Please wait a minute...
金属学报  2010, Vol. 46 Issue (12): 1534-1542    DOI: 10.3724/SP.J.1037.2010.00279
  论文 本期目录 | 过刊浏览 |
基于改进CA方法的压铸镁合金微观组织模拟
吴孟武,熊守美
清华大学机械工程系, 汽车安全与节能国家重点实验室, 北京 100084
MICROSTRUCTURE SIMULATION OF HIGH PRESSURE DIE CAST MAGNESIUM ALLOY BASED ON MODIFIED CA METHOD
WU Mengwu, XIONG Shoumei
State Key Laboratory of Automobile Safety and Energy, Department of Mechanical Engineering, Tsinghua University, Beijing 100084
引用本文:

吴孟武 熊守美. 基于改进CA方法的压铸镁合金微观组织模拟[J]. 金属学报, 2010, 46(12): 1534-1542.
, . MICROSTRUCTURE SIMULATION OF HIGH PRESSURE DIE CAST MAGNESIUM ALLOY BASED ON MODIFIED CA METHOD[J]. Acta Metall Sin, 2010, 46(12): 1534-1542.

全文: PDF(7228 KB)  
摘要: 针对具有快速凝固特征的压铸工艺, 通过热传导反算法得到较准确的压铸温度场,分析压铸镁合金凝固过程冷却曲线, 建立了形核密度随冷却速率变化的形核模型.采用改进CA方法, 建立了适用于镁合金hcp结构的枝晶生长模型. 模型考虑了溶质扩散、成分过冷、曲率过冷以及界面各向异性等重要因素, 实现了镁合金不同角度枝晶生长, 再现了枝晶二次及三次枝晶臂生长, 定向凝固不同温度梯度及凝固速率下的枝晶竞争生长以及三维枝晶生长等特征. 应用所建立的形核及生长模型模拟了AM50镁合金“阶梯”压铸件不同压铸工艺下的凝固组织,模拟结果与实验结 果相吻合.
关键词 镁合金压铸枝晶生长形核模型组织模拟    
Abstract:As the lightest structural material, magnesium alloy has been widely used in the automotive, aerospace and electronic industries. High pressure die casting (HPDC) process is the dominant process for magnesium alloy products. The microstructure of die cast magnesium alloy has a great influence on the final performance of the castings. Numerical simulation provides a way to predict the solidification structure and the corresponding mechanical properties. However, as one of the most widely used methods in microstructure simulation, the cellular automaton (CA) method has difficulties in simulating the solidification structure of magnesium alloy with hcp crystal structure, though simulations of solidification structure for bcc and fcc metals have been widely reported. Besides, for the microstructure simulation of magnesium alloys by HPDC process, accurate nucleation model has to be considered, and by far little report was found on it. In the present paper, based on the accurate temperature field of die castings obtained by an inverse heat transfer model, analysis of the temperature curves during solidification was made to establish a nucleation model that correlated the cooling rate with the nucleation density of magnesium alloys during solidification of HPDC process. A modified CA model was also developed to simulate the crystal growth of magnesium alloys. It takes account of the solute diffusion,  constitutional undercooling, curvature undercooling, and anisotropy etc. Validations were made to the model, and the results show that the model has the capability to simulate the dendrite growth of magnesium alloy with different growth orientations. Besides, the model can also reveal the dendrite morphology with features of secondary and ternary dendrite branches, the dendrite competition growth under different temperature gradients and solidification rates, and the three dimensional morphology of the dendrite growth. To validate the nucleation and growth model established for magnesium alloy under HPDC process, "step–shape" die castings of AM50 magnesium alloy were produced at different process parameters. The average grain size prediction results are in good agreement with the experimental ones.
Key wordsmagnesium alloy    high pressure die casting    dendrite growth    nucleation model    microstructure simulation
收稿日期: 2010-06-10     
基金资助:

国家科技重大专项项目2009ZX04014--082和国家高技术研究发展计划项目2009AA03Z114以及日本东洋机械金属株式会社国际合作项目083000148资助

作者简介: 吴孟武, 男, 1984年生, 博士生
[1] Friedrich H, Schumann S. J Mater Process Tech, 2001; 117: 276 [2] Mordike B L, Eert T. Mater Sci Eng, 2001; A302: 37 [3] Li R D, Yu H P, Yuan X G. Foundry, 2003; 52: 597 (李荣德, 于海朋, 袁晓光. 铸造, 2003; 52: 597) [4] Boettinger W J, Coriell S R, Greer A L, Karma A, Kurz W, Rappaz M, Trivedi R. Acta Mater, 2000; 48: 43 [5] Gandin C A, Rappaz M. Acta Metall Mater, 1994; 42: 2233 [6] Rappaz M, Gandin C A, Desbiolles J L, Thévoz P. Metall Mater Trans, 1996; 27A: 695 [7] Nastac L. Acta Mater, 1999; 47: 4253 [8] Beltran-Sanchez L, Stefanescu D M. Metall Mater Trans, 2004; 35A: 2471 [9] Wang W, Lee P D, Mclean M. Acta Mater, 2003; 51: 2971 [10] Zhu M F, Hong C P. ISIJ Int, 2001; 41: 436 [11] Zhu M F, Kim J M, Hong C P. ISIJ Int, 2001; 41: 992 [12] B?ttger B, Eiken J, Ohno M, Klaus G, Fehlbier M, Schmid-Fetzer R, Steinbach I, Buhrig-Polaczek A. Adv Eng Mater, 2006; 8: 241 [13] Liu Z Y, Xu Q Y, Liu B C. Acta Matall Sin, 2007; 43: 367 (刘志勇, 许庆彦, 柳百成. 金属学报, 2007; 43: 367) [14] Huo L, Han Z Q, Liu B C. Acta Matall Sin, 2009; 45: 1414 (霍亮, 韩志强, 柳百成. 金属学报, 2009; 45: 1414) [15] Fu Z N, Xu Q Y, Xiong S M. Chin J Nonferrous Met, 2007; 17: 1567 (付振南, 许庆彦, 熊守美. 中国有色金属学报, 2007; 17: 1567) [16] Stefanescu D M, Upadhya G, Bandyopadhyay D. Metall Trans, 1990; 21A: 997 [17] Oldfield W. Trans ASM, 1966; 59: 945 [18] Thévoz P, Desbiolles J L, Rappaz M. Metall Trans, 1989; 20A: 311 [19] Ohsasa K, Matsuura K, Kurokawa K, Watanabe S. The 5nd Int Conf on Physical and Numerical Simulation of Material Processing. Zhengzhou, China, 2007 [20] Guo Z P. PhD thesis, Tsinghua University, Beijing, 2009 (郭志鹏. 清华大学博士学位论文, 北京, 2009) [21] Sasikumar R, Sreenivasan R. Acta Metall Mater, 1994; 42: 2381 [22] Beltran-Sanchez L, Stefanescu D M. Int J Cast Met Res, 2002; 15: 251 [23] Laukli H I, Lohne O, Sannes S, Gjestland H, Arnberg L. Int J Cast Met Res, 2003; 16: 515
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[3] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[4] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[5] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[6] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[7] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[8] 孙宝德, 王俊, 康茂东, 汪东红, 董安平, 王飞, 高海燕, 王国祥, 杜大帆. 高温合金超限构件精密铸造技术及发展趋势[J]. 金属学报, 2022, 58(4): 412-427.
[9] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[10] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[11] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[12] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[13] 潘复生, 蒋斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57(11): 1362-1379.
[14] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[15] 王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.