Please wait a minute...
金属学报  2013, Vol. 49 Issue (9): 1061-1068    DOI: 10.3724/SP.J.1037.2013.00279
  论文 本期目录 | 过刊浏览 |
定向凝固Ti-46Al-2Cr-2Nb合金领先相及其生长取向与凝固进程的相关性
张元,李新中,刘国怀,苏彦庆,郭景杰,傅恒志
哈尔滨工业大学材料科学与工程学院, 哈尔滨 150001
DEPENDENCE OF PRIMARY PHASE AND ITS GROWTH DIRECTION ON SOLIDIFICATION PROCESS IN DIRECTIONALLY SOLIDIFIED Ti-46Al-2Cr-2Nb ALLOY
ZHANG Yuan, LI Xinzhong, LIU Guohuai, SU Yanqing, GUO Jingjie, FU Hengzhi
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
引用本文:

张元,李新中,刘国怀,苏彦庆,郭景杰,傅恒志. 定向凝固Ti-46Al-2Cr-2Nb合金领先相及其生长取向与凝固进程的相关性[J]. 金属学报, 2013, 49(9): 1061-1068.
ZHANG Yuan, LI Xinzhong, LIU Guohuai, SU Yanqing, GUO Jingjie, FU Hengzhi. DEPENDENCE OF PRIMARY PHASE AND ITS GROWTH DIRECTION ON SOLIDIFICATION PROCESS IN DIRECTIONALLY SOLIDIFIED Ti-46Al-2Cr-2Nb ALLOY[J]. Acta Metall Sin, 2013, 49(9): 1061-1068.

全文: PDF(4912 KB)  
摘要: 

选择GE公司开发的Ti-46Al-2Cr-2Nb工程合金,采用Bridgman定向凝固技术, 通过改变晶体生长距离(5-30 mm)的方法, 研究了晶体在渐进生长过程中领先相及其生长取向的演变规律.结果发现, 在固定的温度梯度(G=18 K/mm)与生长速度(v=20 μm/s)下, 定向凝固初始阶段合金的领先相为β相.但随着凝固距离的增加, 溶质组元Al在枝晶间的液相中富集程度逐渐增大,导致出现L+β→α包晶反应. 随着凝固距离的进一步增加,αβ 相的竞争生长加剧, 最终导致领先相由β相转变为α相.通过EBSD分析表征了与凝固进程相关的领先相生长取向,在定向凝固初始阶段, 领先相β的晶体沿其择优方向<100>β生长; 在包晶反应过程中,凝固析出的β相和α相遵循{110}β//{0001}α取向关系,由此导致当领先相转变为α相后,晶体的生长方向偏离其择优方向<0001>α.

关键词 TiAl合金定向凝固初生相凝固历程    
Abstract

GE alloy Ti-(46--48)Al-2Cr-2Nb (atomic fraction) is well known for its high strength and improved ductility. The primary phase and its growth direction are important in controlling the lamellar direction of GE alloys. However it is greatly affected by solidification conditions. In this work, primary phase and its growth direction have been investigated by carrying out Bridgman-type directional solidification with different growth lengths ranging from 5 to 30 mm on Ti-46Al-2Cr-2Nb alloy. It is found that the primary phase is β at the beginning of directional solidification with constant temperature gradient (G=18 K/mm) and growth rate (v=20 μm/s). With the increase of growth length, Al gradually concentrates in the liquid between primary dendrites, which leads to the peritectic reaction L+β→α. With further increase of the growth length, growth competition between primary β phase and peritectic α phase is promoted, leading to gradual transition of primary phases from β  phase to α phase. The growth direction of primary phase in different stages of solidification has been characterized by EBSD analysis. The results indicate that primary β phase has a growth direction parallel to its preferential growth direction <100>β at the initial stage of solidification. By comparing the growth directions of the α2 grains formed from primary β phase and peritectic α phase,it is found that peritectic α phase related to primary β phase by the {110}β //{0001}α orientation relationship. Therefore, as the primary phase has transformed to α phase, the growth direction deviates from its preferential growth direction <0001>α at an angle of 45.9°. The growth direction of α  phase formed after the primary phase transformation is determined not only by the kinetic factors of solidification, but also by the β phase exiting at the beginning of directional solidification. These results provide fundamental references for understanding and controlling the lamellar orientation of GE alloys.

Key wordsTiAl alloy    directional solidification    primary phase    solidification process
收稿日期: 2013-05-21     
基金资助:

国家自然科学基金项目51071062, 51274077 和51271068,国家重点基础研究发展计划2011CB605504及中央高校基本科研业务费专项资金项目HIT.NSRIF.2013002 资助

作者简介: 张元, 男, 1986年生, 博士生

[1]Yamaguchi M, Johnson D R, Lee H N, Inui H.Intermetallics, 2000; 8: 511
[2]Kim S E, Lee Y T, Oh M H, Inui H, Yamaguchi M.Intermetallics, 2000; 8: 399
[3]Zollinger J, Lapin J, Daloz D, Combeau H.Intermetallics, 2007; 15: 1343
[4]Johnson D R, Inui H, Muto S, Omiya Y, Yamanaka T.Acta Mater, 2006; 54: 1077
[5]Lapin J, Pelachova T, Domankova M.Intermetallics, 2011; 19: 814
[6]Liu R C, Wang Z, Liu D, Bai C G, Cui Y Y, Yang R.Acta Metall Sin, 2013; 49: 641
(刘仁慈, 王震, 刘冬, 柏春光, 崔玉友, 杨锐.金属学报, 2013; 49: 641)
[7]Yamanaka T, Johnson D R, Inui H, Yamaguchi M.Intermetallics, 1999; 7: 779
[8]Xiao Z X. PhD Dissertation, Beihang University,2011
(肖志霞. 北京航空航天大学博士学位论文, 2011)
[9]Kim M C, Oh M H, Lee J H, Inui H, Yamaguchi M, Wee D M.Mater Sci Eng, 1997; A239-240: 570
[10]Li X Z, Sun T, Yu C X, Su Y Q, Cao Y Z, Guo J J, Fu H Z.Acta Metall Sin, 2009; 45: 1479
(李新中, 孙涛, 于彩霞, 苏彦庆, 曹勇智, 郭景杰, 傅恒志.金属学报, 2009; 45: 1479)
[11]Yang L L, Zheng L J, Xiao Z X, Yan J, Zhang H. Acta Metall Sin, 2010; 46: 879
(杨莉莉, 郑立静, 肖志霞, 闫洁, 张虎. 金属学报, 2010;46: 879)
[12]Xiao Z X, Zheng L J, Yang L L, Yan J, Zhang H. Acta Metall Sin, 2010; 46: 1223
(肖志霞, 郑立静, 杨莉莉, 闫洁, 张虎. 金属学报, 2010;46: 1223)
[13]Thomas M, Bacos M T. High Temp Mater, 2011; 3: 7
[14]Nie G. PhD Dissertation, Harbin Institute of Technology, 2012
(聂革. 哈尔滨工业大学博士学位论文, 2012)
[15] Xiao Z X, Zheng L J, Yan J, Yang L L, Zhang H. J Cryst Growth, 2011; 324: 309
[16]Xiao Z X, Zheng L J, Wang L, Yang L L, Zhang H. J Wuhan Univ Technol, 2011; 26: 197
[17]Fan J L. PhD Dissertation, Harbin Institute of Technology, 2012
(樊江磊. 哈尔滨工业大学博士学位论文, 2012)
[18]Daloz D, Hecht U, Zollinger J, Combeau H, Hazotte A, Zaloznik M. Intermetallics, 2011; 19: 749
[19]Fu H Z, Guo J J, Liu L, Li J S. Directional Solidification and Processing of Advanced Materials. Beijing:Science Press, 2008: 356
(傅恒志, 郭景杰, 刘林, 李金山. 先进材料定向凝固. 北京:科学出版社, 2008: 356)
[20]Charpentier M, Daloz D, Gautier E, Lesoult G, Hazotte A,Grange M. Metall Mater Trans, 2003; 34A: 2139
[21]Li Y X, Wu A P. Principle of Materials Processing.Beijing: Tsinghua University Press, 2005: 93
(李言祥, 吴爱萍. 材料加工原理. 北京: 清华大学出版社, 2005: 93)
[22]Glicksman E. Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts. New York: Springer, 2011: 347
[23]Su Y Q, Liu C, Li X Z, Guo J J, Li B S, Jia J, Fu H Z.Intermetallics, 2005; 13: 267
[24]Liu D M. PhD Dissertation, Harbin Institute of Technology,2012
(刘冬梅. 哈尔滨工业大学博士学位论文, 2012)
[25]Esaka H, Daimon H, Natsume Y, Ohsasa K, Tamura M G.Mater Trans, 2002; 43: 1312
[26]Singh A K, Muraleedharan K, Banerjee D. Scr Mater,2003; 48: 767

[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[5] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[6] 陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.
[7] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[8] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[9] 李天瑞, 刘国怀, 于少霞, 王文娟, 张风奕, 彭全义, 王昭东. 直接包套轧制铸态Ti-46Al-8Nb合金的组织特征及热变形机制[J]. 金属学报, 2020, 56(8): 1091-1102.
[10] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[11] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[12] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[13] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[14] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[15] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.