|
|
尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响 |
戴培元,胡兴,逯世杰,王义峰( ),邓德安 |
重庆大学材料科学与工程学院 重庆 400045 |
|
Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model |
Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG( ),Dean DENG |
College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China |
引用本文:
戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
Peiyuan DAI,
Xing HU,
Shijie LU,
Yifeng WANG,
Dean DENG.
Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. Acta Metall Sin, 2019, 55(8): 1058-1066.
[1] | Deng P, Peng Q J, Han E H, et al. Effect of irradiation on corrosion of 304 nuclear grade stainless steel in simulated PWR primary water [J]. Corros. Sci., 2017, 127: 91 | [2] | Soria S R, Tolley A, Yawny A. A study of debris and wear damage resulting from fretting of Incoloy 800 steam generator tubes against AISI type 304 stainless steel [J]. Wear, 2016, 368-369: 219 | [3] | Terachi T, Yamada T, Miyamoto T, et al. SCC growth behaviors of austenitic stainless steels in simulated PWR primary water [J]. J. Nucl. Mater., 2012, 426: 59 | [4] | Nakagawa K, Nono M, Kimura A. Effect of dissolved hydrogen on the SCC susceptibility of SUS316L stainless steel [J]. Mater. Sci. Forum, 2010, 654-656: 2887 | [5] | Ma C, Peng Q J, Mei J N, et al. Microstructure and corrosion behavior of the heat affected zone of a stainless steel 308L-316L weld joint [J]. J. Mater. Sci. Technol., 2018, 34: 1823 | [6] | Hoffmeister H, Klein O. Modeling of SCC initiation and propagation mechanisms in BWR environments [J]. Nucl. Eng. Des., 2011, 241: 4893 | [7] | Singh J, Shahi A S. Weld joint design and thermal aging influence on the metallurgical, sensitization and pitting corrosion behavior of AISI 304L stainless steel welds [J]. J. Manuf. Processes, 2018, 33: 126 | [8] | Li G F, Congleton J. Stress corrosion cracking of a low alloy steel to stainless steel transition weld in PWR primary waters at 292 ℃ [J]. Corros. Sci., 2000, 42: 1005 | [9] | Deng D A, Murakawa H, Liang W. Numerical and experimental investigations on welding residual stress in multi-pass butt-welded austenitic stainless steel pipe [J]. Comput. Mater. Sci., 2008, 42: 234 | [10] | Ueda Y, Murakawa H, Ma N. Welding Deformation and Residual Stress Prevention [M]. Waltham: Elsevier, 2012: 1 | [11] | Murakawa H. Computational welding mechanics and its interface with industrial application [J]. Trans. JWRI, 2013, 25: 191 | [12] | Deng D A, Kiyoshima S. Influence of annealing temperature on calculation accuracy of welding residual stress in a sus304 stainless steel joint [J]. Acta Metall. Sin., 2014, 50: 626 | [12] | (邓德安, Kiyoshima S. 退火温度对SUS304不锈钢焊接残余应力计算精度的影响 [J]. 金属学报, 2014, 50: 626) | [13] | Zhang J X, Liu C, Zhang J L. Efficient calculation technologies for welding stress and deformarion with nonlinear and gradient character [J]. Trans. China Weld. Inst., 2009, 30(6): 107 | [13] | (张建勋, 刘 川, 张林杰. 焊接非线性大梯度应力变形的高效计算技术 [J]. 焊接学报, 2009, 30(6): 107) | [14] | Ueda Y, Yuan M G. A predicting method of welding residual stress using source of residual stress (Report II): Determination of standard inherent strain (mechanics, strength & structural design) [J]. Trans. JWRI, 1989, 18: 143 | [15] | Hong J K, Tsai C L, Dong P L. Assessment of numerical procedures for residual stress analysis of multipass welds [J]. Weld. J., 1998, 77: 372 | [16] | Jiang W, Yahiaoui K, Hall R, et al. Finite element simulation of multipass welding: Full three-dimensional versus generalized plane strain or axisymmetric models [J]. J. Strain Anal. Eng. Des., 2005, 40: 587 | [17] | Deng D A, Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements [J]. Comput. Mater. Sci., 2006, 37: 269 | [18] | Totten G E, Howes M, Inoue T. Handbook of Residual Stress and Deformation of Steel [M]. Ohio: ASM International, 2002: 1 | [19] | Katsuyama J, Nakamura M, Tobita T, et al. Effects of shape of weld and welding conditions on residual stress at welded joints of stainless steel piping [A]. Preprints of the National Meeting of JWS [C]. Tokyo: Japan Welding Society, 2009: 37 | [20] | Sun J M, Liu X Z, Tong Y G, et al. A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding [J]. Mater. Des., 2014, 63: 519 | [21] | Deng D A, Ren S D, Li S, et al. Influence of multi-thermal cycle and constraint condition on residual stress in P92 steel weldment [J]. Acta Metall. Sin., 2017, 53: 1532 | [21] | (邓德安, 任森栋, 李 索等. 多重热循环和约束条件对P92钢焊接残余应力的影响 [J]. 金属学报, 2017, 53: 1532) | [22] | Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources [J]. Metall. Trans., 1984, 15B: 299 | [23] | Deng D A, Zhang C H, Pu X W, et al. Influence of material model on prediction accuracy of welding residual stress in an austenitic stainless steel multi-pass butt-welded joint [J]. J. Mater. Eng. Perform., 2017, 26: 1494 | [24] | Deng D A, Kiyoshima S. FEM analysis of residual stress distribution near weld start/end location in thick plates [J]. Comput. Mater. Sci., 2011, 50: 2459 | [25] | Deng D A, Kiyoshima S, Ogawa K, et al. Predicting welding residual stresses in a dissimilar metal girth welded pipe using 3D finite element model with a simplified heat source [J]. Nucl. Eng. Des., 2011, 241: 46 | [26] | Li S, Ren S D, Zhang Y B, et al. Numerical investigation of formation mechanism of welding residual stress in P92 steel multi-pass joints [J]. J. Mater. Process. Technol., 2017, 244: 240 | [27] | Dong P. On the mechanics of residual stresses in girth welds [J]. J. Pressure Vessel Technol., 2007, 129: 345 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|