Please wait a minute...
金属学报  2011, Vol. 47 Issue (10): 1233-1240    DOI: 10.3724/SP.J.1037.2011.00126
  论文 本期目录 | 过刊浏览 |
F460高强韧厚船板焊接热影响区的组织和冲击断裂行为
刘东升,程丙贵,罗咪
江苏省(沙钢)钢铁研究院, 张家港 215625
MICROSTRUCTURE AND IMPACT FRACTURE BEHAVIOUR OF HAZ OF F460 HEAVY SHIP PLATE WITH HIGH STRENGTH AND TOUGHNESS
LIU Dongsheng, CHENG Binggui, LUO Mi
Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625
引用本文:

刘东升 程丙贵 罗咪. F460高强韧厚船板焊接热影响区的组织和冲击断裂行为[J]. 金属学报, 2011, 47(10): 1233-1240.
, , . MICROSTRUCTURE AND IMPACT FRACTURE BEHAVIOUR OF HAZ OF F460 HEAVY SHIP PLATE WITH HIGH STRENGTH AND TOUGHNESS[J]. Acta Metall Sin, 2011, 47(10): 1233-1240.

全文: PDF(1667 KB)  
摘要: 使用Gleeble-3800热模拟试验机模拟单道次焊接条件下大厚度(50 mm)F460钢板热影响区(HAZ)热循环过程, 通过OM, SEM, EBSD和TEM研究了HAZ的显微组织随热输入($E$)的演化规律. 测试了不同E下HAZ的室温硬度(HV),在-40和-60 ℃下进行了Charpy冲击示波实验(CVN). 当E=15 kJ/cm时,显微组织为高位错密度板条马氏体(LM), 板条间呈现出大取向差,板条间存在细小片状马氏体/奥氏体(M/A)组元. 当E=30 kJ/cm时, 板条贝氏体(LB)形成,随着E提高至50 kJ/cm, 板条宽度增大, 且有粒状贝氏体(GB)形成,大角度晶界减少, M/A组元粗化. 当E为100-300 kJ/cm时, HAZ的显微组织由GB+上贝氏体(UB)+准多边形铁素体(QPF)构成, 组织均匀性恶化.HAZ的硬度、CVN最大载荷(Pm)、脆性断裂止裂载荷(Pa)、脆性断裂裂纹扩展速率、CVN载荷降至0时的位移(d0)等均随着E的增加而降低.脆断单元解理面尺寸随$E$的提高而逐渐增大, 从而揭示HAZ铁素体等效晶粒尺寸随E的提高而增大、低温韧性随E的提高而降低的规律. E不高于30 kJ/cm时,在-60 ℃下的HAZ与母材的韧性相匹配.
关键词 F460 厚船板 模拟热影响区 精细显微组织 冲击断裂行为 低温韧性    
Abstract:Thermal cycles of the heat–affected zone (HAZ) of an advanced F460 steel plate used as offshore structure and ship–building in the future were simulated by employing a Gleeble 3800 thermomechanical simulator. The microstructures of the HAZ formed at different heat input energies (E) were characterized by means of OM, SEM, EBSD and TEM, and mechanical properties were measured. When E is equal to 15 kJ/cm, the microstructures consist of mainly lath–like martensite (LM) with high density dislocations and large misorientations, between the laths exist fine martensite/austenite (M/A) constituents. When E is equal to 30 kJ/cm, lath–like bainite (LB) is formed. The lath grains and M/A constituents will coarsen and the amount of high angle (≥15?) boundaries will decrease with the increase of E to 50 kJ/cm. When E is in a range of 100—300 kJ/cm, the microstructures consist of granular bainite (GB)+upper bainite (UB)+quasi–polygonal ferrite (QPF). The hardness of the HAZ (HV), the maximum Charpy V notch (CVN) impact load (Pm), the brittle fracture arrested load (Pa), the crack propagation rate, and the entire displacement (d0) of the CVN impact course decrease with the increase of E. The size of cleavage facets increases with the increase of E, which can be used to explain the effective grain size of the HAZ increases with the increase of E, as a result, the hardness decreases and low temperature toughness deteriorates as E increases. The upper limit of the simulated heat input E for the F460 steel is 30 kJ/cm which makes the toughness of the HAZ equivalent to that of the mother plate at −60 ℃.
Key wordsF460 heavy plate    simulated heat–affected zone (HAZ)    fine microstructure    impact fracture behaviour    low temperature toughness
收稿日期: 2011-03-10     
作者简介: 刘东升, 男, 1962年生, 博士
[1] McPherson N A. Ironmaking Steelmaking, 2009; 36(3): 93

[2] Hodnik P, F¨urst C, Pennerstorfer P, Lengauer H. Stahl Eisen, 2008; 128(10): 35

[3] Weng Y Q, Kang Y L. Iron Steel, 2010; 45(9): 1

(翁宇庆, 康永林. 钢铁, 2010; 45(9): 1)

[4] Ichimiya K, Sumi H, Hirai T. JFE Tech Rep, 2008; (11): 7

[5] Kaneko M, Izumi M, Shibta N, Furukawa N, Abe K. R &D Kobe Steel Eng Rep, 2008; 58(1): 39

[6] Nagai Y, Inoue H, Nakashima T, Adachi T, Fukami H, Date A, Kojima A. Nippon Steel Tech Rep, 2004; (90): 14

[7] Sch¨utz W, Schr¨oter F. Mater Sci Technol, 2005; 21: 590

[8] Wu H B, Tang D, Zhao A M, Zhu H B. Met World, 2010; (5): 40

(武会宾, 唐荻, 赵爱民, 朱海宝. 金属世界, 2010; (5): 40)

[9] Di G B, Liu Z Y, Ma Q S, Liu X H, Wang G D. J Iron Steel Res, 2010; 22(7): 51

(狄国标, 刘振宇, 麻庆申, 刘相华, 王国栋. 钢铁研究学报, 2010; 22(7): 51)

[10] Liu D, Li Q, Emi T. Metall Mater Trans, 2011; 42A: 1349

[11] Liu D, Cheng B, Luo M. ISIJ Int, 2011; 51: 603

[12] Shikanai N, Mitao S, Endo S. JFE Tech Rep, 2008; (1): 1

[13] Schmidt D, Dehmel R, Horn G. Stahl Eisen, 2008; 128(8): 25

[14] Wang G D. Steel Roll, 2010; 27(2): 1

(王国栋. 轧钢, 2010; 27(2): 1)

[15] Ouchi C. ISIJ Int, 2001; 41: 542

[16] de Meester B. ISIJ Int, 1997; 37: 537

[17] Miao C L, Shang C J, Wang X M, Zhang L F, Mani S. Acta Metall Sin, 2010; 46: 541

(缪成亮, 尚成嘉, 王学敏, 张龙飞, Mani S. 金属学报, 2010; 46: 541)

[18] Zhao Y Z, Li B, Shi Y W, Tian Z L. Acta Metall Sin, 2003; 39: 505

(赵玉珍, 李擘, 史耀武, 田志凌. 金属学报, 2003; 39: 505)

[19] Wiesner C S. Int J Pres Ves Piping, 1996; 69: 185

[20] Hashemi S H. Int J Pres Ves Piping, 2008; 85: 879

[21] Deng W, Gao X H, Qin X M, Zhao D W, Du L X, Wang G D. Acta Metall Sin, 2010; 46: 553

(邓伟, 高秀华, 秦小梅, 赵德文, 杜林秀, 王国栋. 金属学报, 2010; 46: 533)

[22] Zhou M, Du L X, Liu X H, Wang Y X. J Plast Eng, 2010; 17(5): 108

(周民, 杜林秀, 刘相华, 王悦新. 塑性工程学报, 2010; 17(5): 108)

[23] Grong Ø. Metallurgical Modelling of Welding. 2nd Ed. London: The Institute of Materials, 1997: 26

[24] Hwang B, Lee C G, Lee T H. Metall Mater Trans, 2010; 41A: 85

[25] Han S Y, Shin S Y, Lee S, Kim N J, Bae J H, Kim K. Metall Mater Trans, 2010; 41A: 329

[26] Han S Y, Shin S Y, Seo C H, Lee H, Bae J H, Kim K. Metall Mater Trans, 2010; 41A: 1851

[27] Suzuki S, Ichimiya K, Akita T. JFE Tech Rep, 2005; (5): 24

[28] Minagawa M, Ishida K. Nippon Steel Tech Rep, 2004; (90): 7

[29] Shu W,Wang X M, Li S R, He X L. Acta Metall Sin, 2010; 46: 997

(舒玮, 王学敏, 李书瑞, 贺信莱. 金属学报, 2010; 46: 997)

[30] Yu S F, Qian B N, Guo X M. Acta Metall Sin, 2005; 41: 402

(于少飞, 钱百年, 国旭明. 金属学报, 2005; 41: 402)
[1] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[2] 王猛, 刘振宇, 李成刚. 轧后超快冷及亚温淬火对5%Ni钢微观组织与低温韧性的影响机理[J]. 金属学报, 2017, 53(8): 947-956.
[3] 董利明,杨莉,戴军,张宇,王学林,尚成嘉. Mn、Ni、Mo含量对K65热煨弯管焊缝组织转变和低温韧性的影响[J]. 金属学报, 2017, 53(6): 657-668.
[4] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[5] 王长军,梁剑雄,刘振宝,杨志勇,孙新军,雍岐龙. 亚稳奥氏体对低温海工用钢力学性能的影响与机理*[J]. 金属学报, 2016, 52(4): 385-393.
[6] 谢振家,尚成嘉,周文浩,吴彬彬. 低合金多相钢中残余奥氏体对塑性和韧性的影响*[J]. 金属学报, 2016, 52(2): 224-232.
[7] 高古辉, 桂晓露, 安佰锋, 谭谆礼, 白秉哲, 翁宇庆. 终冷温度对Mn系超低碳HSLA钢组织及低温韧性的影响[J]. 金属学报, 2015, 51(1): 21-30.
[8] 刘东升 程丙贵 陈圆圆. 低C含Cu NV-F690特厚钢板的精细组织和强韧性[J]. 金属学报, 2012, 48(3): 334-342.
[9] 杨银辉 柴锋 严彪 苏航 杨才福. Ti处理改善船体钢焊接粗晶区的低温韧性研究[J]. 金属学报, 2010, 46(1): 62-70.
[10] 杨跃辉 蔡庆伍 武会宾 王华. 两相区热处理过程中回转奥氏体的形成规律及其对9Ni钢低温韧性的影响[J]. 金属学报, 2009, 45(3): 270-274.
[11] 胡本芙; 贾成厂 . Fe-Cr-Mn(W,V)奥氏体钢的低温韧性[J]. 金属学报, 2001, 37(7): 703-708 .
[12] 国旭明; 钱百年 . 电磁搅拌对管线钢埋弧焊熔敷金属低温韧性的影响[J]. 金属学报, 2000, 36(2): 177-180 .
[13] 雷鸣;郭蕴宜. 9%Ni钢中沉淀奥氏体的形成过程及其在深冷下的表现[J]. 金属学报, 1989, 25(1): 13-17.