Please wait a minute...
金属学报  2018, Vol. 54 Issue (9): 1289-1296    DOI: 10.11900/0412.1961.2017.00481
  本期目录 | 过刊浏览 |
适于水合肼分解制氢的Ni-Pt/CeO2催化剂的表面组分调控
丘玉萍, 戴豪, 戴洪斌, 王平()
华南理工大学材料科学与工程学院广东省先进储能材料重点实验室 广州 510641
Tuning Surface Composition of Ni-Pt/CeO2 Catalyst for Hydrogen Generation from Hydrous Hydrazine Decomposition
Yuping QIU, Hao DAI, Hongbin DAI, Ping WANG()
Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
引用本文:

丘玉萍, 戴豪, 戴洪斌, 王平. 适于水合肼分解制氢的Ni-Pt/CeO2催化剂的表面组分调控[J]. 金属学报, 2018, 54(9): 1289-1296.
Yuping QIU, Hao DAI, Hongbin DAI, Ping WANG. Tuning Surface Composition of Ni-Pt/CeO2 Catalyst for Hydrogen Generation from Hydrous Hydrazine Decomposition[J]. Acta Metall Sin, 2018, 54(9): 1289-1296.

全文: PDF(3506 KB)   HTML
摘要: 

采用共还原方法制备了Ni-Pt/CeO2催化剂,并在不同气氛(空气、H2、NH3和CO)和不同温度下对催化剂进行热处理。结果表明,改变热处理条件可调变催化剂表面Ni/Pt摩尔比,进而调控催化性能,Ni-Pt/CeO2催化剂表面的Ni/Pt摩尔比为0.8~1.14时,催化剂具有较高的催化活性。此外,在催化剂表面引入非金属元素N可大幅度提高Ni-Pt/CeO2的催化活性,该发现有望为发展高性能水合肼分解制氢催化剂提供新的思路与途径。

关键词 水合肼制氢合金催化剂表面成分热处理    
Abstract

Hydrous hydrazine (N2H4·H2O) is a water-like liquid with a high hydrogen density (8%, mass fraction), relatively low cost, and satisfactory stability under ambient conditions. Owing to these favorable attributes, N2H4·H2O has attracted considerable attention as a promising hydrogen carrier for onboard or portable applications. The synthesis of highly active and selective catalysts is a central issue in developing practical hydrous hydrazine-based hydrogen generation systems. The development of high-performance catalysts requires fundamental knowledge of the correlation between the surface composition of the catalyst and its catalytic performance. In the present work, a supported Ni-Pt/CeO2 bimetallic nanocatalyst was prepared by a one-pot co-reduction method, and its use for catalyzing hydrous hydrazine decomposition to generate hydrogen was reported. The surface composition of the Ni-Pt/CeO2 catalyst was regulated by heat treatments under different atmospheres, such as air, NH3, H2, and CO and at different temperatures. It was found that changing the annealing conditions may result in altered Ni/Pt ratio at the catalyst surface, and as a consequence the catalytic performance can be tailored. When the molar Ni/Pt ratio at the catalyst surface was 0.8~1.14, the catalyst has been found to possess remarkable catalytic activity towards hydrous hydrazine decomposition. Additionally, it was found that incorporation of non-metallic N element on the catalyst surface may result in remarkably improved catalytic activity of Ni-Pt/CeO2 towards hydrous hydrazine decomposition. This finding may open new avenues for the development of high-performance catalyst for promoting hydrogen generation from hydrous hydrazine.

Key wordshydrous hydrazine    hydrogen generation    alloy catalyst    surface composition    heat treatment
收稿日期: 2017-11-15     
ZTFLH:  O643  
基金资助:国家自然科学基金项目Nos.51471168、51671087,国家自然科学基金创新研究群体科学基金项目No.51621001,广东省自然科学基金研究团队项目No.2016A030312011和华南理工大学985项目
作者简介:

作者简介 丘玉萍,女,1993年生,硕士生

图1  Ni-Pt/CeO2催化剂经不同气氛、不同温度热处理前后催化N2H4·H2O分解动力学曲线
Catalyst Atmosphere Temperature
K
Reaction rate
h-1
Selectivity
%
Ni-Pt/CeO2 (as-prepared) - - 336 96
Ni-Pt/CeO2 (annealed) Air (O2) 473 134 96
573 103 87
673 96 89
773 88 91
H2 473 278 97
573 327 100
673 234 97
773 177 99
NH3 573 315 98
673 490 100
773 404 100
CO 373 204 97
473 323 99
573 93 86
673 33 68
表1  在不同条件下热处理前后Ni-Pt/CeO2催化剂的性能
图2  共还原制备态和不同气氛下经573 K热处理的Ni-Pt/CeO2催化剂样品的XRD谱
图3  H2气氛573 K热处理的Ni-Pt/CeO2催化剂样品的TEM和HRTEM像
图4  H2气氛573 K热处理的Ni-Pt/CeO2催化剂样品的XPS
图5  采用XPS测定的Ni-Pt/CeO2催化剂经不同气氛、不同温度热处理后的表面Ni/Pt比
图6  Ni-Pt/CeO2催化剂表面Ni/Pt比对N2H4·H2O催化分解反应速率的影响
图7  经NH3气氛673 K处理的Ni-Pt/CeO2催化剂的HAADF-STEM像、元素分布及N元素的XPS
[1] Wang D S, Li Y D.Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications[J]. Adv. Mater., 2011, 23: 1044
[2] Yu W T, Porosoff M D, Chen J G.Review of Pt-based bimetallic catalysis: From model surfaces to supported catalysts[J]. Chem. Rev., 2012, 112: 5780
[3] De S, Zhang J G, Luque R, et al.Ni-based bimetallic heterogeneous catalysts for energy and environmental applications[J]. Energy Environ. Sci., 2016, 9: 3314
[4] Wang P, Kang X D.Hydrogen-rich boron-containing materials for hydrogen storage[J]. Dalton Trans., 2008, 40: 5400
[5] Singh S K, Xu Q.Nanocatalysts for hydrogen generation from hydrazine[J]. Catal. Sci. Technol., 2013, 3: 1889
[6] He L, Liang B L, Huang Y Q, et al.Design strategies of highly selective nickel catalysts for H2 production via hydrous hydrazine decomposition: A review[J]. Nat. Sci. Rev., 2018, 5: 356
[7] Cho S J, Lee J, Lee Y S, et al.Characterization of iridium catalyst for decomposition of hydrazine hydrate for hydrogen generation[J]. Catal. Lett., 2006, 109: 181
[8] Singh S K, Zhang X B, Xu Q.Room-temperature hydrogen generation from hydrous hydrazine for chemical hydrogen storage[J]. J. Am. Chem. Soc., 2009, 131: 9894
[9] Du X Q, Cai P, Luo W, et al.Facile synthesis of P-doped Rh nanoparticles with superior catalytic activity toward dehydrogenation of hydrous hydrazine[J]. Int. J. Hydrogen Energy, 2017, 42: 6137
[10] He L, Liang B L, Li L, et al.Cerium-oxide-modified nickel as a non-noble metal catalyst for selective decomposition of hydrous hydrazine to hydrogen[J]. ACS Catal., 2015, 5: 1623
[11] Kang W, Varma A.Hydrogen generation from hydrous hydrazine over Ni/CeO2 catalysts prepared by solution combustion synthesis[J]. Appl. Catal. Environ., 2018, 220B: 406
[12] He L, Huang Y Q, Wang A Q, et al.A noble-metal-free catalyst derived from Ni-Al hydrotalcite for hydrogen generation from N2H4·H2O decomposition[J]. Angew. Chem. Int. Ed. Engl., 2012, 51: 6191
[13] He L, Huang Y Q, Wang A Q, et al.Surface modification of Ni/Al2O3 with Pt: Highly efficient catalysts for H2 generation via selective decomposition of hydrous hydrazine[J]. J. Catal., 2013, 298: 1
[14] He L, Huang Y Q, Liu X Y, et al.Structural and catalytic properties of supported Ni-Ir alloy catalysts for H2 generation via hydrous hydrazine decomposition[J]. Appl. Catal. Environ., 2014, 147B: 779
[15] Zhang J J, Kang Q, Yang Z Q, et al.A cost-effective NiMoB-La(OH)3 catalyst for hydrogen generation from decomposition of alkaline hydrous hydrazine solution[J]. J. Mater. Chem., 2013, 1A: 11623
[16] Jiang Y Y, Dai H B, Zhong Y J, et al.Complete and rapid conversion of hydrazine monohydrate to hydrogen over supported Ni-Pt nanoparticles on mesoporous ceria for chemical hydrogen storage[J]. Chem. Eur. J., 2015, 21: 15439
[17] Jiang Y Y, Kang Q, Zhang J J, et al.High-performance nickel-platinum nanocatalyst supported on mesoporous alumina for hydrogen generation from hydrous hydrazine[J]. J. Power Sources, 2015, 273: 554
[18] Zhong Y J, Dai H B, Jiang Y Y, et al.Highly efficient Ni@Ni-Pt/La2O3 catalyst for hydrogen generation from hydrous hydrazine decomposition: Effect of Ni-Pt surface alloying[J]. J. Power Sources, 2015, 300: 294
[19] Dai H, Dai H B, Zhong Y J, et al.Kinetics of catalytic decomposition of hydrous hydrazine over CeO2-supported bimetallic Ni-Pt nanocatalysts[J]. Int. J. Hydrogen Energy, 2017, 42: 5684
[20] Wang H L, Yan J M, Wang Z L, et al.Highly efficient hydrogen generation from hydrous hydrazine over amorphous Ni0.9Pt0.1/Ce2O3 nanocatalyst at room temperature[J]. J. Mater. Chem., 2013, 1A: 14957
[21] Dai H B, Zhong Y J, Wang P.Hydrogen generation from decomposition of hydrous hydrazine over Ni-Ir/CeO2 catalyst[J]. Prog. Nat. Sci. Mater. Int., 2017, 27: 121
[22] Du X Q, Liu C, Du C, et al.Nitrogen-doped graphene hydrogel-supported NiPt-CeOx nanocomposites and their superior catalysis for hydrogen generation from hydrazine at room temperature[J]. Nano Res., 2017, 10: 2856
[23] Oliaee S N, Zhang C L, Hwang S Y, et al.Hydrogen production via hydrazine decomposition on model platinum-nickel nanocatalyst with a single (111) facet[J]. J. Phys. Chem., 2016, 120C: 9764
[24] Wang J, Zhang X B, Wang Z L, et al.Rhodium-nickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage[J]. Energy Environ. Sci., 2012, 5: 6885
[25] Mu R T, Guo X G, Fu Q, et al.Oscillation of surface structure and reactivity of PtNi bimetallic catalysts with redox treatments at variable temperatures[J]. J. Phys. Chem., 2011, 115C: 20590
[26] Ahmadi M, Behafarid F, Cui C H, et al.Long-range segregation phenomena in shape-selected bimetallic nanoparticles: Chemical state effects[J]. ACS Nano, 2013, 7: 9195
[27] Zhong Y J, Dai H B, Wang P.Preparation of Ni-Pt/La2O3 catalyst and its kinetics study of hydrous hydrazine for hydrogen generation[J]. Acta Metall. Sin., 2016, 52: 505(钟玉洁, 戴洪斌, 王平. 水合肼制氢Ni-Pt/La2O3催化剂研制及其反应动力学研究[J]. 金属学报, 2016, 52: 505)
[28] Song F Z, Zhu Q L, Xu Q.Monodispersed PtNi nanoparticles deposited on diamine-alkalized graphene for highly efficient dehydrogenation of hydrous hydrazine at room temperature[J]. J. Mater. Chem., 2015, 3A: 23090
[29] Zhong Y J, Dai H B, Zhu M, et al.Catalytic decomposition of hydrous hydrazine over Ni-Pt/La2O3 catalyst: A high-performance hydrogen storage system[J]. Int. J. Hydrogen Energy, 2016, 41: 11042
[30] Singh S K, Xu Q.Complete conversion of hydrous hydrazine to hydrogen at room temperature for chemical hydrogen storage[J]. J. Am. Chem. Soc., 2009, 131: 18032
[31] Zhao P P, Cao N, Su J, et al.NiIr nanoparticles immobilized on the pores of MIL-101 as highly efficient catalyst toward hydrogen generation from hydrous hydrazine[J]. ACS Sustain. Chem. Eng., 2015, 3: 1086
[32] Zhu Q L, Xu Q.Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage[J]. Energy Environ. Sci., 2015, 8: 478
[33] Singh S K, Singh A K, Aranishi K, et al.Noble-metal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage[J]. J. Am. Chem. Soc., 2011, 133: 19638
[34] O Song-II, Yan J M, Wang H L, et al. Ni/La2O3 catalyst containing low content platinum-rhodium for the dehydrogenation of N2H4·H2O at room temperature[J]. J. Power Sources, 2014, 262: 386
[1] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[2] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[3] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[4] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[5] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[6] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[7] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[8] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.
[9] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[10] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[11] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[12] 王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.
[13] 王文权, 王苏煜, 陈飞, 张新戈, 徐宇欣. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J]. 金属学报, 2021, 57(8): 1017-1026.
[14] 王悦, 王继杰, 张昊, 赵泓博, 倪丁瑞, 肖伯律, 马宗义. 热处理对激光选区熔化AlSi10Mg合金显微组织及力学性能的影响[J]. 金属学报, 2021, 57(5): 613-622.
[15] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.