Please wait a minute...
金属学报  2019, Vol. 55 Issue (7): 811-820    DOI: 10.11900/0412.1961.2018.00408
  本期目录 | 过刊浏览 |
基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为
吴正凯1,吴圣川1(),张杰2,宋哲1,胡雅楠1,康国政1,张海鸥3
1. 西南交通大学牵引动力国家重点实验室 成都 610031
2. 中国航空制造技术研究院 北京 100024
3. 华中科技大学数字制造装备与技术国家重点实验室 武汉 430074
Defect Induced Fatigue Behaviors of Selective Laser Melted Ti-6Al-4V via Synchrotron Radiation X-Ray Tomography
Zhengkai WU1,Shengchuan WU1(),Jie ZHANG2,Zhe SONG1,Yanan HU1,Guozheng KANG1,Haiou ZHANG3
1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
2. AVIC Manufacturing Technology Institute, Beijing 100024, China
3. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
引用本文:

吴正凯, 吴圣川, 张杰, 宋哲, 胡雅楠, 康国政, 张海鸥. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820.
Zhengkai WU, Shengchuan WU, Jie ZHANG, Zhe SONG, Yanan HU, Guozheng KANG, Haiou ZHANG. Defect Induced Fatigue Behaviors of Selective Laser Melted Ti-6Al-4V via Synchrotron Radiation X-Ray Tomography[J]. Acta Metall Sin, 2019, 55(7): 811-820.

全文: PDF(14834 KB)   HTML
摘要: 

基于自主研制的原位疲劳试验机和高分辨同步辐射X射线三维成像技术,采用Feret直径和极值统计方法定量表征选区激光熔化Ti-6Al-4V合金的缺陷特征尺寸、数量、位置及形貌,原位观测疲劳裂纹的萌生与扩展行为,通过辨识疲劳断口源区的缺陷特征,开展缺陷诱导的疲劳损伤评价研究,从而建立缺陷特征与疲劳寿命之间的关系。分析表明,缺陷主要为未熔合和气孔,等效直径小于50 μm的频率为90%,球度分布于0.4~0.65之间;在不考虑表面粗糙度的情况下,疲劳裂纹优先在试样表面或近表面缺陷处萌生,呈现出典型的半椭圆形貌;同时缺陷特征尺寸越大,疲劳寿命越低。研究结果为增材高性能部件的疲劳性能及寿命评估提供了重要的理论参考。

关键词 增材制造疲劳寿命评价缺陷演化表征同步辐射三维成像高周疲劳    
Abstract

As a very promising additive manufacturing (AM) technique, selective laser melting (SLM) has gained considerable attentions due to the feasibility of producing light-weight metallic components directly from virtual design data. On the other hand, high strength, low density and high corrosion resistance Ti-6Al-4V alloy has been a preferred AM used material for the aviation and military industries. However, the fatigue damage behaviors of SLMed or AMed components usually suffer from interior defects such as incomplete fusion and gas pores due to unstable process or unsuitable processing parameters. Therefore, thorough investigations on process-induced and metallurgical defects and its influence on the fatigue behavior is required for robust designs and engineering applications of high performance SLM components. As an advanced characterization approach, synchrotron radiation micro computed X-ray tomography (SR-μCT) has been recently to investigate the fatigue damage behaviors of critical components with defects. Based on self-developed in situ fatigue testing rig fully compatible with the BL13W1 at Shanghai Synchrotron Radiation Facility (SSRF), several AMed specimens were prepared for in situ fatigue SR-μCT. The Feret diameter and extreme values statistics were then adopted to characterize the defect size, morphology, population, location and the influence on fatigue life. Fatigue fractography was also examined to further identify the defect to really initiate a fatigue crack. Results show that two types of defects including gas pores and the lack of fusion can be clearly distinguished inside SLM Ti-6Al-4V alloys. Fatigue crack with a typical semi-ellipse usually initiates from the defects at the surface and near the surface. Besides, the defects less than 50 μm and sphericity of 0.4~0.65 dominate for the SLM Ti-6Al-4V alloys. It is also found that the larger the characteristic size of the defect, the lower the fatigue life. Current results can provide a theoretical basis and support to predict the fatigue performance of SLM Ti-6Al-4V alloys. Further investigations should be performed on the relationship between the critical defect and fatigue strength by introducing the Kitagawa-Takahashi diagram.

Key wordsadditive manufacturing    fatigue life assessment    defect evolution characterization    synchrotron radiation three-dimensional tomography    high cycle fatigue
收稿日期: 2018-09-03     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(No.11572267)
作者简介: 吴正凯,男,1994年生,硕士生
图1  试样成形及制备位置示意图
图2  高周疲劳试样尺寸图
图3  同步辐射X射线原位成像实验工作原理及原位成像疲劳试样尺寸示意图
图4  X射线原位成像疲劳试样缺陷三维重构结果
图5  缺陷等效直径的频率直方图及累积频率曲线
图6  缺陷球度的频率直方图及正态分布拟合曲线
图7  不同等效直径缺陷的形貌表征
图8  X射线成像试样裂纹三维形貌重构结果及相应断口形貌
图9  选区激光熔化Ti-6Al-4V合金高周疲劳试样疲劳断口形貌
图10  选区激光熔化Ti-6Al-4V合金不同类型缺陷断口形貌特征
图11  缺陷位置表征示意图
图12  选区激光熔化Ti-6Al-4V合金高周疲劳试样裂纹源缺陷与疲劳寿命的关系
图13  作图求极值统计方法所需尺寸参数(α)和位置参数(λ)
图14  一定体积下最大缺陷特征尺寸的估算曲线
[1] Wang H M . Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
[1] (王华明 . 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690)
[2] Boyer R R . An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., 1996, A213: 103
[3] Liang Z Y , Zhang A F , Liang S D , et al . Research developments of high-performance titanium alloy by laser additive manufacturing technology [J]. Appl. Laser, 2017, 37: 452
[3] (梁朝阳, 张安峰, 梁少端 等 . 高性能钛合金激光增材制造技术的研究进展 [J]. 应用激光, 2017, 37: 452)
[4] Zhou M , Cheng Y , Zhou X C , et al . Biomedical titanium implants based on additive manufacture [J]. Sci. Sin. (Technol.), 2016, 46: 1097
[4] (周 梦, 成 艳, 周晓晨 等 . 基于增材制造技术的钛合金医用植入物 [J]. 中国科学: 技术科学, 2016, 46: 1097)
[5] Gao P , Wei K W , Yu H C , et al . Influence of layer thickness on microstructure and mechanical properties of selective laser melted Ti-5Al-2.5Sn alloy [J]. Acta Metall. Sin., 2018, 54: 999
[5] (高 飘, 魏恺文, 喻寒琛 等 . 分层厚度对选区激光熔化成形Ti-5Al-2.5Sn合金组织与性能的影响规律 [J]. 金属学报, 2018, 54: 999)
[6] Zhang S , Gui R Z , Wei Q S , et al . Cracking behavior and formation mechanism of TC4 alloy formed by selective laser melting [J]. J. Mech. Eng., 2013, 49(23): 21
[6] (张 升, 桂睿智, 魏青松 等 . 选择性激光熔化成形TC4钛合金开裂行为及其机理研究 [J]. 机械工程学报, 2013, 49(23): 21)
[7] Xi M Z , Lv C , Wu Z H , et al . Microstructures and mechanical properties of TC11 titanium alloy formed by laser rapid forming and its combination with consecutive point-mode forging [J]. Acta Metall. Sin., 2017, 53: 1065
[7] (席明哲, 吕 超, 吴贞号 等 . 连续点式锻压激光快速成形TC11钛合金的组织和力学性能 [J]. 金属学报, 2017, 53: 1065)
[8] Yadollahi A , Shamsaei N . Additive manufacturing of fatigue resistant materials: Challenges and opportunities [J]. Int. J. Fatigue, 2017, 98: 14
[9] Gorelik M . Additive manufacturing in the context of structural integrity [J]. Int. J. Fatigue, 2017, 94: 168
[10] Ren Y M , Lin X , Huang W D . Research progress of microstructure and fatigue behavior in additive manufacturing Ti-6Al-4V alloy [J]. Rare Met. Mater. Eng., 2017, 46: 3160
[10] (任永明, 林 鑫, 黄卫东 . 增材制造Ti-6Al-4V合金组织及疲劳性能研究进展 [J]. 稀有金属材料与工程, 2017, 46: 3160)
[11] Leuders S , Th?ne M , Riemer A , et al . On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance [J]. Int. J. Fatigue, 2013, 48: 300
[12] Murakami Y . Material defects as the basis of fatigue design [J]. Int. J. Fatigue, 2012, 41: 2
[13] Wan Z P , Wang C , Jiang W T , et al . On the effect of void defects on stress distribution of Ti-6Al-4V alloy fatigue specimen in 3D printing [J]. J. Exp. Mech., 2017, 32: 1
[13] (万志鹏, 王 宠, 蒋文涛 等 . 孔洞缺陷对3D打印Ti-6Al-4V合金疲劳试样应力分布的影响 [J]. 实验力学, 2017, 32: 1)
[14] Tammas-Williams S , Withers P J , Todd I , et al . The influence of porosity on fatigue crack initiation in additively manufactured titanium components [J]. Sci. Rep., 2017, 7: 7308
[15] Beretta S , Romano S . A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes [J]. Int. J. Fatigue, 2017, 94: 178
[16] Wu S C , Xiao T Q , Withers P J . The imaging of failure in structural materials by synchrotron radiation X-ray microtomography [J]. Eng. Fract. Mech., 2017, 182: 127
[17] Wu S C , Hu Y N , Fu Y N , et al . Study on fatigue cracking of welded aluminum alloys via in situ synchrotron radiation X-ray microtomography [J]. Trans. China Weld. Inst., 2015, 36(12): 5
[17] (吴圣川, 胡雅楠, 付亚楠 等 . 铝合金焊缝疲劳开裂的原位同步辐射X射线成像 [J]. 焊接学报, 2015, 36(12): 5)
[18] Song Z , Wu S C , Hu Y N , et al . The influence of metallurgical pores on fatigue behaviors of fusion welded AA7020 joints [J]. Acta Metall. Sin., 2018, 54: 1131
[18] (宋 哲, 吴圣川, 胡雅楠 等 . 冶金型气孔对熔化焊接7020铝合金疲劳行为的影响 [J]. 金属学报, 2018, 54: 1131)
[19] Serrano-Munoz I , Buffiere J Y , Mokso R , et al . Location, location & size: Defects close to surfaces dominate fatigue crack initiation [J]. Sci. Rep., 2017, 7: 45239
[20] Yu C , Wu S C , Hu Y N , et al . Three-dimensional imaging of gas pores in fusion welded Al alloys by synchrotron radiation X-ray microtomography [J]. Acta Metall. Sin., 2015, 51: 159
[20] (喻 程, 吴圣川, 胡雅楠 等 . 铝合金熔焊微气孔的三维同步辐射X射线成像 [J]. 金属学报, 2015, 51: 159)
[21] Schijve J . Fatigue of Structures and Materials [M]. Netherlands: Springer, 2009: 25
[22] Chen W , Chen Z Y , You Y , et al . Microstructure and fatigue behavior of EBSM Ti-6Al-4V alloy [J]. Rare Met. Mater. Eng., 2017, 46(suppl.): 25
[22] (陈 玮, 陈哲源, 由 洋 等 . 电子束选区熔化Ti-6Al-4V合金的显微组织与疲劳性能 [J]. 稀有金属材料与工程, 2017, 46(增刊): 25)
[23] Murakami Y . Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions [M]. Amsterdam: Elsevier, 2002: 44
[24] Mu P , Nadot Y , Nadot-Martin C , et al . Influence of casting defects on the fatigue behavior of cast aluminum AS7G06-T6 [J]. Int. J. Fatigue, 2014, 63: 97
[25] Romano S , Brand?o A , Gumpinger J , et al . Qualification of AM parts: Extreme value statistics applied to tomographic measurements [J]. Mater. Des., 2017, 131: 32
[26] Beretta S , Murakami Y . Statistical analysis of defects for fatigue strength prediction and quality control of materials [J]. Fatigue Fract. Eng. Mater. Struct., 1998, 21: 1049
[27] Zhang J M , Zhang J F , Yang Z G , et al . Estimation of maximum inclusion size and fatigure strength in high strength steel [J]. Acta Metall. Sin., 2004, 40: 846
[27] (张继明, 张建锋, 杨振国 等 . 高强钢中最大夹杂物的尺寸估计与疲劳强度预测 [J]. 金属学报, 2004, 40: 846)
[1] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[8] 张百成, 张文龙, 曲选辉. 基于高通量制备的增材制造材料成分设计[J]. 金属学报, 2023, 59(1): 75-86.
[9] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[10] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[11] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[12] 宋波, 张金良, 章媛洁, 胡凯, 方儒轩, 姜鑫, 张莘茹, 吴祖胜, 史玉升. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1): 1-15.
[13] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[14] 刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明. CrMoTi中熵合金的性能及其原位合金化增材制造[J]. 金属学报, 2022, 58(8): 1055-1064.
[15] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.