Please wait a minute...
金属学报  2013, Vol. 49 Issue (8): 1017-1024    
  论文 本期目录 | 过刊浏览 |
H2SO4溶液中咪唑和2—苯基—2—咪唑啉对Cu的缓蚀性能和吸附行为
何新快,侯柏龙,江雨妹,李晨,吴璐烨
湖南工业大学包装与材料工程学院, 株洲 412007
INHIBITION PROPERTY AND ADSORPTION BEHAVIOR OF IMIDAZOLE AND 2—PHENYL—2—IMIDAZOLINE ON Cu IN H2SO4 SOLUTION
HE Xinkuai, HOU Bailong, JIANG Yumei, LI Chen, WU Luye
School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007
引用本文:

何新快,侯柏龙,江雨妹,李晨,吴璐烨. 在H2SO4溶液中咪唑和2—苯基—2—咪唑啉对Cu的缓蚀性能和吸附行为[J]. 金属学报, 2013, 49(8): 1017-1024.
HE Xinkuai, HOU Bailong, JIANG Yumei, LI Chen, WU Luye. INHIBITION PROPERTY AND ADSORPTION BEHAVIOR OF IMIDAZOLE AND 2—PHENYL—2—IMIDAZOLINE ON Cu IN H2SO4 SOLUTION[J]. Acta Metall Sin, 2013, 49(8): 1017-1024.

全文: PDF(2457 KB)  
摘要: 

采用失重法与电化学方法研究了咪唑和2—苯基—2—咪唑啉对Cu在5%H2SO4水溶液中的缓蚀性能、吸附行为及缓蚀机理. 结果表明,2种化合物对Cu均具有显著的缓蚀作用,且2--苯基—2—咪唑啉的缓蚀效率大于咪唑. 同时,分别采用腐蚀反应中的活化能Ea,吸附过程中的Gibbs自由能ΔGm和吸附焓ΔHm判断了2种化合物在Cu表面上的吸附特性. 结果表明,咪唑和2—苯基—2—咪唑啉在Cu表面上的吸附过程为放热过程,均为单层化学吸附, 服从Langmuir吸附等温式. 此外,研究了咪唑和2—苯基—2—咪唑啉分子在Cu表面形成吸附层结构的差异,分析其对Cu的缓蚀机理.

关键词 咪唑2&mdash苯基&mdash2&mdash咪唑啉Cu吸附特性缓蚀机理    
Abstract

Mass loss and electrochemical methods were carried out to evaluate the inhibition property and adsorption behavior of imidazole and 2-Phenyl-2-imidazoline for Cu in 5% H2SO4 solution. The results showed that the two compounds have obvious corrosion inhibition for Cu in H2SO4 solution, and the inhibition efficiency of 2-Phenyl-2-imidazoline was higher than that of imidazole. Meanwhile, the adsorption property was estimated using the activation energy Ea of the corrosion reaction, the standard adsorption Gibbs free energy change ΔGm and enthalpy change ΔHm for the imidazole and 2-phenyl-2-imidazoline, respectively. It revealed that the adsorption processes were exothermic reactions on Cu by a monolayer chemisorption--based mechanism, and the adsorption of the inhibitors followed the Langmuir adsorption isotherm. In addition, the differences of the monolayer adsorption structures between the imidazole and 2-Phenyl-2-imidazoline molecules on the Cu surface were investigated, and their inhibition mechanisms for Cu were analyzed.

Key words2-Phenyl-2-imidazoline    Cu    adsorption property    inhibition mechanism
收稿日期: 2013-05-06     
基金资助:

湖南省自然科学基金资助项目13JJ3107

作者简介: 何新快, 男, 1977年生, 副教授, 博士

[1] Huvnh N, Bottle S E, Notoya T, Trueman A, Hinton B,Schweinsberg D P. Corros Sci, 2002; 44: 1257
[2] He X K, Chen B Z, Zhang Q F. J Chin Soc Corros Prot, 2004; 24: 1
(何新快, 陈白珍, 张钦发. 中国腐蚀与防护学报, 2004; 24: 1)
[3] Mihit M, El Issami S, Bouklah A, Bazzi L, Hammouti B, Addi A E, Salghi R, Kertit S. Appl Surf Sci, 2006; 252: 2389
[4] Zhang D Q, Gao L X. Corros Sci Prot Technol, 2001;13: 136
(张大全, 高立新. 腐蚀科学与防护技术, 2001; 13: 136)
[5] Zhou J H, Li J N, Luo Z Y. J South China Normal Univ, 2009; 3: 70
(周建华, 李景宁, 罗志勇. 华南师范大学学报, 2009; 3: 70)
[6] Wang X Q, Liu R Q, Zhu L Q, Gong J W. Acta Phys Chim Sin, 2007; 23: 21
(王献群, 刘瑞泉, 朱丽琴, 宫建伟. 物理化学学报, 2007; 23: 21)
[7] Zhang X J, Liu R Q, Wang X Q. Acta Phys-Chim Sin,2008; 24: 338
(张秀娟, 刘瑞泉, 王献群. 物理化学学报, 2008; 24: 338)
[8] Ek-Lisac S E, Gazivoda A, Madzarac M. Electrochim Acta, 2002; 47: 4189
[9] Liao D M, Yu P, Luo Y B, Song B, Yao L, Chen Z G. J Chin Soc Corros Prot, 2002; 22: 359
(廖冬梅, 于萍, 罗运柏, 宋斌, 姚琳, 陈志国.中国腐蚀与防护学报, 2002; 22: 359)
[10] Ali S A, El-Shareef A M, Al-Ghamdi R F, Saeed M T.Corros Sci, 2005; 47: 2659
[11] Yin Y J. Concise Course of Physical Chemistry.Beijing: Higher Education Press, 2007: 293
(印永嘉.物理化学简明教程. 北京: 高等教育出版社, 2007: 293)
[12] Ebenso E E, Ekpe U J, Ita B I, Offiong O E, Ibok U J.Mater Chem Phys, 1999; 60: 79
[13] Abd EI Rehim S S, Amin M A, Moussa S O, Ellithy A S.Mater Chem Phys, 2008; 112: 898
[14] Bouklah M, Benchat N, Hammouti B, Aouniti A, Kertit S.Mater Lett, 2006; 60: 1901
[15]De Souza F S, Giacomelli C, Goncalves R S, Spinelli A. Mater Sci Eng, 2012; C32: 2436
[16]Ahamad I, Prasad R, Quraishi M A. J Solid State Electrochem, 2010; 14: 2095
[17]Dahmani M, Touhami A E, Al-Deyab S S, Hammouti B, Bouyanzer A. Int J Electrochem Sci, 2010; 5: 1060
[18]Yazdzad A R, Shahrabi T, Hosseini M G. Mater Chem Phys, 2008; 109: 199
[19]Atkins P W. Physical Chemistry. 6 Ed., Oxford:Oxford University Press, 1999: 857
[20]Cao C N. Electrochemistry of Corrosion. Beijing:Chemical Industry Press, 1994: 66
(曹楚南. 腐蚀电化学. 北京: 化学工业出版社, 1994: 66)
[21]Wang H L, Fan H B, Zheng J S. Mater Chem Phys,2003; 77: 655
[22]Touir R, Cenoui M, Bakri M E, Touhami M E. Corros Sci, 2008; 50: 1530
[23]Bouklah M, Hammouti B, Lagrenee M, Bentiss F.Corros Sci, 2006; 48: 283
[24]Abiola O K, Otaigbe J O E. Corros Sci, 2009; 51:2790
[25]Tian H, Li W, Cao K, Hou B. Corros Sci, 2013; 73:281
[26]Wei B M. Metal Corrosion Theory and Application.Beijing: Chemical Industry Press, 1984: 266
(魏宝明. 金属腐蚀理论及应用. 北京: 化学工业出版社, 1984: 266)

[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[3] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[4] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[5] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[6] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[7] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[8] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[9] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[10] 朱小绘, 刘向兵, 王润中, 李远飞, 刘文庆. 290℃氩离子辐照对Fe-Cu合金微观组织的影响[J]. 金属学报, 2022, 58(7): 905-910.
[11] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[12] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[13] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[14] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[15] 董昕远, 雒晓涛, 李成新, 李长久. B清除大气等离子喷涂CuNi熔滴氧化物效应[J]. 金属学报, 2022, 58(2): 206-214.