Please wait a minute...
金属学报  2011, Vol. 47 Issue (4): 449-454    
  论文 本期目录 | 过刊浏览 |
普通低碳钢与细晶粒钢钝化膜在碱性介质中的耐蚀性
施锦杰, 孙伟, 耿国庆
东南大学材料科学与工程学院, 江苏省土木工程材料重点实验室, 南京 211189
CORROSION RESISTANCES OF PASSIVE FILMS ON LOW-CARBON REBAR AND FINE-GRAINED REBAR IN ALKALINE MEDIA
SHI Jinjie, SUN Wei, GENG Guoqing
College of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189
引用本文:

施锦杰 孙伟 耿国庆. 普通低碳钢与细晶粒钢钝化膜在碱性介质中的耐蚀性[J]. 金属学报, 2011, 47(4): 449-454.
, , . CORROSION RESISTANCES OF PASSIVE FILMS ON LOW-CARBON REBAR AND FINE-GRAINED REBAR IN ALKALINE MEDIA[J]. Acta Metall Sin, 2011, 47(4): 449-454.

全文: PDF(922 KB)  
摘要: 应用循环伏安与动电位极化曲线确定普通低碳钢与细晶粒钢在碱性介质(模拟混凝土孔隙液)中的钝化区域. 利用计时电流法在选取的阳极极化电位下使钢筋生成稳定的钝化膜, 并通过电化学阻抗谱、 Mott-Schottky曲线比较了钢筋在不同阳极电位下形成的钝化膜的优劣性; 其次, 循环极化曲线对比分析了在有无Cl-存在时普通低碳钢与细晶粒钢钝化膜的耐蚀性. 结果表明, 2种钢筋的公共钝化电位区域为 -0.25-+0.6 V, 在选取的+0.3 V阳极极化电位下2者均能形成更稳定的钝化膜. 在无Cl-存在的条件下, 细晶粒钢钝化膜的稳定性与耐蚀性均略优于普通低碳钢; 但有Cl-存在时, 细晶粒钢抑制Cl-点蚀的能力稍弱于普通低碳钢. 影响细晶粒钢钝化膜耐蚀性的主要原因是晶界数量与微量元素含量.
关键词 细晶粒钢混凝土钝化点蚀电化学方法    
Abstract:The passive ranges of low-carbon rebar and fine-grained rebar in simulated concrete pore solution with pH13.0 were determined by means of cyclic voltammetry and potentiodynamic polarization curves. Chronopotentiometry was used to obtain steady state conditions for the formation of passive films on rebar samples at different anodic potentials. Electrochemical impedance spectroscopy and Mott-Schottky curves were employed to compare the passive films formed at different potentials. Additionally, cyclic polarization curves were used to compare the corrosion resistances of passive films formed on the two rebars in alkaline media with or without Cl-. The results show that the passive ranges of the two rebars are all between -0.25 and +0.6 V, and the more stable passive films can be formed on both rebars at the anodic potential of +0.3 V. In the absence of Cl-, the stability and corrosion resistance of the passive film formed on the fine-grained rebar are better than those of low-carbon rebar. However, the pitting corrosion resistance of the former is somehow lower than that of the latter in the presence of Cl-. The amounts of grain boundary and trace elements are responsible for the lower corrosion resistance of fine-grained rebar.
Key wordsfine-grained rebar    concrete    passivation    pitting corrosion    electrochemical method
收稿日期: 2010-10-06     
ZTFLH: 

TG 174.3

 
基金资助:

国家重点基础研究发展计划项目2009CB623203, 国家高技术研究发展计划项目2008AA030704和东南大学优秀博士学位论文基金项目YBJJ1017 资助

作者简介: 施锦杰, 男, 1983年生, 博士生
[1] Ralston K D, Birbilis N. Corrosion, 2010; 66: 075005

[2] Afshari V, Dehghanian C. Corros Sci, 2009; 51: 1844

[3] Pisarek M, Kedzierzawski P, Janik–Czachor M, Kurzydlowski K J. J Solid State Electrochem, 2009; 13: 283

[4] Schino A D, Barteri M, Kenny J M. J Mater Sci, 2003; 38: 4725

[5] Freire L, N´ovoa X R, Montemor M F, Carmezim M J. Mater Chem Phys, 2009; 114: 962

[6] Sanchez M, Gregori J, Alonso M C, Garcia–Jareno J J, Vicente F. Electrochim Acta, 2006; 52: 47

[7] Wu Q, Liu Y, Du R G, Lin C J. Acta Metall Sin, 2008; 44: 346

(吴群, 刘玉, 杜荣归, 林昌健. 金属学报, 2008; 44: 346)

[8] SanchezM,Gregori J, Alonso C, Garcia–Jareno J J, Takenouti H, Vicente F. Electrochim Acta, 2007; 52: 7634

[9] Freire L, Carmezim M J, Ferreira M G S, Montemor M F. Electrochim Acta, 2010; 55: 6174

[10] Andrade C, Merino P, Novoa X R, Perez M C, Soler L. Mater Sci Forum, 1995; 192–194: 891

[11] Ghods P, Isgor O B, McRae G, Miller T. Cem Concr Compos, 2009; 31: 2

[12] Li L, Sagues A A. Corrosion, 2002; 58: 305

[13] Pourasee A, Hansson C M. Cem Concr Res, 2007; 37: 1127

[14] Zhang F, Pan J S, Lin C J. Corros Sci, 2009; 51: 2130

[15] Jiang J H, Yuan Y S, Li F M, Wang B, Ji Y S. J Build Mater, 2009; 12: 523

(蒋建华, 袁迎曙, 李富民, 王 波, 姬永生. 建筑材料学报, 2009; 12: 523)
[1] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[2] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[3] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[4] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[5] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[6] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[7] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[8] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[9] 曹凤婷, 魏洁, 董俊华, 柯伟, 王铁钢, 范其香. 羟基亚乙基二膦酸对20SiMn钢在含Cl-混凝土模拟孔隙液中的缓蚀行为[J]. 金属学报, 2020, 56(6): 898-908.
[10] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[11] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[12] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
[13] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[14] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[15] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.