|
|
高温合金盘锻件制备过程残余应力的演化规律及机制 |
毕中南1,2( ),秦海龙1,2,董志国3,王相平3,王鸣3,刘永泉3,杜金辉1,2,张继1,2 |
1. 钢铁研究总院高温合金新材料北京市重点实验室 北京 100081 2. 北京钢研高纳科技股份有限公司 北京 100081 3. 中国航发沈阳发动机研究所 沈阳110005 |
|
Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings |
BI Zhongnan1,2( ),QIN Hailong1,2,DONG Zhiguo3,WANG Xiangping3,WANG Ming3,LIU Yongquan3,DU Jinhui1,2,ZHANG Ji1,2 |
1. Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081, China 2. CISRI-GAONA Co. , Ltd. , Beijing 100081, China 3. AECC Shenyang Engine Research Institute, Shenyang 110005, China |
引用本文:
毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.
Zhongnan BI,
Hailong QIN,
Zhiguo DONG,
Xiangping WANG,
Ming WANG,
Yongquan LIU,
Jinhui DU,
Ji ZHANG.
Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings[J]. Acta Metall Sin, 2019, 55(9): 1160-1174.
[1] | GuY F, CuiC Y, YuanY, , et al. Research progress in a high performance cast & wrought superalloy for turbine disc applications [J]. Acta Metall. Sin., 2015, 51: 1191 | [1] | 谷月峰, 崔传勇, 袁 勇等. 一种高性能航空涡轮盘用铸锻合金的研究进展 [J]. 金属学报, 2015, 51: 1191 | [2] | ZhangB J, ZhaoG P, ZhangW Y, , et al. Investigation of high performance disc alloy GH4065 and associated advanced processing techniques [J]. Acta Metall. Sin., 2015, 51: 1227 | [2] | 张北江, 赵光普, 张文云等. 高性能涡轮盘材料GH4065及其先进制备技术研究 [J]. 金属学报, 2015, 51: 1227 | [3] | LuX D, DuJ H, DengQ. High temperature structure stability of GH4169 superalloy [J]. Mater. Sci. Eng., 2013, A559: 623 | [4] | DuJ H, LuX D, DengQ, , et al. High-temperature structure stability and mechanical properties of novel 718 superalloy [J]. Mater. Sci. Eng., 2007, A452-453: 584 | [5] | ZhuangJ Y, DuJ H, DengQ, , et al. Wrought Superalloy GH4169 [M]. Beijing: Metallurgical Industry Press, 2006: 1 | [5] | 庄景云, 杜金辉, 邓 群等. 变形高温合金GH4169 [M]. 北京: 冶金工业出版社, 2006: 1) | [6] | GengL, NaY S, ParkN K. Continuous cooling transformation behavior of Alloy 718 [J]. Mater. Lett., 1997, 30: 401 | [7] | DyeD, ConlonK T, ReedR C. Characterization and modeling of quenching-induced residual stresses in the nickel-based superalloy IN718 [J]. Metall. Mater. Trans., 2004, 35A: 1703 | [8] | RistM A, JamesJ A, TinS, , et al. Residual stresses in a quenched superalloy turbine disc: Measurements and modeling [J]. Metall. Mater. Trans., 2006, 37A: 459 | [9] | KaradgeM, GrantB, WithersP J, , et al. Thermal relaxation of residual stresses in nickel-based superalloy inertia friction welds [J]. Metall. Mater. Trans., 2011, 42A: 2301 | [10] | FossB J, GrayS, HardyM C, , et al. Analysis of shot-peening and residual stress relaxation in the nickel-based superalloy RR1000 [J]. Acta Mater., 2013, 61: 2548 | [11] | WithersP J, BhadeshiaH K D K. Residual stress. Part 1 Measurement techniques [J]. Mater. Sci. Technol., 2001, 17: 355 | [12] | Aba-PereaP E, PirlingT, PreussM. In-situ residual stress analysis during annealing treatments using neutron diffraction in combination with a novel furnace design [J]. Mater. Des., 2016, 110: 925 | [13] | RolphJ, EvansA, ParadowskaA, , et al. Stress relaxation through ageing heat treatment—A comparison between in situ and ex situ neutron diffraction techniques [J]. C. R.Phys., 2012, 13: 307 | [14] | Ghasri-KhouzaniM, PengH, RoggeR, , et al. Experimental measurement of residual stress and distortion in additively manufactured stainless steel components with various dimensions [J]. Mater. Sci. Eng., 2017, A707: 689 | [15] | MasoudiS, AmirianG, SaeediE, , et al. The effect of quench-induced residual stresses on the distortion of machined thin-walled parts [J]. J. Mater. Eng. Perform., 2015, 24: 3933 | [16] | KrempaszkyC, WernerE A, StockingerM. Measurement of marcoscopic residual stress and resulting distortion during machining [A]. Proc.MS&T 2005 Iron & Steel Society and TMS [C]. Pittsburgh, PA, USA: TMS, 2005: 109 | [17] | WithersP J, BhadeshiaH K D K. Residual stress. Part 2 Nature and origins [J]. Mater. Sci. Technol., 2001, 17: 366 | [18] | ShenG S, CooperN, OttowN, , et al. Integration and automation of residual stress and service stress modeling for superalloy component design [A].Superalloy 2012 [C]. Hoboken, NJ: Wiley, 2012: 129 | [19] | RolphJ, PreussM, IqbalN, , et al. Residual stress evolution during manufacture of aerospace forgings [A].Superalloy 2012 [C]. Hoboken, NJ: Wiley, 2012: 881 | [20] | DahanY, NouveauS, GeorgesE, , et al. Residual stresses in Inconel 718 engine disks [J]. MATEC Web Conf., 2014, 14: 10003 | [21] | XuP G, TomotaY. Progress in materials characterization technique based on in situ neutron diffraction [J]. Acta Metall. Sin., 2006, 42: 681 | [21] | 徐平光, 友田阳. 原位中子衍射材料表征技术的进展 [J]. 金属学报, 2006, 42: 681 | [22] | DongP, WangH, LiJ, , et al. Residual stress in welded Beryllium ring by neutron diffraction and finite element modeling [J]. At. Energ. Sci. Technol., 2015, 49: 2255 | [22] | 董 平, 王 虹, 李 建等. 铍环焊接残余应力的中子衍射测试与有限元分析 [J]. 原子能科学技术, 2015, 49: 2255 | [23] | CollinsD M, D'SouzaN, PanwisawasC. In-situ neutron diffraction during stress relaxation of a single crystal nickel-base superalloy [J]. Scr. Mater., 2017, 131: 103 | [24] | AllenA J, HutchingsM T, WindsorC G, , et al. Neutron diffraction methods for the study of residual stress fields [J]. Adv. Phys., 1985, 34: 445 | [25] | SantistebanJ R, DaymondM R, JamesJ A, , et al. ENGIN-X: A third-generation neutron strain scanner [J]. J. Appl. Cryst., 2006, 39: 812 | [26] | WagnerJ N, HofmannM, WimporyR, , et al. Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis [J]. Mater. Sci. Eng., 2014, A618: 271 | [27] | PrimeM B. Cross-sectional mapping of residual stresses by measuring the surface contour after a cut [J]. J. Eng. Mater. Technol., 2001, 123: 162 | [28] | Oradei-BasileA, RadavichJ F. A current T-T-T Diagram for wrought alloy 718 [A]. Superalloys 718, 625 and Various Derivatives [C]. Pittsburgh, PA,USA: The Minerals, Metals & Materials Society, 1991: 325 | [29] | JianM, ChangK M, YangW H, , et al. Cooling precipitation and strengthening study in powder metallurgy superalloy U720LI [J]. Metall. Mater. Trans., 2001, 32A: 2441 | [30] | YaoZ H, DongJ X, ZhangM C, , et al. Influence of solution and stabilization heat treatment on carbide and gamma prime for super alloy GH738 [J]. Trans. Mater. Heat Treat., 2013, 34(10): 43 | [30] | 姚志浩, 董建新, 张麦仓等. 固溶及稳定化工艺对GH738合金碳化物和γ'相析出规律的影响 [J]. 材料热处理学报, 2013, 34(10): 43) | [31] | QinH L, BiZ N, YuH Y, , et al. Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy [J]. Mater. Sci. Eng., 2018, A728: 183 | [32] | QinH L, ZhangR Y, BiZ N, , et al. Study on the evolution of residual stress during the ageing treatment in a GH4169 alloy disk [J]. Acta Metall. Sin., 2019, 55: 997 | [32] | 秦海龙, 张瑞尧, 毕中南等. GH4169合金圆盘时效过程残余应力的演化规律研究 [J]. 金属学报, 2019, 55: 997 | [33] | ChaturvediM C, HanY F. Effect of particle size on the creep rate of superalloy Inconel 718 [J]. Mater. Sci. Eng., 1987, 89: L7 | [34] | KuoC M, YangY T, BorH Y, , et al. Aging effects on the microstructure and creep behavior of Inconel 718 superalloy [J]. Mater. Sci. Eng., 2009, A510-511: 289 | [35] | RaoA, BouchardP J, NorthoverS M, , et al. Anelasticity in austenitic stainless steel [J]. Acta Mater., 2012, 60: 6851 | [36] | FiskM, IonJ C, LindgrenL E. Flow stress model for IN718 accounting for evolution of strengthening precipitates during thermal treatment [J]. Comput. Mater. Sci., 2104, 82: 531 | [37] | CoakleyJ, MaD, FrostM, , et al. Lattice strain evolution and load partitioning during creep of a Ni-based superalloy single crystal with rafted γ′ microstructure [J]. Acta Mater., 2017, 135: 77 | [38] | QinH L, BiZ N, LiD F, , et al. Study of precipitation-assisted stress relaxation and creep behavior during the ageing of a nickel-iron superalloy [J]. Mater. Sci. Eng., 2019, A742: 493 | [39] | QinH L, BiZ N, YuH Y, , et al. Influence of stress on γ″ precipitation behavior in Inconel 718 during Aging [J]. J. Alloys Compd., 2018, 740: 997 | [40] | MaK, GoetzR, SrivatsaS K. Modeling of residual stress and machining distortion in aerospace components [A]. ASM Handbook [M]. Volume22B, Ohio, United States: ASM, 2010: 386 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|