Please wait a minute...
金属学报  2013, Vol. 49 Issue (9): 1075-1080    DOI: 10.3724/SP.J.1037.2013.00178
  论文 本期目录 | 过刊浏览 |
T91铁素体耐热钢析出相的优化控制
张芮辉1),张弛1),夏志新2),杨志刚1)
1) 清华大学材料学院先进材料教育部重点实验室, 北京100084
2) 苏州热工研究院, 苏州 215004
OPTIMIZING CONTROL OF PRECIPITATES IN T91 FERRITIC HEAT-RESISTAN STEEL
ZHANG Ruihui1), ZHANG Chi1), XIA Zhixin2), YANG Zhigang1)
1) Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering,Tsinghua University, Beijing 100084
2) Suzhou Nuclear Power Research Institute, Suzhou 215004
引用本文:

张芮辉,张弛,夏志新,杨志刚. T91铁素体耐热钢析出相的优化控制[J]. 金属学报, 2013, 49(9): 1075-1080.
ZHANG Ruihui, ZHANG Chi, XIA Zhixin, YANG Zhigang. OPTIMIZING CONTROL OF PRECIPITATES IN T91 FERRITIC HEAT-RESISTAN STEEL[J]. Acta Metall Sin, 2013, 49(9): 1075-1080.

全文: PDF(2084 KB)  
摘要: 

基于T91钢传统的“正火+回火''热处理制度, 在Thermal-Calc软件热力学计算的辅助下,通过在正火与回火热处理间引入850℃等温处理, 设计了2种新的热处理制度.研究了3种不同热处理制度下T91钢中析出相的尺寸及分布规律.与传统``正火+回火''处理制度相比, 新设计的热处理制度使得钢中M23C6碳化物的尺寸由350 nm降至250 nm左右,并使MX碳氮化物的数密度有所增加. 通过Thermal-Calc模拟计算,M23C6碳化物析出相变的驱动力随着C含量的降低而增加.利用经典晶界形核理论并结合Thermal-Calc计算结果,定量描述了M23C6碳化物形核率与C含量的关系,较好地解释了M23C6碳化物的细化原因.

关键词 T91钢析出相M23C6形核率    
Abstract

T91 steel is one representative of (9%-12%)Cr (mass fraction) ferritic heat-resistant steel, in which MX carbonitrides and M23C6 carbides are two major strengthened precipitates for long-term creep under high temperature. This work attempted to control the precipitation of MX carbonitrides and M23C6 carbides by applying new heat treatment procedures. With the assist of Thermal-Calc software calculation, two new heat treatment procedures have been designed for T91 steel based on its traditional normalized-tempered treatment, in which an isothermal treatment at 850℃ was introduced between normalized treatment and tempered treatment. The mean size of M23C6 carbides decreased from 350 nm to 250 nm and the number density of MX carbonitrides increased due to the new heat treatment procedures. The calculated results of Thermal-Calc software showed that the nucleation rate of M23C6 carbides at 750℃ increased with the decrease of carbon content in the matrix, which might be the major reason why the mean size of M23C6 carbides decreased.

Key wordsT91 steel    precipitate    M23C6    nucleation rate
收稿日期: 2013-04-09     
基金资助:

国家重点基础研究发展计划项目2011GB108006和国家自然科学基金项目51071090资助

作者简介: 张芮辉, 男, 1988年生, 硕士生

[1] Sklenicka V, Kucha rv a K, Svoboda M, Kloc L,Bursik J, Kroupa A.  Mater Charact, 2003; 51: 35

[2] Ha V H, Jung W S.  Mater Sci Eng, 2012; A558: 103
[3] Wang Y, Mayer K H, Scholz A, Berger C, Chilukuru H, Durst K, Blum W.Mater Sci Eng, 2009; A511: 180
[4] Prat O, Garcia J, Rojas D, Carrasco C, Kaysser-Pyzalla A R.  Mater Sci Eng,2010; A527: 5976
[5] Knezevic V, Balun J, Sauthoff G, Inden G, Schneider A. Mater Sci Eng, 2008; A477: 334
[6] Tsuchida Y, Okamoto K, Tokunaga Y.  ISIJ Int, 1995; 35: 309
[7] Klueh R L, Hashimoto N, Maziasz P J.  J Nucl Mater, 2007; 367-370: 48
[8] Tamura M, Kumagai T, Sakai K, Shinozuka K, Esaka H.  J Nucl Mater, 2011; 417: 29
[9] Abe F, Taneike M, Sawada K.  Int J Pressure Vessels Piping, 2007; 84(1-2): 3
[10] Abe F, Horiuchi T, Taneike M, Sawada K.  Mater Sci Eng, 2004; A378: 299
[11] Gutierrez N Z, Cicco H D, Marrero J, Danon C A, Luppo M I. Mater Sci Eng, 2011; A528: 4019
[12] Masuyama F.  ISIJ Int, 2001; 41: 612
[13] Hollner S, Fournier B, Le Pendu J, Cozzika T, Tournie I,Brachet J C, Pineau A.  J Nucl Mater, 2010; 405: 101
[14] Taneike M, Abe F, Sawada K.  Nature, 2003; 424: 294
[15] Cipolla L, Danielsen H K, Venditti D, Nunzio P E D, Hald J, Somers M A J. Acta Mater, 2010; 58: 669
[16] Sawada K, Kushima H, Tabuchi M, Kimura K.  Mater Sci Eng, 2011; A528: 5511
[17] Zhu F X, Liu C, Wang P, Gao D F, Gao C, Zhu C Q, Ni G Z.  Steel Pipe, 1999; 28(1): 8
(朱伏先, 刘川, 王平, 高德福, 高潮, 祝春清, 倪国政. 钢管, 1999; 28(1): 8)
[18] Pan J S, Tong J M, Tian M B.  Fundamentals of Materials Science. Beijing:Tsinghua University Press, 2009: 526
(潘金生, 仝健民, 田民波. 材料科学基础. 北京: 清华大学出版社, 2009: 526)
[19] Foley D C, Hartwig K T, Maloy S A, Hosemann P, Zhang X.  J Nucl Mater, 2009; 389: 221
[20] Sivaprasad P V, Mannan S L, Prasad Y V R K.  Mater Sci Technol, 2004; 20: 1545
[21] Tamura M, Sakasegawa H, Kohyama A, Esaka H, Shinozuka K.  J Nucl Mater, 2003; 321: 288
[22] Yamada K, Igarashi M, Muneki S, Abe F.  ISIJ Int, 2002; 42: 779
[23] Schneider A, Inden G.  Acta Mater, 2005; 53: 519
[24] Tsukada Y, Shiraki A, Murata Y, Takaya S, Koyama T, Morinaga M.  J Nucl Mater, 2010;401: 154
[25] Rojas D, Garcia J, Prat O, Carrasco C, Sauthoff G, Kaysser-Pyzalla A R.Mater Sci Eng, 2010; A527: 3864
[26] Yong Q L.  The Second Phase in Iron and Steels. Beijing: Metallurgical Industry Press, 2006: 284
 (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 284)
[27] Prat O, Garcia J, Rojas D, Carrasco C, Inden G.  Acta Mater, 2010; 58: 6142
[1] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[2] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[3] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[5] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[6] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[7] 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展:微观组织设计与析出策略[J]. 金属学报, 2021, 57(2): 129-149.
[8] 刘峰, 王天乐. 基于热力学和动力学协同的析出相模拟[J]. 金属学报, 2021, 57(1): 55-70.
[9] 郭倩颖, 李彦默, 陈斌, 丁然, 余黎明, 刘永长. 高温时效处理对S31042耐热钢组织和蠕变性能的影响[J]. 金属学报, 2021, 57(1): 82-94.
[10] 韩宝帅, 魏立军, 徐严谨, 马晓光, 刘雅菲, 侯红亮. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响[J]. 金属学报, 2020, 56(7): 1007-1014.
[11] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[12] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[13] 张正延,柴锋,罗小兵,陈刚,杨才福,苏航. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791.
[14] 杜娟, 程晓行, 杨天南, 陈龙庆, Mompiou Frédéric, 张文征. 奥氏体析出相激发形核的原位TEM研究[J]. 金属学报, 2019, 55(4): 511-520.
[15] 朱上,李志辉,闫丽珍,李锡武,张永安,熊柏青. Zn添加对预时效态Al-Mg-Si-Cu合金自然时效和烘烤硬化性的影响[J]. 金属学报, 2019, 55(11): 1395-1406.