Please wait a minute...
金属学报  2014, Vol. 50 Issue (6): 737-743    DOI: 10.3724/SP.J.1037.2013.00561
  论文 本期目录 | 过刊浏览 |
单晶高温合金DD6再结晶组织及其对持久性能的影响*
熊继春1), 李嘉荣1), 孙凤礼2), 刘世忠1), 韩梅1)
1) 北京航空材料研究院先进高温结构材料重点实验室, 北京 100095
2) 北京航空材料研究院第三研究室, 北京 100095
MICROSTRUCTURE OF RECRYSTALLIZATION AND THEIR EFFECTS ON STRESS RUPTURE PROPERTY OF SINGLE CRYSTAL SUPERALLOY DD6
XIONG Jichun 1), LI Jiarong 1), SUN Fengli 2), LIU Shizhong 1), HAN Mei 1)
1) Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
2) The 3rd Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
全文: PDF(8579 KB)   HTML
摘要: 

对单晶高温合金DD6进行表面吹砂处理, 然后分别在1100, 1200和1300 ℃保温4 h, 研究了不同加热条件下DD6合金的再结晶组织及其对持久性能的影响. 结果表明, DD6合金吹砂试样1100 ℃加热4 h形成胞状再结晶组织, 胞状再结晶晶界前沿的基体中存在大量的位错缠结, 合金的持久寿命略微降低; 1200 ℃加热4 h形成胞状再结晶与等轴再结晶同时存在的混合型再结晶组织, 合金的持久寿命降低; 1300 ℃加热4 h形成等轴再结晶组织, 等轴再结晶晶界上发现碳化物析出, 合金的持久寿命严重降低. 带有等轴再结晶组织的持久试样的断口形貌为沿晶断口, 带有胞状再结晶组织的持久试样的断口形貌为韧窝断口, 带有再结晶组织的试样裂纹起源于再结晶晶界.

关键词 单晶高温合金DD6再结晶组织持久性能    
Abstract:The specimens of single crystal superalloy DD6 were grit blasted and heat treated at 1100, 1200, and 1300 ℃ for 4 h at vacuum atmosphere respectively, then the microstructure of recrystallized DD6 alloy and their effects on the stress rupture performance were investigated. The results showed that cellular recrystallization nucleated in grit blasted samples heat treated at 1100 ℃ for 4 h, the dislocation tangles were found in the front of cellular recrystallization grain boundary in DD6 alloy, equiaxed recrystallization grains nucleated in grit blasted samples heat treated at 1300 ℃ for 4 h, and the carbides precipitate at the equiaxed recrystallization grain boundary, while the coexistence of equiaxed recrystallization grains and cellular recrystallization, defined as mixed recrystallization, occurred in the grit blasted samples heat treated at 1200 ℃ for 4 h. The cellular recrystallization reduced the stress rupture lives of DD6 alloy slightly, and the equiaxed recrystallization reduced stress rupture lives seriously, while the reduction degree of the stress rupture lives of the mixed recrystallization was between cellular recrystallization and equiaxed recrystallization. Besides this, with increase of depth of recrystallization and stress, the stresses rupture life decreased. It was also found that the fracture surface configuration was belonging to intergranular fracture with equiaxed recrystallization samples. The characteristic of the fracture surface changed to dimple fracture with cellular recrystallization samples, at all these condition the crack nucleated on the recrystallization grain boundaries of specimens during stress rupture process.
Key wordssingle crystal superalloy    DD6    recrystallization    microstructure    stress rupture property
收稿日期: 2013-09-05     
ZTFLH:  TG132.3  
基金资助:
Corresponding author: XIONG Jichun, senior engineer, Tel: (010) 62498312, Fax: (010) 62498306,
E-mail: jichunxiong@sina.com   
作者简介: 熊继春, 男, 1981年生, 高级工程师, 博士

引用本文:

熊继春, 李嘉荣, 孙凤礼, 刘世忠, 韩梅. 单晶高温合金DD6再结晶组织及其对持久性能的影响*[J]. 金属学报, 2014, 50(6): 737-743.
XIONG Jichun, LI Jiarong, SUN Fengli, LIU Shizhong, HAN Mei. MICROSTRUCTURE OF RECRYSTALLIZATION AND THEIR EFFECTS ON STRESS RUPTURE PROPERTY OF SINGLE CRYSTAL SUPERALLOY DD6. Acta Metall Sin, 2014, 50(6): 737-743.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00561      或      https://www.ams.org.cn/CN/Y2014/V50/I6/737

[1] Gell M, Duhl D N, Giamei A F. In: Tien J K, Gell M, Maurer G, Wlodek S T eds., Superalloys 1980, Seven Springs, PA: TMS, 1980: 205
[2] Cetel A D, Duhl D N. In: Recichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Seven Springs, PA: TMS, 1988: 235
[3] Erickson G L. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Seven Springs, PA: TMS, 1996: 35
[4] Li J R, Zhong Z G, Tang D Z, Liu S Z, Wei P, Wei P Y, Wu Z T, Huang D, Han M. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Seven Springs, PA: TMS, 2000: 777
[5] Xiong J C, Li J R, Zhao J Q, Liu S Z. Acta Metall Sin, 2009; 45: 1232
(熊继春, 李嘉荣, 赵金乾, 刘世忠. 金属学报, 2009; 45: 1232)
[6] Chen R Z. Aviat Eng Maint, 1990; 4: 22
(陈荣章. 航空制造工程, 1990; 4: 22)
[7] Wei P, Li J R, Zhong Z Z. J Mater Eng, 2001; (10): 5
(卫 平, 李嘉荣, 钟振纲. 材料工程. 2001; (10): 5)
[8] Cox D C, Roebuck B, Rae C M F, Reed R C. Mater Sci Technol, 2003; 19: 440
[9] Li Y N, He D, Li S S, Han Y F. Acta Metall Sin, 2008; 44: 391
(李亚楠, 何 迪, 李树索, 韩雅芳. 金属学报, 2008; 44: 391)
[10] Wang Z G, Zhao J C, Yan P, Zhou T T, Liu P Y. J Iron Steel Res, 2009; 21(2): 23
(王志刚, 赵京晨, 燕 平, 周铁涛, 刘培英. 钢铁研究学报, 2009; 21(2): 23)
[11] Qu Y P, Liu L R, Zu G Q, Jin T, Hu Z Q. J Mater Eng, 2011; (8): 14
(曲彦平, 刘丽荣, 祖国庆, 金 涛, 胡壮麒. 材料工程, 2011; (8): 14)
[12] Bürgel R, Portella P D, Preuhs J. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Seven Springs, PA: TMS, 2000: 229
[13] Wang L, Xie G, Zhang J, Lou L H. Scr Mater, 2006; 55: 457
[14] Xie G, Zhang J, Lou L H. Scr Mater, 2008; 59: 858
[15] Xiong J C, Li J R, Liu S Z, Zhao J Q, Han M. Mater Charact, 2010; 61: 749
[16] Xie G, Wang L, Zhang J, Lou L H. Metall Mater Trans, 2008; 39A: 206
[17] Jo C Y, Cho H Y, Kim H M. Mater Sci Technol, 2003; 19: 1671
[18] Wang D L, Jin T, Yang S Q, Wei Z, Li J B, Hu Z Q. Mater Sci Forum, 2007; 546-549: 1229
[19] Xie G, Wang L, Zhang J, Lou L H. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloy 2008, Seven Springs, PA: TMS, 2008: 453
[20] Li J R, Sun F L, Xiong J C, Liu S Z, Han M. Mater Sci Forum, 2010; 638-642: 2279
[21] Khan T, Caron P, Nakagawa Y G. J Met, 1986; 38(7): 16
[22] Zhang B, Liu D L, Tao C H, Jiang T. J Aero Mater, 2012; 32(6): 85
(张 兵, 刘德林, 陶春虎, 姜 涛. 航空材料学报, 2012; 32(6): 85)
[23] Xiong J C, Li J R, Liu S Z, Han M. Chin J Nonferrous Met, 2010; 20: 1328
(熊继春, 李嘉荣, 刘世忠, 韩 梅. 中国有色金属学报, 2010; 20: 1328)
[24] Xiong J C, Li J R, Liu S Z. Chin J Aeronaut, 2010; 23: 478
[25] Li J R, Zhao J Q, Liu S Z, Han M. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Seven Springs, PA: TMS, 2008: 443
[26] Zhang B, Lu X, Liu D L, Tao C H. Mater Sci Eng, 2012; A551: 149
[27] Meng J, Jin T, Sun X F, Hu Z Q. Mater Sci Eng, 2010; A527: 6119
[1] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[4] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[5] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[6] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[7] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[8] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[9] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[10] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[11] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[12] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[13] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[14] 赵旭,孙元,侯星宇,张洪宇,周亦胄,丁雨田. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响[J]. 金属学报, 2020, 56(2): 171-181.
[15] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.