Please wait a minute...
金属学报  2011, Vol. 47 Issue (12): 1561-1566    DOI: 10.3724/SP.J.1037.2011.00401
  论文 本期目录 | 过刊浏览 |
多向压缩变形及退火制备超细晶铜合金
杨续跃,张之岭,王军,秦佳,陈志永
中南大学材料科学与工程学院, 有色金属材料科学与工程教育部重点实验室, 长沙 410083
PREPARATION OF ULTRAFINE–GRAINED COPPER ALLOY PROCESSED BY ANNEALING TREATMENT AFTER MULTI–DIRECTIONAL COMPRESSION
YANG Xuyue, ZHANG Zhiling, WANG Jun, QIN Jia, CHEN Zhiyong
Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, School of Materials Science and Engineering, Central South University, Changsha 410083
引用本文:

杨续跃 张之岭 王军 秦佳 陈志永. 多向压缩变形及退火制备超细晶铜合金[J]. 金属学报, 2011, 47(12): 1561-1566.
, , , . PREPARATION OF ULTRAFINE–GRAINED COPPER ALLOY PROCESSED BY ANNEALING TREATMENT AFTER MULTI–DIRECTIONAL COMPRESSION[J]. Acta Metall Sin, 2011, 47(12): 1561-1566.

全文: PDF(1016 KB)  
摘要: 通过OM, TEM和SEM/EBSD研究了QBe1.7铜合金室温多向压缩变形及973 K退火后的微观组织及其取向演化规律. 结果表明: 室温变形时,其真应力-累积真应变(σ-Σε)曲线因动态回复而呈类似稳态流变特征, 随变形道次的增加组织内部产生了大量的亚晶,但均匀弥散分布的细小析出物的存在严重抑制了动态再结晶的进行,累积变形至Σε=4.8时仍未出现细晶; 而在中等变形程度下(Σε=2.4)通过退火处理可获得平均晶粒尺寸仅0.8 μm左右的超细晶组织. 超细晶主要是由变形所产生的中低角度晶界迅速转变为包含大量孪晶界的高角晶界演化而成. 根据晶粒尺寸变化可把退火过程分为回复、晶粒急剧细化和晶粒正常长大3个阶段.
关键词 铜合金 多向压缩 退火处理 超细晶 再结晶    
Abstract:Ultrafine grained (UFG) metallic materials arouse a great interest due to their great mechanical properties. Through the way of severe plastic deformation (SPD), including equal channel angular pressing (ECAP) and high–pressure torsion (HPT), the UFG materials obtained can be of obvious improvement in strength but of decrease in their thermal stability and ductility. In this article, the authors manage to obtain an UFG QBe1.7 copper alloy with great comprehensive properties by annealing the samples after being multi–directional compressioned (MDCed) at room temperature. The multiple tests were carried out using rectangular samples with consequent changing of loading direction in 90? through three of mutually perpendicular axes from pass–to–pass. The deformed and subsequent annealed microstructures were investigated by OM, TEM and SEM/EBSD metallographic observations. The integrated flow curves plotted over a number of compression passes increase to a maximum at moderate strains of 1 to 2 followed by steady–state–like flow at high cumulative strains. Fine grains were not observed even at a higher cumulative stain of Σε=4.8, although there were many sub–grains when the samples were deformed to Σε=2.4. This indicates that the dynamic recrystallization or recovery was completely inhibited by fine precipitates. Static recrystallization (SRX) of the MDCed structure at 973 K was also investigated. With the increment of cumulative strains, the effect of grain refinement became more obvious, but the thermal stability was getting worse. At a medium strain of Σε=2.4, the minimal grain size of 0.8 μm can be developed with an excellent combination property. The formation of ultrafine grain is characterized by large–angle boundaries developed from low to medium boundaries. The change of the average grain size with annealing time can be divided into three stages: a recovery period for grain refinement, rapid grain refinement and normal grain growth.
Key wordscopper alloy    multi–directional compression    annealing    ultrafine grain    recrystallization
收稿日期: 2011-06-28     
基金资助:

国家自然科学基金项目51174234和中央高校基本科研业务费中南大学前瞻重点项目2010QZDD014资助

作者简介: 杨续跃, 男, 1959年生, 教授
[1] Armstrong R W. Metall Mater Trans, 1970; 1: 1169

[2] Hansen N. Scr Mater, 2004; 51: 801

[3] Mishra A, Kad B K, Gregori F, Meyers M A. Acta Mater, 2007; 55: 13

[4] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103

[5] Wang K, Tao N R, Liu G, Lu J, Lu K. Acta Mater, 2006; 54: 5281

[6] Hosseini S A, Manesh H D. Mater Des, 2009; 30: 2911

[7] Saunders I, Nutting J. Met Sci, 1984; 18: 571

[8] Liu Z Y, Liang G X, Wang E D, Wang Z R. Mater Sci Eng, 1998; A242: 137

[9] Koch C C. Scr Mater, 2003; 49: 657

[10] Jiang Q W, Liu Y, Wang X, Chao Y S, Li X W. Acta Metall Sin, 2009; 45: 873

(姜庆伟, 刘印, 王尧, 晁月盛, 李小武. 金属学报, 2009; 45: 873)

[11] Gubicza J, Balogh L, Hellmig R J, Estrin Y, Ungar T. Mater Sci Eng, 2005; A400–401: 334

[12] Molodova X, Gottstein G, Winning M, Hellmig R J. Mater Sci Eng, 2007; A460–461: 204

[13] Gubicza J, Dobatkin S V, Khosravi E, Kuznetsov A A, Labar J L. Mater Sci Eng, 2011; A528: 1828

[14] Takayama A, Yang X, Miura H, Sakai T. Mater Sci Eng, 2008; A478: 221

[15] Armstrong P E, Hockett J E, Sherby O D. J Mech Phys Solids, 1982; 30: 37

[16] Belyakov A, Sakai T, Miura H, Tsuzaki K. Philos Mag, 2001; A81: 2629

[17] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena, 2nd ed, Oxford: Pergamon press, 2004: 451

[18] Hall E O. Proc Phys Soc London, 1951; B64: 747

[19] Petch N J. J Iron Steel Inst, 1953; 174: 25

[20] Xia S, Li H, Zhou B X, Chen W J. Chin J Nature, 2010; 32: 94

(夏爽, 李慧, 周邦新, 陈文觉. 自然杂志, 2010; 32: 94)

[21] Field D P, Bradford L T, Nowell M M, Lillo T M. Acta Mater, 2007; 55: 4233
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[5] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[6] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[7] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[8] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[9] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[10] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[11] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[12] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[13] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[14] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[15] 彭吴擎亮, 李强, 常永勤, 王万景, 陈镇, 谢春意, 王纪超, 耿祥, 黄伶明, 周海山, 罗广南. 核聚变堆偏滤器热沉材料研究现状及展望[J]. 金属学报, 2021, 57(7): 831-844.