Please wait a minute...
金属学报  2011, Vol. 47 Issue (12): 1490-1494    DOI: 10.3724/SP.J.1037.2011.00227
  论文 本期目录 | 过刊浏览 |
泵阀用2Cr13马氏体不锈钢等离子体基低能氮离子注入研究
雷明凯, 王克胜, 欧伊翔, 张磊
大连理工大学材料科学与工程学院表面工程研究室
PLASMA–BASED LOW–ENERGY NITROGEN ION IMPLANTATION OF 2Cr13 MARTENSITIC STAINLESS STEEL USED IN PUMPS AND VALVES
LEI Mingkai, WANG Kesheng, OU Yi Xiang, ZHANG Lei
Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology,
Dalian 116024
全文: PDF(564 KB)  
摘要: 采用等离子体基低能氮离子注入技术, 在450 ℃, 4 h改性处理核电站泵阀零部件用2Cr13马氏体不锈钢, 获得了深度为10-12 μm的改性层,超高氮过饱和浓度为35%-40%(原子分数), 由hcp结构的ε-Fe2-3N相组成.改性层的硬度最大值为15.7 GPa, 球--盘式摩擦学实验测定的改性层摩擦系数由原始不锈钢的1.0减至0.85, 耐磨性显著提高. 在3.5%NaCl溶液中,改性层的阳极极化曲线由原始不锈钢的活化溶解转化为自钝化-孔蚀击穿特征,自腐蚀电位增加至-185 mV(vs SCE), 维钝电流密度为10-1 μA/cm2,孔蚀击穿电位为-134 mV(vs SCE), 抗孔蚀性能明显改善. 表面改性2Cr13马氏体不锈钢满足泵阀零部件耐磨损抗腐蚀的需求.
关键词 等离子体基低能氮离子注入 2Cr13马氏体不锈钢 耐磨性 抗蚀性    
Abstract:The 2Cr13 martensitic stainless steel used in pumps and valves has been modified by plasma–based low–energy nitrogen ion implantation at a processing temperature of 450℃ for a treatment time of 4 h. The modified layer on the 2Cr13 stainless steel has a thickness range of 10—12 μm. The modified layer consists of monophase and has a high supersaturated nitrogen concentration up to 35%—40% (atomic fraction). The microhardness of the ε–Fe2−3N phase layer was measured to be 15.7 GPa, and the increased wear resistance of the modified layer was obtained on a ball on disctribometer with a decreased friction coefficient from 1.0 of the original stainless steel to 0.85. A typical course from self–passivation to pitting corrosion of the modified layer in 3.5%NaCl solution was observed with a corrosion potential of −185 mV(vs SCE), a passive current density of 10−1 μA/cm2, and a pitting potential of −134 mV(vs SCE). The pitting corrosion resistance of the modified layer was improved in comparison with that of the original stainless steel with non anodic passivation. It was found that the plasma–based low–energy nitrogen ion implantation of 2Cr13 martensitic stainless steel provided an opportunity of combined improvement in wear and corrosion resistance for use in pumps and valves.
Key wordsplasma–based low–energy nitrogen ion implantation    2Cr13 martensitic stainless steel    wear resistance    corrosion resistance
收稿日期: 2011-04-11     
基金资助:

国家自然科学基金资助项目50725519

通讯作者: 雷明凯     E-mail: surfeng@dlut.edu.cn;mklei@dlut.edu.cn
Corresponding author: LEI Mingkai     E-mail: surfeng@dlut.edu.cn;mklei@dlut.edu.cn
作者简介: 雷明凯, 男, 1963年生, 教授

引用本文:

雷明凯 王克胜 欧伊翔 张磊. 泵阀用2Cr13马氏体不锈钢等离子体基低能氮离子注入研究[J]. 金属学报, 2011, 47(12): 1490-1494.
LEI Meng-Kai. PLASMA–BASED LOW–ENERGY NITROGEN ION IMPLANTATION OF 2Cr13 MARTENSITIC STAINLESS STEEL USED IN PUMPS AND VALVES. Acta Metall Sin, 2011, 47(12): 1490-1494.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2011.00227      或      https://www.ams.org.cn/CN/Y2011/V47/I12/1490

[1] Alphonsa I, Chainani A, Raole P M, Ganguli B, John P I. Surf Coat Technol, 2002; 150: 263

[2] Pinedo C E, Monteiro W A. Surf Coat Technol, 2004; 179: 119

[3] Kim S K, Yoo J S, Priest J M, Fewell M P. Surf Coat Technol, 2003; 163: 380

[4] Manova D, Thorwarth G, M¨andl S, Neumann H, Stritzker B, Rauschenbach B. Nucl Instrum Method, 2006; 242B: 285

[5] Manova D, M¨andl S, Neumann H, Rauschenbach B. Surf Coat Technol, 2006; 200: 6563

[6] Xi Y T, Liu D X, Han D. Appl Surf Sci, 2008; 254: 5953

[7] Xi Y T, Liu D X, Han D. Surf Coat Technol, 2008; 202: 2577

[8] Sobiecki J R, Mankowski P, Patejuk A. Vacuum, 2004; 76: 57

[9] Lei M K, Zhang Z L. J Vac Sci Technol, 1995; 13A: 2986

[10] Lei M K, Zhang Z L, Ma T C. Surf Coat Technol, 2000; 131: 317

[11] Lei M K, Zhu X M, Yuan L J, Zhang Z L. Acta Metall Sin, 1999; 35: 767

(雷明凯, 朱雪梅, 袁力江, 张仲麟. 金属学报, 1999; 35: 767)

[12] TuckartW, Forlerer E, Iurman L. Surf Coat Technol, 2007; 202: 199

[13] Lu H T, Chen H M. China Nucl Power, 2010; 3: 361

(卢宏涛, 陈汉明. 中国核电, 2010; 3: 361)
[1] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[2] 何波,聂庆武,张洪宇,韦华. 固溶处理对CoCrW合金组织及耐磨性能的影响*[J]. 金属学报, 2016, 52(4): 484-490.
[3] 袁晓云, 陈礼清. 晶粒及晶界特征对高锰奥氏体TWIP钢抗腐蚀能力的影响*[J]. 金属学报, 2016, 52(10): 1345-1352.
[4] 罗新民, 王翔, 陈康敏, 鲁金忠, 王兰, 张永康. 激光冲击诱导的航空铝合金表层高熵结构及其抗蚀性[J]. 金属学报, 2015, 51(1): 57-66.
[5] 刘晓波, 赵宇光. 不同制备条件下原位Mg2Si/Al复合材料的组织演变和耐磨性*[J]. 金属学报, 2014, 50(6): 753-761.
[6] 许虹宇,黄陆军,耿林,张杰,黄玉东. Cu含量对Al2O3·SiO2sf/Al-Cu复合材料耐磨性能的影响[J]. 金属学报, 2013, 49(9): 1131-1136.
[7] 牛云松,魏杰,赵健,胡家秀,于志明. 超声辅助电镀法纳米叠层Ni镀膜的制备与性能[J]. 金属学报, 2013, 49(12): 1617-1622.
[8] 梁秀兵 张志彬 陈永雄 徐滨士. 铝基非晶纳米晶复合涂层研究[J]. 金属学报, 2012, 48(3): 289-297.
[9] 张锋刚 朱小鹏 王明阳 雷明凯. 强流脉冲离子束辐照WC-Ni硬质密封材料表面改性研究[J]. 金属学报, 2011, 47(7): 958-964.
[10] 王艳秋 王岳 陈派明 邵亚薇 王福会. 7075铝合金微弧氧化涂层的组织结构与耐蚀耐磨性能[J]. 金属学报, 2011, 47(4): 455-461.
[11] 吴朝锋 马明星 刘文今 钟敏霖 张伟明 张红军. 激光原位制备复合碳化物颗粒增强铁基复合涂层及其耐磨性的研究[J]. 金属学报, 2009, 45(8): 1013-1018.
[12] 赵斌; 吴建生; 孙坚; 王飞 . TiAl基合金高温气体渗氮[J]. 金属学报, 2001, 37(8): 837-840 .
[13] 徐寒冰; 简小刚; 吴建生; 章靖国 . 喷射成形及轧制Cr12MoV钢的微观组织与摩擦学性能研究[J]. 金属学报, 2001, 37(8): 889-892 .
[14] 许振明; 姜启川 . 团球状巫晶体奥氏体——贝氏体钢抗冲击磨料磨损行为[J]. 金属学报, 1999, 35(3): 275-280 .
[15] 王华明. TiAl合金激光气体合金化[J]. 金属学报, 1997, 33(9): 917-920.