|
|
高温合金涡轮叶片定向凝固过程数值模拟研究进展 |
许庆彦( ),杨聪,闫学伟,柳百成 |
清华大学材料学院先进成形制造教育部重点实验室 北京 100084 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 清华大学材料学院先进成形制造教育部重点实验室 北京 100084 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 清华大学材料学院先进成形制造教育部重点实验室 北京 100084 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 清华大学材料学院先进成形制造教育部重点实验室 北京 100084 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China |
|
Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification |
XU Qingyan( ),YANG Cong,YAN Xuewei,LIU Baicheng |
引用本文:
许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
Qingyan XU,
Cong YANG,
Xuewei YAN,
Baicheng LIU.
Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. Acta Metall Sin, 2019, 55(9): 1175-1184.
[1] | VersnyderF I, ShankM E. The development of columnar grain and single crystal high temperature materials through directional solidification [J]. Mater. Sci. Eng., 1970, 6: 213 | [2] | GiameiA F, TschinkelJ G. Liquid metal cooling: A new solidification technique [J]. Metall. Trans., 1976, 7A: 1427 | [3] | YangX L,DongH B, WangW, , et al. Microscale simulation of stray grain formation in investment cast turbine blades [J]. Mater. Sci. Eng., 2004, A386: 129 | [4] | MaD X. Freckle formation during directional solidification of complex castings of superalloys [J]. Acta Metall. Sin., 2016, 52: 426 | [4] | 马德新. 定向凝固的复杂形状高温合金铸件中的雀斑形成 [J]. 金属学报, 2016, 52: 426 | [5] | AvesonJ W, TennantP A, FossB J, , et al. On the origin of sliver defects in single crystal investment castings [J]. Acta Mater., 2013, 61: 5162 | [6] | ElliottA J, PollockT M. Thermal analysis of the bridgman and liquid-metal-cooled directional solidification investment casting processes [J]. Metall. Mater. Trans., 2007, 38A: 871 | [7] | BeckermannC, GuJ P, BoettingerW J. Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings [J]. Metall. Mater. Trans., 2000, 31A: 2545 | [8] | RamirezJ C, BeckermannC. Evaluation of a Rayleigh-number-based freckle criterion for Pb-Sn alloys and Ni-base superalloys [J]. Metall. Mater. Trans., 2003, 34A: 1525 | [9] | GandinC A, DesbiollesJ L, RappazM, , et al. A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures [J]. Metall. Mater. Trans., 1999, 30A: 3153 | [10] | RappazM, GandinC A. Probabilistic modelling of microstructure formation in solidification processes [J]. Acta Metall. Mater., 1993, 41: 345 | [11] | XuQ Y, ZhangH, QiX, , et al. Multiscale modeling and simulation of directional solidification process of turbine blade casting with MCA method [J]. Metall. Mater. Trans., 2014, 45B: 555 | [12] | LiuS Z, LiJ R, TangD Z, , et al. Numerical simulation of directional solidification process of single crystal superalloys [J]. J. Mater. Eng., 1999, (7): 40 | [12] | 刘世忠, 李嘉荣, 唐定忠等. 单晶高温合金定向凝固过程数值模拟 [J]. 材料工程, 1999, (7): 40) | [13] | PanD, XuQ Y, LiuB C. Modeling on directional solidification of superalloy blades with furnace wall temperature evolution [J]. Acta Metall. Sin., 2010, 46: 294 | [13] | 潘 冬, 许庆彦, 柳百成. 考虑炉壁温度变化的高温合金叶片定向凝固过程模拟 [J]. 金属学报, 2010, 46: 294 | [14] | ZhangH, XuQ Y, SunC B, , et al. Simulation and experimental studies on grain selection behavior of single crystal superalloy: I. Starter block [J]. Acta Metall. Sin., 2013, 49: 1508 | [14] | 张 航, 许庆彦, 孙长波等. 单晶高温合金螺旋选晶过程的数值模拟与实验研究: I.引晶段 [J]. 金属学报, 2013, 49: 1508 | [15] | ZhangH, XuQ Y, SunC B, , et al. Simulation and experimental studies on grain selection behavior of single crystal superalloy: II. Spiral part [J]. Acta Metall. Sin., 2013, 49: 1521 | [15] | 张 航, 许庆彦, 孙长波等. 单晶高温合金螺旋选晶过程的数值模拟与实验研究: II.螺旋段 [J]. 金属学报, 2013, 49: 1521 | [16] | WangW, LeeP D, McLeanM. A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection [J]. Acta Mater., 2003, 51: 2971 | [17] | LiJ J, WangZ J, WangY Q, , et al. Phase-field study of competitive dendritic growth of converging grains during directional solidification [J]. Acta Mater., 2012, 60: 1478 | [18] | WangJ C, GuoC W, LiJ J, , et al. Recent progresses in competitive grain growth during directional solidification [J]. Acta Metall. Sin., 2018, 54: 657 | [18] | 王锦程, 郭春文, 李俊杰等. 定向凝固晶粒竞争生长的研究进展 [J]. 金属学报, 2018, 54: 657 | [19] | WarnkenN, MaD X, DrevermannA, , et al. Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys [J]. Acta Mater., 2009, 57: 5862 | [20] | FangH, XueH, TangQ Y, , et al. Dendrite coarsening and secondary arm migration in the mushy zone during directional solidification [J]. Acta Metall. Sin., 2019, 55: 664 | [20] | 方 辉, 薛 桦, 汤倩玉等. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟 [J]. 金属学报, 2019, 55: 664 | [21] | KermanpurA, RappazM, VarahramN, , et al. Thermal and grain-structure simulation in a land-based turbine blade directionally solidified with the liquid metal cooling process [J]. Metall. Mater. Trans., 2000, 31B: 1293 | [22] | CuiK, XuQ Y, YuJ, , et al. Radiative heat transfer calculation for superalloy turbine blade in directional solidification process [J]. Acta Metall. Sin., 2007, 43: 465 | [22] | 崔 锴,许庆彦,于 靖等. 高温合金叶片定向凝固过程中辐射换热的计算 [J]. 金属学报, 2007, 43: 465 | [23] | YanX W, TangN, LiuX F, , et al. Modeling and simulation of directional solidification by LMC process for nickel base superalloy casting [J]. Acta Metall. Sin., 2015, 51: 1288 | [23] | 闫学伟, 唐 宁, 刘孝福等. 镍基高温合金铸件液态金属冷却定向凝固建模仿真及工艺规律研究 [J]. 金属学报, 2015, 51: 1288 | [24] | YuanL, LeeP D. A new mechanism for freckle initiation based on microstructural level simulation [J]. Acta Mater., 2012, 60: 4917 | [25] | ChenY, BognoA A, XiaoN M, , et al. Quantitatively comparing phase-field modeling with direct real time observation by synchrotron X-ray radiography of the initial transient during directional solidification of an Al-Cu alloy [J]. Acta Mater., 2012, 60: 199 | [26] | ThévozP, DesbiollesJ L, RappazM. Modeling of equiaxed microstructure formation in casting [J]. Metall. Trans., 1989, 20A: 311 | [27] | KurzW, GiovanolaB, TrivediR. Theory of microstructural development during rapid solidification [J]. Acta Metall., 1986, 34: 823 | [28] | SteinbachI, PezzollaF. A generalized field method for multiphase transformations using interface fields [J]. Physica, 1999, 134D: 385 | [29] | EikenJ, B?ttgerB, SteinbachI. Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application [J]. Phys. Rev., 2006, 73E: 066122 | [30] | YangC, XuQ Y, LiuB C. Primary dendrite spacing selection during directional solidification of multicomponent nickel-based superalloy: Multiphase-field study [J]. J. Mater. Sci., 2018, 53: 9755 | [31] | XuQ Y, YangC, ZhangH, , et al. Multiscale modeling and simulation of directional solidification process of Ni-based superalloy turbine blade casting [J]. Metals, 2018, 8: 632 | [32] | ElliottA J, PollockT M, TinS, , et al. Directional solidification of large superalloy castings with radiation and liquid-metal cooling: A comparative assessment [J]. Metall. Mater. Trans., 2004, 35A: 3221 | [33] | ZhangH, XuQ Y, LiuB C. Numerical simulation and optimization of directional solidification process of single crystal superalloy casting [J]. Materials, 2014, 7: 1625 | [34] | ZhuM F, TangQ Y, ZhangQ Y, , et al. Cellular automaton modeling of micro-structure evolution during alloy solidification [J]. Acta Metall. Sin., 2016, 52: 1297 | [34] | 朱鸣芳, 汤倩玉, 张庆宇等. 合金凝固过程中显微组织演化的元胞自动机模拟 [J]. 金属学报, 2016, 52: 1297 | [35] | ShibutaY, SakaneS, TakakiT, , et al. Submicrometer-scale molecular dynamics simulation of nucleation and solidification from undercooled melt: Linkage between empirical interpretation and atomistic nature [J]. Acta Mater., 2016, 105: 328 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|