Please wait a minute...
金属学报  2013, Vol. 49 Issue (10): 1243-1247    DOI: 10.3724/SP.J.1037.2013.00108
  论文 本期目录 | 过刊浏览 |
一种镍基高温合金PLC效应的温度依赖性研究
韩国明1),崔传勇1),谷月峰2),胡壮麒1),孙晓峰1)
1)中国科学院金属研究所, 沈阳 110016
2) National Institute for Materials Science,Tsukuba 305-0047, Japan
INVESTIGATION OF TEMPERATURE DEPENDENCE OF PLC EFFECT IN A NICKEL BASE SUPERALLOY
HAN Guoming1), CUI Chuanyong1), GU Yuefeng2), HU Zhuangqi1), SUN Xiaofeng1)
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) National Institute for Materials Science, Tsukuba 305-0047, Japan
引用本文:

韩国明,崔传勇,谷月峰,胡壮麒,孙晓峰. 一种镍基高温合金PLC效应的温度依赖性研究[J]. 金属学报, 2013, 49(10): 1243-1247.
HAN Guoming, CUI Chuanyong, GU Yuefeng, HU Zhuangqi, SUN Xiaofeng. INVESTIGATION OF TEMPERATURE DEPENDENCE OF PLC EFFECT IN A NICKEL BASE SUPERALLOY[J]. Acta Metall Sin, 2013, 49(10): 1243-1247.

全文: PDF(981 KB)  
摘要: 

研究了温度对一种镍基高温合金Portevin-Le Chatelier (PLC)效应的影响.在恒定的拉伸速率5×10-4 s-1, 从室温到900℃温度范围内进行拉伸实验,分析PLC效应发生的临界应变、应力跌幅、等待时间和飞行时间随温度的变化规律,揭示PLC效应的温度依赖性, 探讨不同温度范围内PLC效应产生的微观机理. 结果表明:从室温到450℃, 随着温度升高PLC效应发生的临界应变减小,应力跌幅增大, 表现为正常PLC效应, 该过程为溶质原子气团向可动位错扩散并对其形成有效钉扎控制;而从450℃到600℃, 随温度的升高临界应变增加, 表现为反常PLC效应,该过程为位错第一次摆脱溶质原子气团的钉扎而脱钉自由飞行的过程控制.当超过一定温度后, 由于不能形成有效的溶质原子气团对位错进行钉扎, 因此不会发生PLC效应.

关键词 镍基高温合金Portevin-Le Chatelier (PLC)效应临界应变位错溶质原子动态应变时效    
Abstract

The temperature dependence of Portevin-Le Chatelier (PLC) effect in a nickel base superalloy was investigated. A series of tensile tests were conducted ranging from room temperature to 900℃ at a constant rate 5×10-4 s-1. The critical strain,amplitude of stress drop, waiting time and flying time of serrated flow were analyzed in order to reveal the temperature dependence of PLC effect and its related micro-mechanism. The results showed that the normal behavior occurs as temperature changes from room temperature to 450℃, in which the critical strain of serrated flow decreases with increasing temperature while magnitude of the stress drop increases. The normal PLC effect is mainly controlled by pinning effect of solute atoms and its diffusion process. When temperature increases from 450℃ to 600℃, the critical strain of PLC effect increases and the inverse PLC effect appears. Since some dislocations are pinned by solute atoms prior to breakaway, the dominant factor of inverse PLC effect is that pinned dislocations get rid of solute atoms and move freely. With temperature increasing above 600℃, PLC effects disappear because it is difficult to form effective solute atmosphere necessary to lock mobile dislocations.

Key wordsnickel base superalloy    Portevin-Le Chatelier (PLC) effect    critical strain    dislocation    solute atom    dynamic strain aging
收稿日期: 2013-03-07     
基金资助:

国家自然科学基金项目51171179, 51128101, 51271174, 51001103和U1037601, 国家重点基础研究发展计划项目2010CB631206及中国科学院百人计划项目资助

作者简介: 韩国明, 男, 1982年生, 助理研究员

[1] Cottrell A H. Philos Mag, 1953; 44: 829

[2] Beukel Den Van A. Phys Status Solidi, 1975; 30: 197
[3] McCormick P G. Acta Metall, 1972; 20: 351
[4] Kubin L P, Estrin Y. Acta Metall, 1990; 38: 697
[5] Zavattieri P D, Savic V, Hector Jr L G, Fekete J R, Tong W, Xuan Y. Int J Plast, 2009; 25: 2298
[6] Jiang H F, Chen X D, Fan Z C, Dong J, Jiang H, Lu S X. Acta Metall Sin, 2009; 45: 326
(江慧丰, 陈学东, 范志超, 董杰, 姜恒, 陆守香. 金属学报, 2009; 45: 326)
[7] Balik J, Luka P. Acta Metall, 1993; 41: 1447
[8] Jiang H, Zhang Q, Chen X, Chen Z, Jiang Z, Wu X, Fan J. Acta Metall, 2007; 55: 2219
[9] Schaarwachter W, Ebener H. Acta Metall, 1990; 38: 195
[10] Nortmann A, Schwink C. Acta Metall, 1997; 45: 2043
[11] Hayes R W, Hayes W C. Acta Metall, 1982; 30: 1295
[12] Nalawade S A, Sundararaman M, Kishore R, Shah J G. Scr Mater, 2008; 59: 991
[13] Gopinath K, Gogia A K, Kamat S V, Ramamurty U. Acta Mater, 2009; 57: 1243
[14] Brechet Y, Estrin Y. Acta Metall Mater, 1995; 43: 955
[15] Cui C Y, Gu Y F, Yuan Y, Harada H. Scr Mater, 2011; 64: 502
[16] Chihab K, Fressengeas C. Mater Sci Eng, 2003; A356: 102
[17] McCormick P G. Acta Metall, 1971; 19: 463
[18] Pink E. Acta Metall, 1989; 37: 1773
[19] Chmelik F, Pink E, Krol J, Balik J, Pesicka J, Luka P. Acta Mater, 1998; 46: 4435
[20] Fu S, Cheng T, Zhang Q, Hu Q, Cao P. Acta Mater, 2012; 60: 6650
[21] Chihab K, Estrin Y, Kubin L P, Vergnol J. Scr Mater, 1987; 21: 203
[22] Rodriguez P. Bull Mater Sci, 1984; 6: 653
[23] Charnock W. Philos Mag, 1969; 20: 427
[24] Cao P T. PhD Dissertation, University of Science and Technology of China, Hefei, 2010
(曹鹏涛. 中国科学技术大学博士学位论文, 合肥, 2010)
[25] Hayes R W. Acta Mater, 1983; 31: 365
[26] Shankar V, Valsan M, Rao K B S, Manan S L. Metall Trans, 2004; 35A: 3129
[27] Hale C L, Rollings W S, Weaver M L. Mater Sci Eng, 2001; A300: 153
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[5] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[6] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[7] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[8] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[9] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[10] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[11] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[12] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[13] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[14] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[15] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.