金属学报  2019, Vol. 55 Issue (8): 1058-1066    DOI: 10.11900/0412.1961.2018.00567
 本期目录 | 过刊浏览 |

Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model
Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG(),Dean DENG
College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
 全文: PDF(7704 KB)   HTML

Abstract

Austenitic stainless steel, owing to its good mechanical properties and excellent corrosion resistance, is widely used in petroleum, chemical, nuclear power and other fields. Welding is an extremely important manufacturing method in industrial production. When the thermal elastic-plastic finite element method (TEP-FEM) is used to simulate welding residual stress, especially in thick welded joints, a long calculation time is generally needed. Therefore, it has become an urgent problem to develop an efficient and high-precision computational approach to simulate welding residual stress. In this work, numerical simulation and experimental methods were combined to explore the effect of size on the calculation precision of welding residual stress of SUS316 stainless steel by the 2D axisymmetric model, in order to clarify the applicability of 2D axisymmetric model in the prediction of welding residual stress in pipe butt joints. This research can provide theoretical support for the development of computational methods suitable for engineering applications. Based on the finite element software MSC. Marc, the temperature field and welding residual stress distribution of three different sizes of pipes were calculated by 2D axisymmetric model and 3D model. The calculated residual stress distributions in the thin pipe model are compared with the experimental measurements. The results show that calculated residual stress by the 2D axisymmetric model agrees well with the 3D model. However, in the weld seam near the inner surface and the areas near the weld seam, a deviation on the residual stress distribution between in the 2D axisymmetric model and in the 3D model was observed, which is significant as the pipe size increases. For practical engineering applications, with the regardless of the stress problems at the beginning and end positions, the 2D axisymmetric model can be used instead of the 3D model to calculate the residual stress of the girth weld, which is very beneficial to calculation time saving.

Key wordsresidual stress    numerical simulation    2D model    pipe welding

 ZTFLH: TG404

Corresponding author: Yifeng WANG     E-mail: wangyf0902@cqu.edu.cn

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert RSS 作者相关文章 戴培元 胡兴 逯世杰 王义峰 邓德安 44.8K

#### 引用本文:

Peiyuan DAI, Xing HU, Shijie LU, Yifeng WANG, Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model. Acta Metall Sin, 2019, 55(8): 1058-1066.

#### 链接本文:

 图1  坡口尺寸和焊道布置示意图 图2  残余应力测量位置和焊接方向示意图 图3  3种不同尺寸圆管的2D和3D有限元模型 表1  3种不同尺寸圆管的2D和3D有限元计算案例 图4  材料热物理性能参数和力学性能参数 图5  不同尺寸圆管最后一道焊的热循环曲线 图6  内表面和外表面轴向残余应力的模拟结果与测量值[19]对比 图7  内表面和外表面周向残余应力模拟结果与测量值[19]对比 图8  3D模型180°截面和2D轴对称模型的周向残余应力分布对比 图9  3D模型180°截面和2D轴对称模型的轴向残余应力分布对比 图10  周向和轴向残余应力沿焊缝中心线的分布对比
 [1] Deng P, Peng Q J, Han E H, et al. Effect of irradiation on corrosion of 304 nuclear grade stainless steel in simulated PWR primary water [J]. Corros. Sci., 2017, 127: 91 [2] Soria S R, Tolley A, Yawny A. A study of debris and wear damage resulting from fretting of Incoloy 800 steam generator tubes against AISI type 304 stainless steel [J]. Wear, 2016, 368-369: 219 [3] Terachi T, Yamada T, Miyamoto T, et al. SCC growth behaviors of austenitic stainless steels in simulated PWR primary water [J]. J. Nucl. Mater., 2012, 426: 59 [4] Nakagawa K, Nono M, Kimura A. Effect of dissolved hydrogen on the SCC susceptibility of SUS316L stainless steel [J]. Mater. Sci. Forum, 2010, 654-656: 2887 [5] Ma C, Peng Q J, Mei J N, et al. Microstructure and corrosion behavior of the heat affected zone of a stainless steel 308L-316L weld joint [J]. J. Mater. Sci. Technol., 2018, 34: 1823 [6] Hoffmeister H, Klein O. Modeling of SCC initiation and propagation mechanisms in BWR environments [J]. Nucl. Eng. Des., 2011, 241: 4893 [7] Singh J, Shahi A S. Weld joint design and thermal aging influence on the metallurgical, sensitization and pitting corrosion behavior of AISI 304L stainless steel welds [J]. J. Manuf. Processes, 2018, 33: 126 [8] Li G F, Congleton J. Stress corrosion cracking of a low alloy steel to stainless steel transition weld in PWR primary waters at 292 ℃ [J]. Corros. Sci., 2000, 42: 1005 [9] Deng D A, Murakawa H, Liang W. Numerical and experimental investigations on welding residual stress in multi-pass butt-welded austenitic stainless steel pipe [J]. Comput. Mater. Sci., 2008, 42: 234 [10] Ueda Y, Murakawa H, Ma N. Welding Deformation and Residual Stress Prevention [M]. Waltham: Elsevier, 2012: 1 [11] Murakawa H. Computational welding mechanics and its interface with industrial application [J]. Trans. JWRI, 2013, 25: 191 [12] Deng D A, Kiyoshima S. Influence of annealing temperature on calculation accuracy of welding residual stress in a sus304 stainless steel joint [J]. Acta Metall. Sin., 2014, 50: 626 [12] (邓德安, Kiyoshima S. 退火温度对SUS304不锈钢焊接残余应力计算精度的影响 [J]. 金属学报, 2014, 50: 626) [13] Zhang J X, Liu C, Zhang J L. Efficient calculation technologies for welding stress and deformarion with nonlinear and gradient character [J]. Trans. China Weld. Inst., 2009, 30(6): 107 [13] (张建勋, 刘 川, 张林杰. 焊接非线性大梯度应力变形的高效计算技术 [J]. 焊接学报, 2009, 30(6): 107) [14] Ueda Y, Yuan M G. A predicting method of welding residual stress using source of residual stress (Report II): Determination of standard inherent strain (mechanics, strength & structural design) [J]. Trans. JWRI, 1989, 18: 143 [15] Hong J K, Tsai C L, Dong P L. Assessment of numerical procedures for residual stress analysis of multipass welds [J]. Weld. J., 1998, 77: 372 [16] Jiang W, Yahiaoui K, Hall R, et al. Finite element simulation of multipass welding: Full three-dimensional versus generalized plane strain or axisymmetric models [J]. J. Strain Anal. Eng. Des., 2005, 40: 587 [17] Deng D A, Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements [J]. Comput. Mater. Sci., 2006, 37: 269 [18] Totten G E, Howes M, Inoue T. Handbook of Residual Stress and Deformation of Steel [M]. Ohio: ASM International, 2002: 1 [19] Katsuyama J, Nakamura M, Tobita T, et al. Effects of shape of weld and welding conditions on residual stress at welded joints of stainless steel piping [A]. Preprints of the National Meeting of JWS [C]. Tokyo: Japan Welding Society, 2009: 37 [20] Sun J M, Liu X Z, Tong Y G, et al. A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding [J]. Mater. Des., 2014, 63: 519 [21] Deng D A, Ren S D, Li S, et al. Influence of multi-thermal cycle and constraint condition on residual stress in P92 steel weldment [J]. Acta Metall. Sin., 2017, 53: 1532 [21] (邓德安, 任森栋, 李 索等. 多重热循环和约束条件对P92钢焊接残余应力的影响 [J]. 金属学报, 2017, 53: 1532) [22] Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources [J]. Metall. Trans., 1984, 15B: 299 [23] Deng D A, Zhang C H, Pu X W, et al. Influence of material model on prediction accuracy of welding residual stress in an austenitic stainless steel multi-pass butt-welded joint [J]. J. Mater. Eng. Perform., 2017, 26: 1494 [24] Deng D A, Kiyoshima S. FEM analysis of residual stress distribution near weld start/end location in thick plates [J]. Comput. Mater. Sci., 2011, 50: 2459 [25] Deng D A, Kiyoshima S, Ogawa K, et al. Predicting welding residual stresses in a dissimilar metal girth welded pipe using 3D finite element model with a simplified heat source [J]. Nucl. Eng. Des., 2011, 241: 46 [26] Li S, Ren S D, Zhang Y B, et al. Numerical investigation of formation mechanism of welding residual stress in P92 steel multi-pass joints [J]. J. Mater. Process. Technol., 2017, 244: 240 [27] Dong P. On the mechanics of residual stresses in girth welds [J]. J. Pressure Vessel Technol., 2007, 129: 345
 [1] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759. [2] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632. [3] 毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174. [4] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184. [5] 秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007. [6] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266. [7] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592. [8] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580. [9] 李军, 夏明许, 胡侨丹, 李建国. 大型铸锭均质化问题及其新解[J]. 金属学报, 2018, 54(5): 773-788. [10] 刘政, 陈志平, 陈涛. 坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响[J]. 金属学报, 2018, 54(3): 435-442. [11] 文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403. [12] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484. [13] 王锦程, 郭灿, 张琪, 唐赛, 李俊杰, 王志军. 原子尺度下凝固形核计算模拟研究的进展[J]. 金属学报, 2018, 54(2): 204-216. [14] 沈厚发, 陈康欣, 柳百成. 钢锭铸造过程宏观偏析数值模拟[J]. 金属学报, 2018, 54(2): 151-160. [15] 朱苗勇, 娄文涛, 王卫领. 炼钢与连铸过程数值模拟研究进展[J]. 金属学报, 2018, 54(2): 131-150.