝截面上取至少5个点计算其平均晶粒度。利用EVO10扫描电子显微镜(SEM)观察焊缝微观组织形貌并对成分进行能谱(EDS)分析,判断形核方式;采用JSM-7900F电子背散射衍射(EBSD)对焊缝晶粒取向、晶界角和织构特征进行分析。

2 实验结果

2.1 传统脉冲电流对铝合金焊缝晶粒结构的影响

不同脉冲电流频率时铝合金等离子弧焊缝上表面的微观组织如图2所示。焊缝晶粒尺寸与脉冲电流频率变化关系如图3所示。如图2a所示,常规无脉冲电流等离子弧焊缝上表面的微观组织晶粒粗大,晶粒尺寸约为78.2 μm,焊缝中心存在大量非常明显的柱状晶(如白色椭圆框所示),同时有气孔的存在,数量较多。图2b为频率20 Hz时焊缝的微观组织,晶粒平均尺寸为65.0 μm,与无脉冲电流焊缝相比,晶粒尺寸明显减小,但是在焊缝中心部位仍然有大量的柱状晶,同时焊缝中仍然有较大量的气孔。当脉冲电流频率增加到40 Hz时,晶粒尺寸约为58.2 μm,焊缝中心部位柱状晶的数量明显减少,同时焊缝中气孔的数量和尺寸也明显减小,如图2c所示。当脉冲电流频率继续升高到60和80 Hz时,如图2d和e所示,焊缝中心部位的柱状晶完全被抑制,整个焊缝都由等轴晶组成,晶粒尺寸约为55.6和52.0 μm。同时焊缝中的气孔已经非常稀少。当脉冲电流频率增加到100 Hz时,焊缝的微观组织和晶粒结构得到了非常有效的改变,整个焊缝由细小致密的等轴晶组成,晶粒尺寸约为50.6 μm,而且焊缝中无任何肉眼可见的气孔。

图2

图2   传统脉冲电流等离子弧焊焊缝上表面偏光图

Fig.2   Polarization micrographs of upper surface of conventional pulse current PAW

(a) C0 (b) S1 (c) S2 (d) S3 (e) S4 (f) S5


图3

图3   传统脉冲电流下焊缝晶粒尺寸变化

Fig.3   Change of grain size under conventional pulse current PAW


同时,由铝合金等离子弧焊缝横截面在不同脉冲电流频率时的微观组织(图4)可知,其晶粒尺寸变化规律与焊缝上表面晶粒尺寸变化相似,皆是随着脉冲电流频率的增加,晶粒尺寸减小,并且柱状晶逐渐被抑制,显微组织由致密的等轴晶组成,几乎观察不到气孔,因此证明施加脉冲电流使得铝合金焊缝的横截面和纵截面晶粒都得到细化。综上所述,脉冲电流可以有效细化等离子弧焊缝的晶粒尺寸,而且随着脉冲电流频率的升高,晶粒细化效果逐渐增强,同时气孔也得到有效抑制。

图4

图4   传统脉冲电流等离子弧焊焊缝横截面偏光图

Fig.4   Polarization micrographs of cross-section of conventional pulse current PAW

(a) C0 (b) S1 (c) S2 (d) S3 (e) S4 (f) S5


2.2 复合脉冲电流对铝合金焊缝微观组织的影响

铝合金等离子弧焊缝上表面在复合脉冲电流不同频率时的显微组织如图5所示。焊缝晶粒尺寸与脉冲电流频率变化关系如图6所示。

图5

图5   复合脉冲电流等离子弧焊焊缝上表面偏光图

Fig.5   Polarization micrographs of upper surface under composite pulse current PAW

(a) C0 (b) D1 (c) D2 (d) D3 (e) D4 (f) D5


图6

图6   复合脉冲电流下晶粒尺寸变化

Fig.6   Change of grain size under composite pulse current PAW


图5a图2a为同一条焊缝组织。当高频脉冲电流频率为50 Hz、低频脉冲电流频率为2 Hz时,焊缝中的柱状晶被完全抑制,全部由等轴晶组成,晶粒尺寸为48.2 μm,但是焊缝中仍然存在较多气孔,如图5b所示。当低频脉冲电流频率升高到4 Hz时,无柱状晶,等轴晶平均尺寸为51.3 μm,但是焊缝中仍然有较多肉眼可见的气孔。当低频脉冲电流频率分别升高到6、8和10 Hz时,柱状晶被完全抑制,无肉眼可见的气孔,整条焊缝由细小致密的等轴晶组成,晶粒尺寸在51.3~53.3 μm范围内。

综上所述,在高频脉冲电流频率不变的情况下,低频脉冲电流频率的升高对晶粒尺寸并未造成明显影响,但是复合脉冲电流焊缝的晶粒细化效果要优于传统脉冲电流。

2.3 不同脉冲电流铝合金焊缝EBSD分析结果

由前文可以看出,传统脉冲电流和复合脉冲电流对焊缝晶粒都有着明显的细化作用,则有必要对焊缝晶粒取向、晶界角以及织构特征进行深入分析。选取晶粒尺寸相近的S4和D4试样以及空白对照组C0试样进行EBSD分析,结果如图7所示。对比3张图的晶粒取向可以看出,未加脉冲电流时,蓝色晶粒占比较大,也就是说晶粒取向主要为<111>方向,当施加脉冲电流之后,晶粒颜色变得更加平均,晶粒取向变得更加随机。对比3组实验参数下的晶粒尺寸分布可以看出,C0组试样的晶粒尺寸主要集中在70~90 μm,而S4和D4组试样的晶粒尺寸主要集中在40~60 μm。经过计算,C0组平均晶粒度为76.7 μm,小于70 μm的晶粒仅占比40.1%;S4组平均晶粒度为55.2 μm,比C0组试样晶粒尺寸减小了28%,小于70 μm的晶粒占比81.8%;D4组平均晶粒度为53.2 μm,比C0组试样晶粒尺寸减小了30%,小于70 μm的晶粒占比90.4%。对比3组试样晶界角的变化(将> 15°的晶界角统称为大角度晶界),C0、S4和D4试样大角度晶界占比分别为79.8%、92.9%和89.0%。图8更有力说明了脉冲电流的加入对焊缝晶粒尺寸和大角度晶界的影响,即脉冲电流的加入对晶粒细化有促进作用,且有利于低能量的小角度晶界转变为高能量的大角度晶界,而大角度晶界对晶粒的生长有着阻碍作用,又进一步促进了晶粒细化。图9为C0、S4和D4 3组试样的极图。可以看出,未加脉冲电流时构件在<001>、<110>、<111> 3个方向存在着明显的织构特征,最大取向密度为2.6;施加脉冲电流后,不论是传统脉冲电流还是复合脉冲电流,都使构件在3个方向上的织构强度有一定减弱,最大取向密度分别减小到了1.487和1.404。这说明脉冲电流的加入阻碍了晶粒沿低指数晶面上的定向生长,促使柱状晶向等轴晶转变,对晶粒细化有促进作用。

图7

图7   晶粒取向、晶粒尺寸分布及晶界角分布图

Fig.7   Grain orientations (a1-c1), grain size distributions (a2-c2), and grain boundary angle distributions (a3-c3) of C0 (a1-a3), S4 (b1-b3), and D4 (c1-c3) samples


图8

图8   不同类型脉冲电流对焊缝晶粒尺寸和大角度晶界占比的影响

Fig.8   Influence of different types of pulse current on grain size and the proportion of large-angle grain boundaries (LAGBs)


图9

图9   C0、S4和D4样品的极图

Fig.9   Pole figures of C0 (a), S4 (b), and D4 (c) samples (TD—transverse direction, RD—rolling direction)


3 分析讨论

3.1 脉冲电流对焊缝熔池热力状态的影响

温度梯度(G)、生长速率(R)及其组合形式GR是重要的凝固参数。凝固的组织形貌是由固/液界面的稳定性来确定的[23]

GRΔTDL
(1)

这是熔池凝固界面生长准则的稳态形式。式中,ΔT为金属固液温度差,DL为金属扩散系数。对于本实验铝合金,固相温度为568.3℃,液相温度为638℃,经JMatPro计算可以得出,在凝固期间的整体平均扩散系数为5.45 × 10-9 m2∕s。当满足 式(1)时,晶粒向等轴晶生长。图10给出了GR与凝固组织的关系。可以看出,G越小,R越大,则晶粒形貌就越偏向细小等轴晶生长,因为焊接过程凝固速率较快,在这里只讨论凝固组织为柱状晶和等轴晶的情况。参数GR在凝固过程中上都是变化的,可以看出冷却速率(G × R)决定了凝固组织形貌的尺寸,其值越大组织尺寸越小,而G / R决定了组织形貌,随着其值的减小组织逐渐向等轴晶转变。

图10

图10   温度梯度和生长速率对凝固组织形貌的影响

Fig.10   Influence of temperature gradient and growth rate on the morphology of solidification structure


图3,在施加传统脉冲电流的情况下,随着脉冲电流频率的增加,晶粒细化效果逐渐加强,众所周知,脉冲电流的加入会降低凝固前沿的温度梯度。通过图10式(1)可以看出,温度梯度的减小有利于促进等轴晶的生成,抑制柱状晶生长,促使晶粒细化,同时随着频率的增大更加有利于形核点的增加与扩散,而多位点的形核反过来也会阻碍柱状晶的生长,促使柱状晶向等轴晶转变,有效增强晶粒细化效果。

Wang等[37]探究了单脉冲电流(SP)与双脉冲(DP)电流电弧焊的温度变化行为,发现DP-GMAW过程中热输入和熔深随时间呈周期性变化。DP-GMAW过程中随时间变化的热输入的另一个重要结果是熔池的周期性收缩和膨胀。在DP-GMAW过程中,熔池几何形状和冷却速率的变化导致了独特的凝固条件和微观结构,与SP-GMAW获得的凝固条件和微观结构显著不同。他们还发现DP-GMAW焊缝的凝固生长速率R的平均值大于SP-GMAW的常数R。且DP-GMAW的冷却速率大于SP-GMAW的冷却速率,因此双脉冲电流对组织的细化效果要大于传统脉冲电流的细化效果。此结论与本实验结果相符。另一方面,有研究[40]指出,由于金属液本身在凝固过程中存在着温度变化和固/液转变现象,这会导致熔池的振荡作用。当通过其他物理场引入新的振动时,若其振动频率与未凝固组织本身固有频率相吻合时,则将促进熔池的晶粒细化;反之晶粒细化效果减弱。对比图36可以看出,当采用复合脉冲电流时,晶粒的细化效果会随着脉冲电流频率的增加而减弱,复合脉冲电流的频率与熔池本身的固有频率差距逐渐变大,导致晶粒细化效果逐渐减弱。

3.2 脉冲电流对焊缝熔池形核机制的影响

枝晶破碎、晶粒脱落和异质形核是常见的3种晶粒细化机制[23]。焊接过程中熔池周围的材料会被加热到液相线温度(TL)与共晶温度(TE)之间,这将会导致晶粒无法被完全融化。随着焊接的进行,熔池对流可能造成部分熔化的晶粒从围绕着熔池的固液混合物中脱离出来,若这些部分熔化的晶粒在熔池中留存下来,则可以在熔池中长大为等轴晶粒并促进晶粒细化,此即晶粒分离细化机制。由于这些部分熔化晶粒在焊接过程中会不断产生,因此晶粒脱落造成的晶粒细化也在不断发生。此外,随着脉冲电流频率增加,熔池温度起伏加剧,瞬时的高温会使被带入熔池的大量部分熔化晶粒完全熔化,且Wang等[41]的实验研究发现,随着脉冲电流频率的增加焊缝部分熔化区的范围会减小,也就是说晶粒分离发生几率减小,即晶粒脱落细化效果会随着电路脉冲电流频率增加而减弱,这与本实验结果相违背,说明晶粒脱落不是复合脉冲电流晶粒细化的主要机制。

本工作所用材料内弥散有异质颗粒,若这些异质颗粒没有被焊接熔池的高温熔化掉,这些颗粒就成为异质晶核点,在熔池凝固过程中逐渐长大,由于形核点的增多促进了晶粒细化,即异质形核细化机制。图11a~c分别为C0、S4和D4组焊缝的EDS结果,分析表明本实验采用的Al-Mg合金内混有的高熔点异质颗粒如Ti含量很低(0.02%),不足以产生明显的晶粒细化效果。且通过对焊缝内部析出相进行分析(图11),其成分以及形貌不符合异质形核的标准;此外,这些未被熔化的异质颗粒也可能因脉冲电流峰值期间的熔池高温而被大量熔化。综合判断,异质形核不是复合脉冲电流晶粒细化的主要机制。

图11

图11   焊缝EDS分析结果

Fig.11   EDS analysis results of C0 (a), S4 (b), and D4 (c) samples


就枝晶破碎细化机制而言,通过改变电弧来促进枝晶断裂和等轴晶形成的原因已有相关报道。Rao等[8]认为脉冲电流碎断枝晶是晶粒细化的原因,即脉冲电流产生的扰动迫使枝晶破碎或发生部分重熔成为游离枝晶。Wang等[42]在大量调研脉冲电流细化铝合金凝固组织的基础上,认为细化效应是由于电磁综合作用的结果。电磁对凝固中的熔体产生收缩、搅拌和冲击等综合作用,使枝晶断裂形成游离晶,提高形核率;脉冲电流又抑制晶体长大,从而达到细化凝固组织的效果。本工作通过对晶粒细化3种机制的探究与排除,综合前人实验结果,也分析得出铝合金复合脉冲电流等离子弧焊的晶粒细化机制为枝晶破碎机制。

4 结论

(1) 施加传统脉冲电流与复合脉冲电流对5A06铝合金晶粒细化效果显著。施加传统脉冲电流时,随着脉冲电流频率的增加晶粒细化效果逐渐增强,在脉冲电流频率增加到100 Hz时,晶粒尺寸从78.2 μm降到了50.6 μm;施加复合脉冲电流时,随着低频脉冲电流频率的升高,晶粒尺寸变化不明显,晶粒尺寸从未加电流的78.2 μm降到48.2 μm。

(2) 复合脉冲电流的晶粒细化效果要优于单脉冲电流。单脉冲电流最大细化效果为30%,而复合脉冲电流最大细化效果可达到40%,晶粒取向分布更加随机,大角度晶界角占比增加。

(3) 脉冲电流细化晶粒主要是通过对熔池的振荡作用,促进糊状区枝晶的破碎与枝晶尖端的重熔,增加形核点,阻碍柱状晶生长,从而细化了焊缝晶粒。

参考文献

Kruth J P, Levy G, Klocke F, et al.

Consolidation phenomena in laser and powder-bed based layered manufacturing

[J]. CIRP Annals, 2007, 56: 730

DOI      URL     [本文引用: 1]

Santos M C, Machado A R, Sales W F, et al.

Machining of aluminum alloys: A review

[J]. Int. J. Adv. Manuf. Technol., 2016, 86: 3067

DOI      URL     [本文引用: 1]

Spierings A B, Dawson K, Heeling T, et al.

Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting

[J]. Mater. Des., 2017, 115: 52

DOI      URL     [本文引用: 1]

Croteau J R, Griffiths S, Rossell M D, et al.

Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting

[J]. Acta Mater., 2018, 153: 35

DOI      URL    

Chakrabarti D J, Laughlin D E.

Phase relations and precipitation in Al-Mg-Si alloys with Cu additions

[J]. Prog. Mater. Sci., 2004, 49: 389

DOI      URL     [本文引用: 1]

Zhang Z Q, He C S, Li Y, et al.

Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints

[J]. J. Mater. Sci. Technol., 2020, 43: 1

DOI      [本文引用: 1]

Conventional friction stir welding (FSW) and ultrasonic assisted friction stir welding (UAFSW) were employed to weld 6-mm thick 7N01-T4 aluminum alloy plates. Weld forming characteristics and material flow behavior in these two different welding processes were studied and compared. Ultrasonic vibration was applied directly on the weld in axial direction through the welding tool. Metal flow behavior, microstructure characteristics in the nugget zone (NZ) and evolution of the mechanical properties of naturally aged joints were studied. Results show that the ultrasonic vibration can significantly increase the welding speed of defect-free welded joint. At the rotation speed of 1200 rpm, the UAFSW can produce defect-free welded joints at a welding speed that is 50% higher than that of the conventional FSW. Ultrasonic vibrations can also improve surface quality of the joints and reduce axial force by 9%. Moreover, ultrasonic vibrations significantly increase the volume of the pin-driven zone (PDZ) and decrease the thickness of the transition zone (TZ). The number of subgrains and deformed grains resulting from the UAFSW is higher than that from the FSW. By increase the strain level and strain gradient in the NZ, the ultrasonic vibrations can refine the grains. Ultrasonic energy is the most at the top of the NZ, and gradually reduces along the thickness of the plate. The difference in strengths between the FSW and the UAFSW joints after post-weld natural aging (PWNA) is small. However, the elongation of the UAFSW is 8.8% higher than that of the FSW (PWNA for 4320 h). Fracture surface observation demonstrates that all the specimens fail by ductile fracture, and the fracture position of the UAFSW joint changes from HAZ (PWNA for 120 h) to NZ (PWNA for 720 and 4320 h).

Dai W L.

Effects of high-intensity ultrasonic-wave emission on the weldability of aluminum alloy 7075-T6

[J]. Mater. Lett., 2003, 57: 2447

DOI      URL    

Rao S R K, Reddy G M, Kamaraj M, et al.

Grain refinement through arc manipulation techniques in Al-Cu alloy GTA welds

[J]. Mater. Sci. Eng., 2005, A404: 227

[本文引用: 2]

Babu N K, Talari M K, Pan D, et al.

Microstructural characterization and grain refinement of AA6082 gas tungsten arc welds by scandium modified fillers

[J]. Mater. Chem. Phys., 2012, 137: 543

DOI      URL     [本文引用: 1]

Liotti E, Lui A, Vincent R, et al.

A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al-15Cu alloy

[J]. Acta Mater., 2014, 70: 228

DOI      URL     [本文引用: 1]

Yuan T, Kou S, Luo Z.

Grain refining by ultrasonic stirring of the weld pool

[J]. Acta Mater., 2016, 106: 144

DOI      URL     [本文引用: 1]

Wang G, Dargusch M S, Qian M, et al.

The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al-2Cu alloy

[J]. J. Cryst. Growth, 2014, 408: 119

DOI      URL     [本文引用: 1]

Villaret V, Deschaux-Beaume F, Bordreuil C.

A solidification model for the columnar to equiaxed transition in welding of a Cr-Mo ferritic stainless steel with Ti as inoculant

[J]. J. Mater. Process. Technol., 2016, 233: 115

DOI      URL     [本文引用: 1]

Bermingham M J, McDonald S D, Dargusch M S, et al.

The mechanism of grain refinement of titanium by silicon

[J]. Scr. Mater., 2008, 58: 1050

DOI      URL    

Samanta S K, Mitra S K, Pal T K.

Effect of rare earth elements on microstructure and oxidation behaviour in TIG weldments of AISI 316L stainless steel

[J]. Mater. Sci. Eng., 2006, A430: 242

Chen Z N, Kang H J, Fan G H, et al.

Grain refinement of hypoeutectic Al-Si alloys with B

[J]. Acta Mater., 2016, 120: 168

DOI      URL     [本文引用: 1]

Song B, Dong S J, Coddet P, et al.

Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting

[J]. J. Alloys Compd., 2013, 579: 415

DOI      URL     [本文引用: 1]

AlMangour B, Grzesiak D, Yang J M.

Selective laser melting of TiB2/H13 steel nanocomposites: influence of hot isostatic pressing post-treatment

[J]. J. Mater. Process. Technol., 2017, 244: 344

DOI      URL    

Xi L X, Gu D D, Guo S, et al.

Grain refinement in laser manufactured Al-based composites with TiB2 ceramic

[J]. J. Mater. Res. Technol., 2020, 9: 2611

DOI      URL     [本文引用: 1]

Wang E Z, Gao T, Nie J F, et al.

Grain refinement limit and mechanical properties of 6063 alloy inoculated by Al-Ti-C (B) master alloys

[J]. J. Alloys Compd., 2014, 594: 7

DOI      URL     [本文引用: 1]

Easton M A, Schiffl A, Yao J, et al.

Grain refinement of Mg-Al(-Mn) alloys by SiC additions

[J]. Scr. Mater., 2006, 55: 379

DOI      URL     [本文引用: 1]

Kou S, Le Y.

Grain structure and solidification cracking in oscillated arc welds of 5052 aluminum alloy

[J]. Metall. Trans., 1985, 16A: 1345

[本文引用: 1]

Yuan T, Luo Z, Kou S.

Grain refining of magnesium welds by arc oscillation

[J]. Acta Mater., 2016, 116: 166

DOI      URL     [本文引用: 4]

Jiang Z G, Chen X, Li H, et al.

Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy

[J]. Mater. Des., 2020, 186: 108195

DOI      URL     [本文引用: 1]

Tseng K H, Chou C P.

The effect of pulsed GTA welding on the residual stress of a stainless steel weldment

[J]. J. Mater. Process. Technol., 2002, 123: 346

DOI      URL     [本文引用: 1]

Balasubramanian V, Ravisankar V, Reddy G M.

Effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded high strength aluminium alloy

[J]. Mater. Sci. Eng., 2007, A459: 19

[本文引用: 1]

Balasubramanian V, Ravisankar V, Madhusudhan Reddy G.

Influences of pulsed current welding and post weld aging treatment on fatigue crack growth behaviour of AA7075 aluminium alloy joints

[J]. Int. J. Fatigue, 2008, 30: 405

DOI      URL     [本文引用: 1]

Palani P K, Murugan N.

Selection of parameters of pulsed current gas metal arc welding

[J]. J. Mater. Process. Technol., 2006, 172: 1

DOI      URL     [本文引用: 1]

Liu A H, Tang X H, Lu F G.

Study on welding process and prosperities of AA5754 Al-alloy welded by double pulsed gas metal arc welding

[J]. Mater. Des., 2013, 50: 149

DOI      URL     [本文引用: 3]

Pan J J, Hu S S, Yang L J, et al.

Investigation of molten pool behavior and weld bead formation in VP-GTAW by numerical modelling

[J]. Mater. Des., 2016, 111: 600

DOI      URL     [本文引用: 1]

Wang Y P, Qi B J, Cong B Q, et al.

Keyhole welding of AA2219 aluminum alloy with double-pulsed variable polarity gas tungsten arc welding

[J]. J. Manuf. Process., 2018, 34: 179

DOI      URL     [本文引用: 1]

Wang Y P, Cong B Q, Qi B J, et al.

Process characteristics and properties of AA2219 aluminum alloy welded by double pulsed VPTIG welding

[J]. J. Mater. Process. Technol., 2019, 266: 255

DOI      URL     [本文引用: 1]

Bosworth M R, Deam R T.

Influence of GMAW droplet size on fume formation rate

[J]. J. Phys. D: Appl. Phys., 2000, 33: 2605

DOI      URL     [本文引用: 1]

Da Silva C L M, Scotti A.

The influence of double pulse on porosity formation in aluminum GMAW

[J]. J. Mater. Process. Technol., 2006, 171: 366

DOI      URL    

Liu A H, Tang X H, Lu F G.

Weld pool profile characteristics of Al alloy in double-pulsed GMAW

[J]. Int. J. Adv. Manuf. Technol., 2013, 68: 2015

DOI      URL     [本文引用: 1]

Yao P, Zhou K, Tang H Q.

Effects of operational parameters on the characteristics of ripples in double-pulsed GMAW process

[J]. Materials, 2019, 12: 2767

DOI      URL     [本文引用: 1]

This study focuses on the characteristics of the ripples of the weld bead formed during the double-pulsed gas metal arc welding (DP-GMAW) process. As a special output of the process, ripples include many useful information and can reflect the quality of the welding process. The work analyzed the operational characteristics of the DP-GMAW process based on robot operation which used the latest twinpulse XT DP control process, and then selected five key operational parameters, such as average current, welding speed, twin pulse frequency, twin pulse relation, and twin pulse current change in percent, to explore their effects on the formation and characteristics of ripples. A reliable method of measuring the distance of the ripples was used to provide convincing data. According to a series of experimental observations and analyses, the distance of ripples and appearance under different conditions were obtained. Also, curve fitting equations between each operational parameter and corresponding distances of ripples was obtained. To testify the effectiveness of the curve fitting equations, corresponding verifying experiments were conducted, and the results showed that all the errors were below 10%. In addition, the different levels of the operational parameters on the formation and characteristics of ripples were provided. This work can be a reference for the process and quality control improvement for the DP-GMAW process.

Wang L L, Wei H L, Xue J X, et al.

A pathway to microstructural refinement through double pulsed gas metal arc welding

[J]. Scr. Mater., 2017, 134: 61

DOI      URL     [本文引用: 2]

Wang Y P, Cong B Q, Qi B J, et al.

Influence of low-pulsed frequency on arc profile and weld formation characteristics in double-pulsed VPTIG welding of aluminium alloys

[J]. J. Manuf. Process., 2020, 58: 1211

DOI      URL     [本文引用: 1]

Wang L L, Xue J X.

Perspective on double pulsed gas metal arc welding

[J]. Appl. Sci., 2017, 7: 894

DOI      URL     [本文引用: 1]

Zhang P L, Jia Z Y, Yu Z S, et al.

A review on the effect of laser pulse shaping on the microstructure and hot cracking behavior in the welding of alloys

[J]. Opt. Laser Technol., 2021, 140: 107094

DOI      URL     [本文引用: 1]

Wang Y J, Chen M A, Wu C S.

HF pulse effect on microstructure and properties of AC TIG butt-welded joint of 6061Al alloy

[J]. J. Manuf. Process., 2020, 56: 878

DOI      URL     [本文引用: 1]

Wang Z M, Jiang D H, Wu J W, et al.

A review on high-frequency pulsed arc welding

[J]. J. Manuf. Processes, 2020, 60: 503

DOI      URL     [本文引用: 1]

/