|
|
基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究 |
胡龙1, 王义峰1( ), 李索1, 张超华1,2, 邓德安1 |
1.重庆大学 材料科学与工程学院 重庆 400045 2.南昌大学 机电工程学院 南昌 330031 |
|
Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram |
HU Long1, WANG Yifeng1( ), LI Suo1, ZHANG Chaohua1,2, DENG Dean1 |
1.College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China 2.School of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031, China |
引用本文:
胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
Long HU,
Yifeng WANG,
Suo LI,
Chaohua ZHANG,
Dean DENG.
Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. Acta Metall Sin, 2021, 57(8): 1073-1086.
1 |
Shi G, Shi Y J, Ban H Y. High-Strength Steel and Structure [M]. Beijing: China Architecture & Building Press, 2014: 1
|
1 |
施 刚, 石永久, 班慧勇. 高强度钢材钢结构 [M]. 北京: 中国建筑工业出版社, 2014: 1
|
2 |
Liu H J, Yan J C, Wei Y H. Welding Metallurgy and Weldability [M]. Beijing: China Machine Press, 2007: 1
|
2 |
刘会杰, 闫久春, 魏艳红. 焊接冶金与焊接性 [M]. 北京: 机械工业出版社, 2007: 1
|
3 |
Masao T. Determining the strength of welded joints—Knowing the characteristics of welding and utilizing inspection technology for quality control [J]. J. Jpn. Weld. Soc., 2012, 15: 21
|
3 |
豊田政男. 溶接継手の強度を決めるもの—溶接の特徴を知り、品質管理に検査技術を活かす [J]. 日本溶接学会誌, 2012, 15: 21
|
4 |
Huang J H. Principles of Welding Metallurgy [M]. Beijing: China Machine Press, 2015: 205
|
4 |
黄继华. 焊接冶金原理 [M]. 北京: 机械工业出版社, 2015: 205
|
5 |
Li Y J, Wang J. Analysis and Countermeasures of Celding Defects [M]. 2nd Ed., Beijing: Chemical Industry Press, 2014: 1
|
5 |
李亚江, 王 娟. 焊接缺陷分析与对策 [M], 第2版, 北京: 化学工业出版社, 2014: 1
|
6 |
Sista S, Yang Z, Debroy T. Three-dimensional monte carlo simulation of grain growth in the heat-affected zone of a 2.25Cr-1Mo steel weld [J]. Metall. Mater. Trans., 2000, 31B: 529
|
7 |
Wu M W, Xiong S M. Microstructure simulation of high pressure die cast magnesium alloy based on modified CA method [J]. Acta Metall. Sin., 2010, 46: 1534
|
7 |
吴孟武, 熊守美. 基于改进CA方法的压铸镁合金微观组织模拟 [J]. 金属学报, 2010, 46: 1534
|
8 |
Yu J, Xu Q Y, Cui K, et al. Numerical simulation of microstructure evolution based on a modified Ca method [J]. Acta Metall. Sin., 2007, 43: 731
|
8 |
于 靖, 许庆彦, 崔 锴等. 基于一种改进CA模型的微观组织模拟 [J]. 金属学报, 2007, 43: 731
|
9 |
Chen M J, Lv W, Huang Z X, et al. Application and development of microstructure simulation in welding research [J]. Electr. Weld. Mach., 2019, 49(2): 68
|
9 |
陈满骄, 吕 威, 黄作勋等. 微观组织模拟在焊接研究中的应用与发展 [J]. 电焊机, 2019, 49(2): 68
|
10 |
Zheng W J, He Y M, Yang J G, et al. Influence of the crystal orientation of epitaxial solidification on the linear instability dynamic during the solidification of welding pool [J]. J. Mech. Eng., 2018, 54(2): 62
|
10 |
郑文健, 贺艳明, 杨建国等. 焊接熔池凝固过程联生结晶晶体学取向对线性不稳定动力学的影响 [J]. 机械工程学报, 2018, 54(2): 62
|
11 |
Song K J. Modeling of microstructure in TIG welding heat affected zone and study on mechanical constitutive relation for TA15 alloy [D]. Harbin: Harbin Institute of Technology, 2014
|
11 |
宋奎晶. TA15钛合金TIG焊热影响区组织模拟及力学本构关系研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014
|
12 |
Cheon J, Na S J. Prediction of welding residual stress with real-time phase transformation by CFD thermal analysis [J]. Int. J. Mech. Sci., 2017, 131-132: 37
|
13 |
Deng D A, Zhang Y B, Li S, et al. Influence of solid-state phase transformation on residual stress in P92 steel welded joint [J]. Acta Metall. Sin., 2016, 52: 394
|
13 |
邓德安, 张彦斌, 李 索等. 固态相变对P92钢焊接接头残余应力的影响 [J]. 金属学报, 2016, 52: 394
|
14 |
Deng D A, Ren S D, Li S, et al. Influence of multi-thermal cycle and constraint condition on residual stress in P92 steel weldment [J]. Acta Metall. Sin., 2017, 53: 1532
|
14 |
邓德安, 任森栋, 李 索等. 多重热循环和约束条件对P92钢焊接残余应力的影响 [J]. 金属学报, 2017, 53: 1532
|
15 |
Xavier C R, Delgado Junior H G, Castro J A, et al. Numerical predictions for the thermal history, microstructure and hardness distributions at the HAZ during welding of low alloy steels [J]. Mater. Res., 2016, 19: 520
|
16 |
Kang S H, Im Y T. Finite element investigation of multi-phase transformation within carburized carbon steel [J]. J. Mater. Process. Technol., 2007, 183: 241
|
17 |
Han L Z, Gu J F, Pan J S. Metallographic Atlas of SA508 Gr.3 Steel for Nuclear Power Heavy Forging [M]. Shanghai: Shanghai Jiao Tong University Press, 2016: 24
|
17 |
韩利战, 顾剑锋, 潘健生. 核电大型锻件SA508 Gr.3钢金相图谱 [M]. 上海: 上海交通大学出版社, 2016: 24
|
18 |
Eshraghi-Kakhki M, Kermanpur A, Golozar M A. Three-dimensional simulation of quenching process of plain carbon steel gears incorporating phase transformations [J]. Mater. Sci. Technol., 2012, 28: 197
|
19 |
Zhang Q, Xie J W, Gao Z Y, et al. A metallurgical phase transformation framework applied to SLM additive manufacturing processes [J]. Mater. Des., 2019, 166: 107618
|
20 |
Ronda J, Oliver G J. Consistent thermo-mechano-metallurgical model of welded steel with unified approach to derivation of phase evolution laws and transformation-induced plasticity [J]. Comput. Meth. Appl. Mech. Eng., 2000, 189: 361
|
21 |
Deng D A, Murakawa H. Finite element analysis of temperature field, microstructure and residual stress in multi-pass butt-welded 2.25Cr-1Mo steel pipes [J]. Comput. Mater. Sci., 2008, 43: 681
|
22 |
den Uijl N J, Nishibata H, Smith S, et al. Prediction of post weld hardness of advanced high strength steels for automotive application using a dedicated carbon equivalent number [J]. Weld. World, 2008, 52: 18
|
23 |
Zhou H, Zhang Q Y, Yi B, et al. Hardness prediction based on microstructure evolution and residual stress evaluation during high tensile thick plate butt welding [J]. Int. J. Naval Archit. Ocean Eng., 2020, 12: 146
|
24 |
Deng D A, Kiyoshima S. Influence of annealing temperature on calculation accuracy of welding residual stress in a SUS304 stainless steel joint [J]. Acta Metall. Sin., 2014, 50: 626
|
24 |
邓德安, Kiyoshima S. 退火温度对SUS304不锈钢焊接残余应力计算精度的影响 [J]. 金属学报, 2014, 50: 626
|
25 |
Yang S M, Tao W Q. Heat Transfer [M]. Beijing: Higher Education Press, 2006: 1
|
25 |
杨世铭, 陶文铨. 传热学 [M]. 北京: 高等教育出版社, 2006: 1
|
26 |
Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources [J]. Metall. Trans., 1984, 15B: 299
|
27 |
Lu S J, Wang H, Dai P Y, et al. Effect of creep on prediction accuracy and calculating efficiency of residual stress in post weld heat treatment [J]. Acta Metall. Sin., 2019, 55: 1581
|
27 |
逯世杰, 王 虎, 戴培元等. 蠕变对焊后热处理残余应力预测精度和计算效率的影响 [J]. 金属学报, 2019, 55: 1581
|
28 |
Watt D F, Coon L, Bibby M, et al. An algorithm for modelling microstructural development in weld heat-affected zones (part a) reaction kinetics [J]. Acta Metall., 1988, 36: 3029
|
29 |
Kang S H, Im Y T. Three-dimensional thermo-elastic-plastic finite element modeling of quenching process of plain-carbon steel in couple with phase transformation [J]. Int. J. Mech. Sci., 2007, 49: 423
|
30 |
Fukumoto M, Yoshizaki M, Imataka H, et al. Three-dimensional FEM analysis of helical gear subjected to the carburized quenching process [J]. J. Soc. Mat. Sci., Japan, 2001, 50: 598
|
30 |
福本学, 吉崎正敏, 今高秀樹等. ヘリカルギアの浸炭焼入れ3次元シミュレーション [J]. 材料, 2001, 50: 598
|
31 |
Deng D A. FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects [J]. Mater. Des., 2009, 30: 359
|
32 |
Song Y P, Liu G Q, Liu J T. et al. Prediction of microstructure distribution in quenched jominy specimen by maynier mathematic model [J]. Heat Treat. Met., 2006, 31(3): 93
|
32 |
宋月鹏, 刘国权, 刘建涛等. 基于梅尼尔模型端淬试样组织分布的预报预测 [J]. 金属热处理, 2006, 31(3): 93
|
33 |
Song D L, Jiao S H. Validation of hardness prediction mathematic models [J].Mater. Mech. Eng., 2008, 32(003): 29
|
33 |
宋冬利,焦四海. 硬度预测模型的试验验证[J]. 机械工程材料, 2008, 32(003): 29
|
34 |
Kasuya T, Hashiba Y. Carbon equivalent to assess hardenability of steel and prediction of HAZ hardness distribution [J]. Shinnittetsu Giho, 2006, 385: 48
|
35 |
Zhang C H, Li S, Hu L, et al. Effects of pass arrangement on angular distortion, residual stresses and lamellar tearing tendency in thick-plate T-joints of low alloy steel [J]. J. Mater. Process. Technol., 2019, 274: 116293
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|