Please wait a minute...
金属学报  2018, Vol. 54 Issue (3): 404-410    DOI: 10.11900/0412.1961.2017.00141
  本期目录 | 过刊浏览 |
690合金中三晶交界及晶界类型对碳化物析出形貌的影响
刘锡荣, 张凯, 夏爽, 刘文庆, 李慧()
上海大学微结构重点实验室 上海 200444
Effects of Triple Junction and Grain Boundary Characters on the Morphology of Carbide Precipitation in Alloy 690
Xirong LIU, Kai ZHANG, Shuang XIA, Wenqing LIU, Hui LI()
Key Laboratory for Microstructures, Shanghai University, Shanghai 200444,China;
引用本文:

刘锡荣, 张凯, 夏爽, 刘文庆, 李慧. 690合金中三晶交界及晶界类型对碳化物析出形貌的影响[J]. 金属学报, 2018, 54(3): 404-410.
Xirong LIU, Kai ZHANG, Shuang XIA, Wenqing LIU, Hui LI. Effects of Triple Junction and Grain Boundary Characters on the Morphology of Carbide Precipitation in Alloy 690[J]. Acta Metall Sin, 2018, 54(3): 404-410.

全文: PDF(6176 KB)   HTML
摘要: 

利用SEM和EBSD技术研究了镍基690合金在715 ℃时效15 h后不同类型的三晶交界附近3个晶界上碳化物的析出形貌。结果表明:对于不同类型三晶交界处,Σ3c晶界上析出的碳化物的形貌存在明显的差异,碳化物按照Σ3-Σ3-Σ9、Σ3-Σ9-Σ27、Σ3-Σ27-R、Σ3-R-R三晶交界顺序逐渐增多增大。Σ3iΣ9晶界上析出的碳化物的形貌在不同类型的三晶交界附近基本相似。Σ27晶界上碳化物的析出形貌在三晶交界处与晶界内部存在一定差异,三晶交界处析出的碳化物相对于晶界内部离散且大。当2条随机晶界与Σ3或Σ9晶界相连时,其中一条随机晶界上析出的碳化物比另一条上的小。

关键词 碳化物晶界类型三晶交界晶界工程690合金    
Abstract

The nickel-based Inconel Alloy 690 (Ni-30Cr-10Fe, mass fraction, %) was developed as a replacement material for Inconel Alloy 600 in the steam generator tube of pressurized water reactors nuclear power plants. Intergranular corrosion and intergranular stress corrosion cracking were the main failure reasons for steam generator tubes, which were related to the precipitation of grain boundary carbides. Hence, the precipitation of carbide at the grain boundaries and triple junctions with different characters is worthy to be studied. The morphology of carbide precipitated on grain boundaries at triple junctions with various characters in grain boundary engineering (GBE) treated Alloy 690 aged at 715 ℃ for 15 h were investigated by SEM and EBSD. The results show that, there are obvious differences in the morphology of carbides precipitated on the Σ3c grain boundary near different types of triple junction. The size of carbide precipitated at Σ3c grain boundary increased by the order of Σ3-Σ3-Σ9、Σ3-Σ9-Σ27、Σ3-Σ27-R、Σ3-R-R triple junctions. But the morphology of carbides precipitated at the Σ3i and Σ9 grain boundaries was independent of the nearby triple junction characters. The precipitation morphology of carbides precipitated on the Σ27 grain boundary near the triple junction is different from that precipitated on the internal grain boundary, for example, the carbides precipitated near triple junction was more discrete and bigger than that precipitated on internal grain boundary. When the triple junction contain two random grain boundaries and one Σ3 grain boundary or Σ9 grain boundary, the size of carbide precipitated on one of random grain boundary is smaller than that of precipitated on the other one.

Key wordscarbide    grain boundary character    triple junction    grain boundary engineering    Alloy 690
收稿日期: 2017-04-20     
基金资助:资助项目 国家重点研发计划项目 No.2016YFB0700401和国家自然科学基金项目 No.51301103
作者简介:

作者简介 刘锡荣,男,1992年生,硕士生

图1  690合金在1100 ℃下固溶处理15 min,固溶处理后将样品冷轧5%、再经1100 ℃再结晶退火5 min (GBE),GBE处理后在715 ℃时效15 h 样品的取向成像显微 (OIM)图
Treatment Length fraction / % Average grain size / μm
Σ3 Σ9 Σ27 Total Σ3n
Solution annealing 46.50 1.25 0.57 48.32 13.6±0.8
GBE 67.20 6.15 1.95 75.30 17.8±1.0
GBE+715 ℃, 15 h 67.80 5.96 1.19 74.95 16.9±1.1
表1  690合金在不同处理条件下的晶界特征分布统计(Palumbo-Aust标准[16],长度百分比)和平均晶粒尺寸
图2  715 ℃时效15 h后Σ3-Σ3-Σ9三晶交界附近3个晶界上碳化物的析出形貌
图3  715 ℃时效15 h后Σ3-Σ9-Σ27和Σ3-Σ27-R 三晶交界处3个晶界上碳化物的析出形貌
图4  715 ℃时效15 h后Σ3 (Σ9)-R-R三晶交界处3个晶界上碳化物的析出形貌
[1] Diercks D R, Shack W J, Muscara J.Overview of steam generator tube degradation and integrity issues[J]. Nucl. Eng. Des., 1999, 194: 19
[2] Crum J R, Scarberry R C.Corrosion testing of INCONEL alloy 690 for PWR steam generators[J]. J. Mater. Energy Syst., 1982, 4: 125
[3] Blaizot J, Chaise T, Nélias D, et al.Constitutive model for nickel alloy 690 (Inconel 690) at various strain rates and temperatures[J]. Int. J. Plast., 2016, 80: 139
[4] Stiller K, Nilsson J O, Norring K.Structure, chemistry, and stress corrosion cracking of grain boundaries in alloys 600 and 690[J]. Metall. Mater. Trans., 1996, 27A: 327
[5] Ahmedabadi P M, Kain V, Dangi B K, et al.Role of grain boundary nature and residual strain in controlling sensitisation of type 304 stainless steel[J]. Corros. Sci., 2013, 66: 242
[6] Lee T H, Suh H Y, Han S K, et al.Effect of a heat treatment on the precipitation behavior and tensile properties of alloy 690 steam generator tubes[J]. J. Nucl. Mater., 2016, 479: 85
[7] Ma Y C, Li S, Hao X C, et al.Research on the carbide precipitation and chromium depletion in the grain boundary of alloy 690 containing different contents of nitrogen[J]. Acta Metall. Sin., 2016, 52: 980(马颖澈, 李硕, 郝宪朝等. 2种N含量不同的690合金中晶界碳化物及晶界Cr贫化研究 [J]. 金属学报, 2016, 52: 980)
[8] Kai J J, Yu G P, Tsai C H, et al.The effects of heat treatment on the chromium depletion, precipitate evolution, and corrosion resistance of INCONEL alloy 690[J]. Metall. Mater. Trans., 1989, 20A: 2057
[9] Trillo E A, Murr L E.Effects of carbon content, deformation, and interfacial energetics on carbide precipitation and corrosion sensitization in 304 stainless steel[J]. Acta Mater., 1999, 47: 235
[10] Lim Y S, Kim J S, Kim H P, et al.The effect of grain boundary misorientation on the intergranular M23C6 carbide precipitation in thermally treated Alloy 690[J]. J. Nucl. Mater., 2004, 335: 108
[11] Hu R, Bai G H, Li J S, et al.Precipitation behavior of grain boundary M23C6 and its effect on tensile properties of Ni-Cr-W based superalloy[J]. Mater. Sci. Eng., 2012, A548: 83
[12] Li H, Xia S, Zhou B X, et al.Evolution of carbide morphology precipitated at grain boundaries in Ni-based Alloy 690[J]. Acta Metall. Sin., 2009, 45: 195(李慧, 夏爽, 周邦新等. 镍基690合金时效过程中晶界碳化物的形貌演化 [J]. 金属学报, 2009, 45: 195)
[13] Li H, Xia S, Zhou B X, et al.C-Cr segregation at grain boundary before the carbide nucleation in Alloy 690[J]. Mater. Charact., 2012, 66: 68
[14] Li H, Xia S, Zhou B X, et al.Study of carbide precipitation at grain boundary in nickel base Alloy 690[J]. Acta Metall. Sin., 2011, 47: 853(李慧, 夏爽, 周邦新等. 镍基690合金中晶界碳化物析出的研究 [J]. 金属学报, 2011, 47: 853)
[15] Li H, Xia S, Zhou B X, et al.The growth mechanism of grain boundary carbide in Alloy 690[J]. Mater. Charact., 2013, 81: 1
[16] Palumbo G, Aust K T, Lehockey E M, et al.On a more restrictive geometric criterion for "Special" CSL grain boundaries[J]. Scr. Mater., 1998, 38: 1685
[17] Xia S, Zhou B X, Chen W J.Effect of single-step strain and annealing on grain boundary character distribution and intergranular corrosion in Alloy 690[J]. J. Mater. Sci., 2008, 43: 2990
[18] Liu T G, Xia S, Li H, et al.The highly twinned grain boundary network formation during grain boundary engineering[J]. Mater. Lett., 2014, 133: 97
[19] Xia S, Zhou B X, Chen W J.Effect of single-step strain and annealing on grain boundary character distribution and intergranular corrosion in Alloy 690[J]. J. Mater. Sci., 2008, 43: 2990
[20] Li H, Ma J R, Liu X R, et al.Morphology Evolution of grain boundary carbides in highly twinned Inconel Alloy 600[J]. Mater. Sci. Forum, 2017, 879: 1111
[21] Gertsman V Y.Coincidence site lattice theory of multicrystalline ensembles[J]. Acta Crystallogr., 2001, 57A: 649
[22] Baik S I, Olszta M J, Bruemmer S M, et al.Grain-boundary structure and segregation behavior in a nickel-base stainless alloy[J]. Scr. Mater., 2012, 66: 809
[23] Li H, Xia S, Zhou B X, et al.The dependence of carbide morphology on grain boundary character in the highly twinned Alloy 690[J]. J. Nucl. Mater., 2010, 399: 108
[24] Trillo E A, Murr L E.A TEM investigation of M23C6 carbide precipitation behaviour on varying grain boundary misorientations in 304 stainless steels[J]. J. Mater. Sci., 1998, 33: 1263
[25] Gokon N, Kajihara M.Experimental determination of boundary energies of Σ9[110] asymmetric tilt boundaries in Cu[J]. Mater. Sci. Eng., 2008, A477: 121
[26] Randle V, Coleman M, Waterton M.The role of Σ9 boundaries in grain boundary engineering[J]. Metall. Mater. Trans., 2011, 42A: 582
[27] Randle V.Role of grain boundary plane in grain boundary engineering[J]. Mater. Sci. Technol., 2010, 26: 774
[1] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[2] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[3] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[4] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[5] 郦晓慧, 王俭秋, 韩恩厚, 郭延军, 郑会, 杨双亮. 690合金在模拟核电高温高压水中的电化学及原位划伤行为研究[J]. 金属学报, 2020, 56(11): 1474-1484.
[6] 杨柯,梁烨,严伟,单以银. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.
[7] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[8] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[9] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
[10] 张涛, 严玮, 谢卓明, 苗澍, 杨俊峰, 王先平, 方前锋, 刘长松. 碳化物/氧化物弥散强化钨基材料研究进展[J]. 金属学报, 2018, 54(6): 831-843.
[11] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[12] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[13] 陈波, 郝宪朝, 马颖澈, 查向东, 刘奎. 添加N对Inconel 690合金显微组织和晶界微区成分的影响[J]. 金属学报, 2017, 53(8): 983-990.
[14] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[15] 夏大海, 宋诗哲, 王俭秋, 骆静利. 690和800合金在高温高压水中硫致腐蚀失效研究进展[J]. 金属学报, 2017, 53(12): 1541-1554.