Please wait a minute...
金属学报  2015, Vol. 51 Issue (5): 553-560    DOI: 10.11900/0412.1961.2014.00470
  论文 本期目录 | 过刊浏览 |
回火时间对高Ti微合金化淬火马氏体钢组织及力学性能的影响*
张可1,2,孙新军2(),雍岐龙2,李昭东2,杨庚蔚3,李员妹1,2
1 昆明理工大学材料科学与工程学院, 昆明 650093
2 钢铁研究总院工程用钢研究所, 北京 100081
3 武汉科技大学材料与冶金学院, 武汉 430081
EFFECT OF TEMPERING TIME ON MICROSTRUC- TURE AND MECHANICAL PROPERTIES OF HIGH Ti MICROALLOYED QUENCHED MARTENSITIC STEEL
Ke ZHANG1,2,Xinjun SUN2(),Qilong YONG2,Zhaodong LI2,Gengwei YANG3,Yuanmei LI1,2
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2 Institute of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081
3 School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081
全文: PDF(5388 KB)   HTML
摘要: 

利用TEM, XRD和Vickers硬度计等研究了回火时间对高Ti微合金化马氏体钢组织及力学性能的影响, 阐明了高Ti微合金化马氏体钢在回火过程中析出强化和组织软化之间的交互作用规律. 结果表明, 高Ti钢在600 ℃不同时间回火, 硬度表现出不同的趋势. 10~300 s回火, 硬度不断升高, 是由于TiC的析出强化作用远大于基体回复而导致的软化作用; 300 s~10 h回火, 硬度保持长时间的平台, 是由于细小TiC粒子的不断析出, 且5 nm以下的粒子所占比例提高, 不断增加的细小TiC粒子所产生的强化抵消了由于基体组织软化导致的硬度下降; 10~20 h回火, 硬度快速降低, 且降低速率高于不含Ti钢, TiC粒子的平均尺寸由10 h的2.76 nm粗化到20 h的3.15 nm. 计算表明, TiC粒子的粗化引起硬度降低11.94 HV, 基体软化引起硬度降低24.56 HV, 表明基体软化是硬度降低的主要因素, 而TiC粒子的粗化加速了高Ti钢硬度的降低, 是导致硬度降低的又一重要因素.

关键词 回火时间硬度TiC粗化马氏体板条    
Abstract

With the development of Ti microalloying technology, the application and theory research of Ti in microalloyed steels are becoming more deeply and widely. However, the effect of tempering time on the microstructure and mechanical properties of high Ti microalloyed quenched martensitic steel has been rarely touched upon, meanwhile, it has long been inconclusive whether precipitated phases coarsening or the recovery and softening of martensitic matrix is the dominant role resulting in the decrease of hardness along with long time tempering of microalloyed steel. In this work, the effect of tempering time on the microstructure and mechanical properties of high Ti microalloyed quenched steel was systemactically investigated by TEM, XRD and Vickers-hardness test, and the interaction between precipitation hardening and microstructural softening of the high Ti microalloyed steel was also studied. The results indicate that the hardness increases for Ti microalloyed steel with tempering time 10~300 s, which is attributed to the fact that the precipitation hardening by nano-sized TiC particles is greater than the recovery and softening of matrix. With the tempering time from 300 s to 10 h, nano-sized TiC particles precipitate more and more and the mass fraction of TiC with the size less than 5 nm increases, owning to the precipitation hardening produced by tiny TiC which offsets the hardness decrease due to the gradual softening with recovery of matrix, and therefore, the hardness can keep a long platform; in addition, with the tempering time 10~20 h, the hardness decreases significantly and the deacreasing rate of hardening for steel with Ti microalloying is higher than that for steel without Ti microalloying. The average particle size of TiC increases from 2.76 nm at 10 h to 3.15 nm at 20 h. Calculation results show that the decrease of hardness caused by coarsening of TiC is 11.94 HV, while caused by recovery of matrix is 24.56 HV. It is shown that the recovery of matrix is the dominating factor for reduction in hardness, but coarsening of tiny TiC speeds the decrease of hardness and is also an important factor resulting in the decrease of hardness.

Key wordstempering time    hardness    TiC    coarsening    martensite lath
收稿日期: 2014-08-25     
基金资助:* 国家自然科学基金项目51201036 和国家科技支撑计划项目2013BAE07B05 资助
作者简介: 张可, 男, 1983 年生, 博士生

引用本文:

张可, 孙新军, 雍岐龙, 李昭东, 杨庚蔚, 李员妹. 回火时间对高Ti微合金化淬火马氏体钢组织及力学性能的影响*[J]. 金属学报, 2015, 51(5): 553-560.
Ke ZHANG, Xinjun SUN, Qilong YONG, Zhaodong LI, Gengwei YANG, Yuanmei LI. EFFECT OF TEMPERING TIME ON MICROSTRUC- TURE AND MECHANICAL PROPERTIES OF HIGH Ti MICROALLOYED QUENCHED MARTENSITIC STEEL. Acta Metall Sin, 2015, 51(5): 553-560.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00470      或      https://www.ams.org.cn/CN/Y2015/V51/I5/553

Steel C Si Mn Ti P S N AIs
1 0.06 0.23 1.73 - 0.01 0.006 0.006 -
2 0.07 0.25 1.77 0.17 0.01 0.006 0.006 0.030
表1  实验钢的化学成分
图1  2种钢在600 ℃回火不同时间后的硬度变化
图2  2号钢回火不同时间后TiC粒子的尺寸分布
图3  2号钢回火10和20 h后小于5 nm的TiC粒子的分布
图4  2号钢回火不同时间后的TEM像和EDS分析
图5  2号钢回火不同时间后的TEM像
图6  1号钢回火不同时间后的TEM像
[1] Spcich G R, Leslie W C. Metall Trans, 1972; 3A: 1043
[2] Engel E H. Trans Am Soc Met, 1939; 27: 1
[3] Hollomon J H, Jaffe L D. Trans AIME, 1945; 162: 223
[4] Murphy S, Woodhead J H. Metall Trans, 1972; 3: 727
[5] Guo C S. Acta Metall Sin, 1999; 35: 865 (郭从盛. 金属学报, 1999; 35: 865)
[6] Zhang Z P, Qi Y H, Delagnes D, Bernhart G. Trans Mater Heat Treat, 2004; 25(1): 41 (张占平, 齐育红, Delagnes D, Bernhart G. 材料热处理学报, 2004; 25(1): 41)
[7] Zou Q H. Heat Treat Met, 1994; (3): 41 (邹庆化. 金属热处理, 1994; (3): 41)
[8] Grange R A, Hribal C R, Porter L R. Metall Trans, 1977; 8A: 1775
[9] Caron R N, Krauss G. Metall Trans, 1972; 3A: 2381
[10] Takaki S, Iizuka S, Tomimura K, Tokunage Y. Mater Trans JIM, 1991; 32: 207
[11] Zhong P, Ling B, Gu B Z. Spec Steel, 1996; 17(4): 23 (钟 平, 凌 斌, 古宝珠. 特殊钢, 1996; 17(4): 23)
[12] Liu Q D, Liu W Q, Peng J C. Trans Mater Heat Treat, 2008; 29(4): 118 (刘庆东, 刘文庆, 彭剑超. 材料热处理学报, 2008; 29(4): 118)
[13] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2009; 45: 1281 (刘庆东, 刘文庆, 王泽民, 周邦新. 金属学报, 2009; 45: 1281)
[14] Liu Q D, Peng J C, Liu W Q, Zhou B X. Acta Metall Sin, 2009; 45: 1288 (刘庆东, 彭剑超, 刘文庆, 周邦新. 金属学报, 2009; 45: 1288)
[15] Liu Q D, Chu Y L, Peng J C, Liu W Q, Zhou B X. Acta Metall Sin, 2009; 45: 1297 (刘庆东, 褚于良, 彭剑超, 刘文庆, 周邦新. 金属学报, 2009; 45: 1297)
[16] Xu F Y, Bai B Z, Fang H S. Heat Treat Met, 2007; 32(12): 29 (许峰云, 白秉哲, 方鸿生. 金属热处理, 2007; 32(12): 29)
[17] Zhou J L, Huang G, Xiang S, Pan C G, Lai C M, Hu T G. Spec Steel, 2014; 35(3): 49 (周家林, 黄 高, 向 上, 潘成钢, 赖春明, 胡唐国. 特殊钢, 2014; 35(3): 49)
[18] Wang Z Q. PhD Dissertation, Tsinghua University, Beijing, 2013 (王振强. 清华大学博士学位论文, 北京, 2013)
[19] Wang M, Li L F, Sun Z Q, Yang W Y. Acta Metall Sin, 2007; 43: 1009 (王 猛, 李龙飞, 孙祖庆, 杨王玥. 金属学报, 2007; 43: 1009)
[20] Tsuchiyama T, Miyamoto Y, Takaki S. ISI Int, 2001; 41: 1047
[21] Tokizane M, Matsumura N, Tsuzaki K, Maki T, Tamura I. Metall Trans, 1982; 13A: 1379
[22] Maki T, Tamura I. Trans ISIJ, 1981; 67: 852
[23] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 415 (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 415)
[24] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[25] Pavlina E J, Van Type C J. J Mater Eng Perform, 2008; 17: 888
[26] Kesternich W. Philos Mag, 1985; 52: 533
[1] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[2] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[3] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[4] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[5] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[6] 李冬梅, 姜贝贝, 李晓娜, 王清, 董闯. 高硬导电Cu-Ni-Si合金成分规律[J]. 金属学报, 2019, 55(10): 1291-1301.
[7] 朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰. 合金凝固枝晶粗化的研究进展[J]. 金属学报, 2018, 54(5): 789-800.
[8] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[9] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[10] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[11] 张可, 李昭东, 隋凤利, 朱正海, 章小峰, 孙新军, 黄贞益, 雍岐龙. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018, 54(1): 31-38.
[12] 何仙灵,杨庚蔚,毛新平,余驰斌,达传李,甘晓龙. Nb对Ti-Mo微合金钢连续冷却相变规律及组织性能的影响[J]. 金属学报, 2017, 53(6): 648-656.
[13] 陈占兴,丁宏升,刘石球,陈瑞润,郭景杰,傅恒志. 直流电流对Ti-48Al-2Cr-2Nb合金组织和性能的影响[J]. 金属学报, 2017, 53(5): 583-591.
[14] 童文辉,赵子龙,张新元,王杰,国旭明,段新华,刘豫. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究[J]. 金属学报, 2017, 53(4): 472-478.
[15] 刘进,劳远侠,汪渊. Cu对AlN/TiN-Cu复合多层膜微观结构和力学性能的影响[J]. 金属学报, 2017, 53(4): 465-471.