Please wait a minute...
金属学报  2012, Vol. 48 Issue (4): 441-449    DOI: 10.3724/SP.J.1037.2011.00633
  论文 本期目录 | 过刊浏览 |
冷却方式对Nb-Ti微合金钢组织和性能及沉淀行为的影响
陈俊, 唐帅,刘振宇,王国栋
东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
EFFECTS OF COOLING PROCESS ON MICROSTRUCTURE, MECHANICAL PROPERTIES AND PRECIPITATION BEHAVIORS OF NIOBIUM-TITANIUM MICRO-ALLOYED STEEL
CHEN Jun, TANG Shuai, LIU Zhenyu, WANG Guodong
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
全文: PDF(1115 KB)  
摘要: 两阶段控制轧制后, 采用不同的冷却路径进行冷却, 研究冷却路径对 Nb-Ti微合金钢组织和性能及沉淀行为的影响. 结果表明, 超快冷+空冷冷却路径可获得细晶组织, 晶粒平均尺寸约为7.76 μm, 屈服强度高达425 MPa, 抗拉强度高达500 MPa. 超快冷+炉冷试样中存在细小的沉淀粒子, 沉淀粒子尺寸主要集中在2-7 nm, 而超快冷+空冷试样中只存在少量球形沉淀粒子, 轧后直接空冷可获得相间沉淀粒子. 不同冷却路径获得的热轧板在700 ℃下退火300 s后, 沉淀粒子发生明显的粗化; 退火处理后, 超快冷+炉冷试样的晶粒平均尺寸减小为6.47 μm, 相对于退火前, 其屈服强度和抗拉强度分别增加50和 30 MPa, 强度的增加主要源于细晶强化. 对于含0.03%Nb(质量分数)的 Nb-Ti微合金钢, 由于沉淀粒子的体积分数有限, 因此细晶强化效果远高于沉淀强化效果, 强度的变化与晶粒尺寸的变化具有很好的对应性. 另外, 加工硬化指数与晶粒尺寸密切相关, 随着晶粒平均尺寸的增加使加工硬化指数增加.
关键词 Nb-Ti微合金钢超快冷冷却路径组织和性能沉淀强化细晶强化加工硬化指数    
Abstract:The tested steels were cooled to room temperature using different cooling paths after two-stage rolling, and effects of cooling paths on microstructure, mechanical properties and precipitation behaviors of Nb-Ti micro-alloyed steels were investigated. The results show the hot rolled plates with fine grain were produced at the cooling path of ultra fast cooling + air cooling, and the average grain size, lower yield strength and ultimate tensile strength are about 7.76 μm, 425 MPa and 500 MPa, respectively. The fine precipitation particles ranging from 2 nm to 7 nm were observed in the samples cooling with ultra fast cooling + furnace cooling, but are only a few globular precipitates in the samples cooling with ultra fast cooling + air cooling. The inter-phase precipitation was observed in samples cooling with air cooling after finish rolling. These plates with different cooling paths were annealed at 700 ℃ for 300 s. The precipitation particles were obviously coarsened during annealing. It can be found that the average grain size of the samples with cooling path of ultra fast cooling + furnace cooling is 6.47 μm and the increments of lower yield strength and ultimate tensile strength are about 50 and 30 MPa, respectively. The strength increment mainly depends on fine grain strengthening.For niobium-titanium micro-alloyed steels containing 0.03%Nb (mass fraction), because the volume fraction of precipitates is limited, grain boundaries strengthening is higher than precipitation hardening, making changes of strength be in good agreement with that of grain size. In addition, the strain hardening exponent is mainly related to average grain size, and strain hardening exponent increases with average grain size increasing.
Key wordsniobium-titanium micro-alloyed steel    ultra fast cooling    cooling path    microstructure and mechanical property    precipitation hardening    fine grain strengthening    strain hardening exponent
收稿日期: 2011-10-09     
ZTFLH: 

TG142.33

 
基金资助:

中央高校基本科研业务费专项资金项目N110607003和N100507002资助

通讯作者: 唐帅     E-mail: tangshuai@ral.neu.edu.cn
Corresponding author: tangshuai@ral.neu.edu.cn      E-mail: tangshuai@ral.neu.edu.cn
作者简介: 陈俊, 男, 1982年生, 博士生

引用本文:

陈俊, 唐帅,刘振宇,王国栋. 冷却方式对Nb-Ti微合金钢组织和性能及沉淀行为的影响[J]. 金属学报, 2012, 48(4): 441-449.
CHEN Jun, TANG Shuai, LIU Zhen-Yu, YU Guo-Dong. EFFECTS OF COOLING PROCESS ON MICROSTRUCTURE, MECHANICAL PROPERTIES AND PRECIPITATION BEHAVIORS OF NIOBIUM-TITANIUM MICRO-ALLOYED STEEL. Acta Metall Sin, 2012, 48(4): 441-449.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2011.00633      或      https://www.ams.org.cn/CN/Y2012/V48/I4/441

[1] Yong Q L.  Secondary Phase in Steel. Beijing: Metallurgical Industry Press, 2006: 15

    (雍启龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 15)

[2] Duan X G, Cai Q W, Wu H B.  Acta Metall Sin, 2011; 47: 251

    (段修刚, 蔡庆伍, 武会斌. 金属学报, 2011; 47: 251)

[3] Fang S F, Zhang J.  Acta Metall Sin, 1990; 26: A228

    (方淑芳, 张健. 金属学报, 1990; 26: A228)

[4] Tang G Y, Zheng Y Z, Cai Q G, Zhu J.  Acta Metall Sin,1989; 25: A414

    (唐国翌, 郑炀曾, 蔡其巩, 朱静. 金属学报, 1989; 25: A414)

[5] Zrnika J, Kvackaj T, Pongpaybul A, Sricharoenchai P, Vilk J,Vrchovinsky V.  Mater Sci Eng, 2001; A319: 321

[6] Xue X H, Shan Y Y, Zheng L, Lou S N.  Mater Sci Eng,2006; A438: 285

[7] Mesplont C.  Proc 1th International Conf on Super-High Strength Steels, Rome, Italy: AIM, 2005 (CD-ROM)

[8] Jiao D T, Cai Q W, Wu H B.  Acta Metall Sin, 2009; 45: 1111

    (焦多田, 蔡庆伍, 武会斌. 金属学报, 2009; 45: 1111)

[9] Arribas M, Lopez B, Rodriguez-Ibabe J M.  Mater Sci Eng,2008; A485: 383

[10] Dutta B, Sellars C M.  Mater Sci Technol, 1987; 3: 197

[11] Liu W J, Jonas J J.  Metall Trans, 1989; 20A: 689

[12] Abad R, Fernandez A I, Lopez B, Podriguez-Ibabe J M.  ISIJ Int,2001; 41: 1373

[13] Yu Q B, Wang Z D, Liu X H, Wang G D.  Mater Sci Eng, 2004; A379: 384

[14] Wu J B, Liu G Q, Wang H.  Acta Metall Sin, 2010; 46: 838

     (吴晋彬, 刘国权, 王浩. 金属学报, 2010, 46: 838)

[15] Fu L M, Shan A D, Wang W.  Acta Metall Sin, 2010; 46: 832

     (付立铭, 单爱党, 王巍. 金属学报, 2010, 46: 832)

[16] Bai D Q, Yue S, Sun W P, Jonas J J.  Metall Trans, 1993; 24A: 2151

[17] Maruyama N, Uemori R, Sugiyama M.  Mater Sci Eng, 1998; A250: 2

[18] Koch C C, Morris D G, Lu K, Inoue A.  MRS Bull, 1999; 24: 54

[19] Tsuji N, Ito Y, Saito Y, Minamino Y.  Scr Mater, 2002; 47: 893

[20] Song R, Ponge D, Raabe D.  Acta Mater, 2003; 53: 4881

[21] Cao J C.  PhD Thesis, Kunming University of Science and Technology, 2006

     (曹建春. 昆明理工大学博士学位论文, 2006)

[22] Wang Z D, Qu J B, Liu X H, Wang G D.  Acta Metall Sin, 2000; 36: 618

     (王昭东, 曲锦波, 刘相华, 王国栋. 金属学报, 2000, 36: 618)

[23] Akben M G, Bacroix B, Jonas J J.  Acta Metall, 1983; 31: 161

[24] Altuna M A, Lza-Mendia A, Gutierrez I.  3rd International Conf on Thermomechanical Proc Steels, Padova, Italy: Milano: AIM, 2008 (CD-ROM)

[25] Davenport A, Honeycombe R.  Proc Roy Soc London, 1971; 322: 191

[26] Lagneborg R, Zajac S.  Metall Mater Trans, 2001; 32A: 39

[27] Andrews K W.  Iron Steel Inst, 1965; 203: 721
[1] 王猛, 刘振宇, 李成刚. 轧后超快冷及亚温淬火对5%Ni钢微观组织与低温韧性的影响机理[J]. 金属学报, 2017, 53(8): 947-956.
[2] 李小琳,王昭东,邓想涛,张雨佳,类承帅,王国栋. 超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响*[J]. 金属学报, 2015, 51(7): 784-790.
[3] 李小琳, 王昭东. 含Nb-Ti低碳微合金钢中纳米碳化物的相间析出行为[J]. 金属学报, 2015, 51(4): 417-424.
[4] 李维娟, 张恒毅, 付豪, 张建平, 戚翔宇. 低碳钢烘烤硬化机制的内耗研究[J]. 金属学报, 2015, 51(4): 385-392.
[5] 张盛华,王培,李殿中,李依依. ZG06Cr13Ni4Mo马氏体不锈钢中TRIP效应的同步辐射高能X射线原位研究*[J]. 金属学报, 2015, 51(11): 1306-1314.
[6] 李小龙, 郭正洪, 戎咏华, 吴海洋, 姚圣法. 基于屈服平台理论开发的600 MPa级高强塑性螺纹钢的研究*[J]. 金属学报, 2014, 50(4): 439-446.
[7] 王小娜, 韩利战, 顾剑锋. NZ30K镁合金时效析出动力学与强化模型的研究*[J]. 金属学报, 2014, 50(3): 355-360.
[8] 任勇强,谢振家,张宏伟,袁胜福,宋婷婷,尚成嘉. 前躯体组织对C—Mn—Si钢组织特征及力学行为的影响[J]. 金属学报, 2013, 49(12): 1558-1566.
[9] 杜刚 杨文 闫德胜 戎利建. 铸态Al-Mg-Sc-Zr合金退火过程中的硬化行为[J]. 金属学报, 2011, 47(3): 311-316.
[10] 王书晗 刘振宇 王国栋. TWIP钢中晶粒尺寸对TWIP效应的影响[J]. 金属学报, 2009, 45(9): 1083-1090.
[11] 刘江涛 王中光 尚建库. [110]和[112]取向β-Sn单晶体的形变行为[J]. 金属学报, 2008, 44(12): 1409-1414.
[12] 张建; 李秀艳; 戎利建; 郑永男; 朱升云 . Fe-Ni基合金氢脆的正电子湮没寿命谱研究[J]. 金属学报, 2006, 42(5): 469-473 .
[13] 沙桂英; 韩恩厚; 于涛; 徐永波; 刘路; 高国忠 . Mg-Y-Nd合金的蠕变行为及其微观机制[J]. 金属学报, 2003, 39(10): 1025-1030 .
[14] 谭云; 余勇; 潘晓霞; 李光东; 张方举; 丰杰 ; 周德惠; 戎利建; 马禄铭 . 高温热冲击对J75不锈钢力学性能及微观组织的影响[J]. 金属学报, 2002, 38(7): 684-688 .
[15] 何毅; 杨柯; 孔凡亚; 曲文生; 苏国跃 . 超高强度18Ni无钴马氏体时效钢的力学性能[J]. 金属学报, 2002, 38(3): 278-282 .