Please wait a minute...
金属学报  2010, Vol. 46 Issue (4): 451-457    DOI: 10.3724/SP.J.1037.2009.00581
  论文 本期目录 | 过刊浏览 |
镁合金热变形下变形带的形貌和晶体学特征
杨续跃1;2;姜育培1
1. 中南大学材料科学与工程学院; 长沙 410083
2. 中南大学有色金属材料科学与工程教育部重点实验室; 长沙 410083
MORPHOLOGY AND CRYSTALLOGRAPHIC CHARACTERISTICS OF DEFORMATION BANDS IN Mg ALLOY UNDER HOT DEFORMATION
YANG Xuyue 1;2; JIANG Yupei 1
1. School of Materials Science and Engineering; Central South University; Changsha 410083
2. Key Laboratory of Nonferrous Metal Materials Science and Engineering; Ministry of Education; Central South University; Changsha 410083
引用本文:

杨续跃 姜育培. 镁合金热变形下变形带的形貌和晶体学特征[J]. 金属学报, 2010, 46(4): 451-457.
, . MORPHOLOGY AND CRYSTALLOGRAPHIC CHARACTERISTICS OF DEFORMATION BANDS IN Mg ALLOY UNDER HOT DEFORMATION[J]. Acta Metall Sin, 2010, 46(4): 451-457.

全文: PDF(3586 KB)  
摘要: 

对不同温度单向压缩下AZ31镁合金不均匀形变组织的形貌和晶体学特征进行了研究. 结果显示: 形变组织具有很强的温度和应变敏感性; 250 ℃时, 晶粒内在变形初期出现大量的{10 12}拉伸孪晶和少数{1011}压缩孪晶, 随着应变量的加大, 拉伸孪晶因相同取向孪晶的合并而急剧减少, 而压缩孪晶明显变粗, 数量也有所增加; 300℃以上时, 非基面滑移被激活后, 出现了与压缩轴基本垂直的扭折带, 其晶体学方向垂直于(0001)基面, 扭折带两侧的主滑移系都为(0001)基面滑移, 变形初期扭折带界面取向差为2°-6°, 随着变形量的增加, 扭折带密度加大; 温度升高至400℃时, 扭折界面发生明显的弯曲. 对扭折带和其他变形带的特征进行了对比考察.

关键词 镁合金 不均匀变形 变形带 组织形貌 孪晶 扭折带    
Abstract

When metals and alloys are subjected to considerable plastic deformation such as cold-or warm–rolling, characteristic inhomogeneities generally appear as a form of deformation or shear bands. Recently much attention has been given to the deformation mechanism and morphology of fcc and bcc materials. It is well known that such inhomogeneities play an essential role in the process of work–hardening, recrystallization, metal fatigue and fracture. Therefore, in order to obtain the guiding principle for controlling those processes in Mg based alloys, it is indispensable to make clear the details of those inhomogeneous deformation structures in hcp materials. In this work, the inhomogeneous deformation and microscopic features of AZ31 Mg based alloy were studied under compression at temperature ranging from 250 to 400℃ and at a strain rate of 3×10−3 s−1. The analysis of experimental data shows that such inhomogeneities depend on deformation temperature and strain sensitively. At 250 ℃, the {1012} c–axis extension twins and deformation bands appear at around 45° with the compression axis in grain interior when straining to ε=0.1, the {1012} twins continue to grow until they impinge each other and finally most of the original grains are replaced by twinned grains at a strain of about ε=0.2. The boundaries between {1012} twins and their neighbors disappear during twinning. At 300 ℃, in contrast, the non–basal slips are activated, the kink bands with low misorientation angles are frequently evolved in grain interior and they are roughly perpendicular to the (0001) basal plane, further deformation leads to an increase in the number and misorientation angle of the kink bands. The initial grains are fragmented by kinking. With temperature increasing, the spacing of kink bands increase rapidly. The difference between kinking and other deformation bands was discussed in some detail.

Key wordsMg alloy    inhomogeneous deformation    deformation band    microstructure morphology    twinning    kink band
收稿日期: 2009-09-07     
作者简介: 杨续跃, 男, 1959年生, 教授

[1] Blicharski M, Dymek S, Wr´obel M. J Mater Process Technol, 1995; 53: 75
[2] Huang X X, Cai D Y, Yao M, Liu Q, Hansen N. Mater Sci Technol, 2000; 8: 35
(黄晓旭, 蔡大勇, 姚枚, 刘庆, Hansen N. 材料科学与工艺, 2000; 8: 35)
[3] Hughes D A. Mater Sci Eng, 2001; A319–321: 46
[4] Cizek P. Mater Sci Eng, 2002; A324: 214
[5] Xu Y B, Zhong W L, Chen Y J, Shen L T, Liu Q, Bai Y L, Meyers M A. Mater Sci Eng, 2001; A299: 287
[6] Li Y, Li S X, Li G Y. Mater Sci Eng, 2004; A372: 221
[7] Morris J R, Scharff J, Ho K M, Turner D E, Ye Y Y, Yoo M H. Philos Mag, 1997; 76: 1065
[8] Agnew S R, Brown D W, Vogel S C, Holden T M. Mater Sci Forum, 2002; 404–407: 747
[9] Higashida K, Takamura J, Narita N. Mater Sci Eng, 1986; 81: 239
[10] Liu Q, Juul Jensen D, Hansen N. Acta Mater, 1998; 46: 5819
[11] Liu Q, Yao Z Y, Godfrey A, Liu W. Acta Metall Sin, 2009; 45: 641
(刘庆, 姚宗勇, A. Godfrey, 刘伟. 金属学报, 2009; 45: 641)
[12] Huang X X, Cai D Y, Liu Q, Yao M. Mater Sci Technol, 2003; 11: 120
(黄晓旭, 蔡大勇, 刘庆, 姚枚. 材料科学与工艺, 2003; 11: 120)
[13] Huang X X, Cai D Y, Yao M, Liu Q, Hansen N. Chin J Nonferrous Met, 2001; 11: 31
(黄晓旭, 蔡大勇, 姚枚, 刘庆, Hansen N. 中国有色金属学报, 2001; 11: 31)
[14] Mironov S, Murzinova M, Zherebtsov S, Salishchev G A, Semiatin S L. Acta Mater, 2009; 57: 2470
[15] Couling S L, Pashak J F, Sturkey L. Trans ASM, 1959; 52: 94
[16] Barnett M R, Nave M D, Bettles C J. Mater Sci Eng, 2004; A386: 2005
[17] Yang X Y, Zhang L. Acta Metall Sin, 2009; 11: 1303
(杨续跃, 张 雷. 金属学报, 2009; 11: 1303)
[18] Yang X Y, Miura H, Sakai T. Mater Trans, 2003; 44: 197
[19] Liu J W, Chen Z H, Chen D. Chin J Nonferrous Met, 2008; 9: 1577
(刘俊伟, 陈振华, 陈 鼎. 中国有色金属学报, 2008; 9: 1577)
[20] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena. Oxford: Pergamon, 1995:42
[21] Yang P, Mao W M, Ren X P, Tang Q B. Trans Nonferrous Met Soc Chin, 2004; 14: 851
[22] Kuhlmann–Wilsdorf D, Hansen N. Scr Metall Mater, 1991; 25: 1557
[23] Liu Q, Hansen N. Scr Metall Mater, 1995; 32: 1289
[24] Rosen G I, Juul J D, Hughes D A, Hansen N. Acta Metall Mater, 1995; 43: 2563
[25] Yao Z Y, Liu Q, Godfrey A, Liu W. Acta Metall Sin, 2009; 45: 647
(姚宗勇, 刘庆, Godfrey A, 刘伟. 金属学报, 2009; 45: 647)

[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[5] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{10ˉ12}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[6] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[7] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[8] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[9] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[10] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[11] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[12] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[13] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[14] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[15] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.