Please wait a minute...
金属学报  2026, Vol. 62 Issue (1): 1-16    DOI: 10.11900/0412.1961.2025.00201
  综述 本期目录 | 过刊浏览 |
高强钢焊缝金属组织设计与强韧化机理研究进展
陆善平(), 孙健
中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Research Progress on Microstructural Design and Strengthening-Toughening Mechanisms of Weld Metal in High-Strength Steels
LU Shanping(), SUN Jian
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

陆善平, 孙健. 高强钢焊缝金属组织设计与强韧化机理研究进展[J]. 金属学报, 2026, 62(1): 1-16.
Shanping LU, Jian SUN. Research Progress on Microstructural Design and Strengthening-Toughening Mechanisms of Weld Metal in High-Strength Steels[J]. Acta Metall Sin, 2026, 62(1): 1-16.

全文: PDF(5506 KB)   HTML
摘要: 

高强钢凭借其优异的强韧性匹配和良好的焊接性能,已成为油气长输管道、海洋工程结构、工程机械及水力发电等领域的关键结构材料。作为焊接接头组成部分的焊缝金属,其微观组织和力学性能直接影响高强钢整体焊接结构的服役安全性和可靠性。焊缝金属的凝固行为和相变过程是控制其微观组织和力学性能的关键因素。本文聚焦于多元合金元素协同作用、焊接工艺参数设计及焊后热处理制度制定等三个关键方面,综述了高强钢熔化焊焊缝金属组织设计和强韧化机制的研究进展,从成分配比和工艺参数的角度理解焊缝金属强韧性倒置的关系。并对相关领域近年来的研究进展进行了评述和展望,为1000 MPa级及以上级别高强钢焊材研发及高强钢焊缝金属制备提供理论参考。

关键词 高强钢焊缝金属微观组织强韧化合金元素工艺参数    
Abstract

High-strength steel, renowned for its optimal balance between strength and toughness as well as its exceptional weldability, has become a key structural material in critical applications such as long-distance oil and gas pipelines, offshore engineering structures, construction machinery, and hydropower facilities. The microstructure and mechanical properties of the weld metal—an integral component of the welded joint—directly impact the service safety and reliability of the entire welded structure in high-strength steel applications. Moreover, the solidification behavior and phase transformation processes of the weld metal play a pivotal role in determining its microstructure and mechanical properties. This study focuses on three crucial aspects: the synergistic effects of multi-component alloying, the design of welding process parameters, and the formulation of post-weld heat treatment regimes. It reviews recent advances in microstructure design and elucidates the strengthening and toughening mechanisms of weld metal in high-strength steel fusion welding. Furthermore, the correlation between strength and toughness inversion in weld metal is elucidated from the perspectives of chemical composition design and process parameters. Recent advancements and prospects in relevant fields are summarized, providing theoretical guidance for the development of welding materials and the preparation of weld metal in high-strength steels of 1000 MPa grade and above.

Key wordsweld metal of high-strength steel    microstructure    strengthening and toughening    alloy element    process parameter
收稿日期: 2025-07-15     
ZTFLH:  TG442  
基金资助:国家自然科学基金项目(52101060)
通讯作者: 陆善平,shplu@imr.ac.cn,主要从事高性能焊接材料研制
作者简介: 陆善平,男,1970年生,研究员,博士
图1  Ti含量对焊缝金属中夹杂物的影响[19]
图2  夹杂物种类计算与夹杂物实验表征[24]
图3  不同Ni含量焊缝金属的SEM像[40]
图4  不同Cr含量焊缝金属的反极图、带对比图和晶界取向差图[41]
图5  原子探针测量不同等浓度面的富V团簇[53](a) 2%V (b) 4%V (c) 10%V
图6  富Cu纳米相表征[55]
图7  熔化极气体保护电弧焊和超窄间隙激光焊焊接接头的横截面形貌[65]
图8  不同保护气时焊缝金属的力学性能[68]
图9  不同焊接热输入时焊缝金属的力学性能[70]
图10  焊缝金属焊后热处理(PWHT)过程中组织演变示意图[78]
图11  焊缝金属PWHT过程中析出相演变[81]
图12  焊缝金属电子探针分析和析出相表征[82]
图13  焊缝金属冲击断口[85]
[1] Mao G J, Cao R, Yang J, et al. Effect of nickel contents on the microstructure and mechanical properties for low-carbon bainitic weld metals [J]. J. Mater. Eng. Perform., 2017, 26: 2057
[2] Khurshid M, Barsoum Z, Mumtaz N A. Ultimate strength and failure modes for fillet welds in high strength steels [J]. Mater. Des., 2012, 40: 36
[3] Bose-Filho W W, Carvalho A L M, Strangwood M. Effects of alloying elements on the microstructure and inclusion formation in HSLA multipass welds [J]. Mater. Charact., 2007, 58: 29
[4] Mukhopadhyay S, Pal T K. Effect of shielding gas mixture on gas metal arc welding of HSLA steel using solid and flux-cored wires [J]. Int. J. Adv. Manuf. Technol., 2006, 29: 262
[5] Harati E, Karlsson L, Svensson L E, et al. The relative effects of residual stresses and weld toe geometry on fatigue life of weldments [J]. Int. J. Fatigue, 2015, 77: 160
[6] Ramirez J E. Characterization of high-strength steel weld metals: Chemical composition, microstructure, and nonmetallic inclusions [J]. Weld. J., 2008, 87: 65s
[7] Sampath K. Constraints-based modeling enables successful development of a welding electrode specification for critical navy applications [J]. Weld. J., 2005, 84: 131s
[8] Yang Z, Debroy T. Modeling macro-and microstructures of gas-metal-arc welded HSLA-100 steel [J]. Metall. Mater. Trans., 1999, 30B: 483
[9] Schnitzer R, Zügner D, Haslberger P, et al. Influence of alloying elements on the mechanical properties of high-strength weld metal [J]. Sci. Technol. Weld. Joi., 2017, 22: 536
[10] Zhang T, Li Z, Ma S, et al. High strength steel (600-900 MPa) deposited metals: Microstructure and mechanical properties [J]. Sci. Technol. Weld. Joining, 2016, 21: 186
[11] Wang Z Q, Wang X L, Nan Y R, et al. Effect of Ni content on the microstructure and mechanical properties of weld metal with both-side submerged arc welding technique [J]. Mater. Charact., 2018, 138: 67
[12] Trindade V B D, Payão J D C, Souza L F G, et al. The role of addition of Ni on the microstructure and mechanical behaviour of C-Mn weld metals [J]. Exacta, 2008, 5: 177
[13] Bhole S D, Nemade J B, Collins L, et al. Effect of nickel and molybdenum additions on weld metal toughness in a submerged arc welded HSLA line-pipe steel [J]. J. Mater. Process. Technol., 2006, 173: 92
[14] Fattahi M, Nabhani N, Hosseini M, et al. Effect of Ti-containing inclusions on the nucleation of acicular ferrite and mechanical properties of multipass weld metals [J]. Micron, 2013, 45: 107
[15] Koseki T, Thewlis G. Overview Inclusion assisted microstructure control in C-Mn and low alloy steel welds [J]. Mater. Sci. Technol., 2005, 21: 867
[16] Jiang Q L, Li Y J, Wang J, et al. Effects of Mn and Ti on microstructure and inclusions in weld metal of high strength low alloy steel [J]. Mater. Sci. Technol., 2011, 27: 1385
[17] Zhang L, Li Y J, Wang J A, et al. Effect of acicular ferrite on cracking sensibility in the weld metal of Q690 + Q550 high strength steels [J]. ISIJ Int., 2011, 51: 1132
[18] Beidokhti B, Koukabi A H, Dolati A. Effect of titanium addition on the microstructure and inclusion formation in submerged arc welded HSLA pipeline steel [J]. J. Mater. Process. Technol., 2009, 209: 4027
[19] Jorge J C F, Bott I S, Souza L F G, et al. Mechanical and microstructural behavior of C-Mn steel weld deposits with varying titanium contents [J]. J. Mater. Res. Technol., 2019, 8: 4659
[20] Trindade V B, Mello R S T, Payão J C, et al. Influence of zirconium on microstructure and toughness of low-alloy steel weld metals [J]. J. Mater. Eng. Perform., 2006, 15: 284
[21] Cai Y C, Liu R P, Wei Y H, et al. Influence of Y on microstructures and mechanical properties of high strength steel weld metal [J]. Mater. Des., 2014, 62: 83
[22] Takahashi J, Kisaka Y, Kawakami K, et al. Atomic-scale analysis of oxide inclusion in weld metal using atom probe tomography [J]. Metall. Mater. Trans., 2022, 53A: 1693
[23] Wang H H, Li G Q, Wan X L, et al. Microstructural characteristics and impact toughness in YS690MPa steel weld metal for offshore structures [J]. Sci. Technol. Weld. Joining, 2017, 22: 133
[24] Qi X N, Wang X N, Di H S, et al. Acicular ferrite nucleation mechanism in laser-MAG hybrid welds of X100 pipeline steel [J]. Mater. Lett., 2021, 304: 130603
[25] Kang Y, Jang J, Park J H, et al. Influence of Ti on non-metallic inclusion formation and acicular ferrite nucleation in high-strength low-alloy steel weld metals [J]. Met. Mater. Int., 2014, 20: 119
[26] Kang Y, Han K, Park J H, et al. Mn-depleted zone formation in rapidly cooled high-strength low-alloy steel welds [J]. Metall. Mater. Trans., 2014, 45A: 4753
[27] Seo J S, Kim H J, Lee C. Effect of Ti addition on weld microstructure and inclusion characteristics of bainitic GMA welds [J]. ISIJ Int., 2013, 53: 880
[28] Blais C, L'Espérance G, Evans G M. Characterisation of inclusions found in C-Mn steel welds containing titanium [J]. Sci. Technol. Weld. Joining, 1999, 4: 143
[29] Abson D J. Acicular ferrite and bainite in C-Mn and low-alloy steel arc weld metals [J]. Sci. Technol. Weld. Joining, 2018, 23: 635
[30] Terasaki H, Yamada T, Komizo Y I. Analysis of inclusion core under the weld pool of high strength and low alloy steel [J]. ISIJ Int., 2008, 48: 1752
[31] Zachrisson J, Börjesson J, Karlsson L. Role of inclusions in formation of high strength steel weld metal microstructures [J]. Sci. Technol. Weld. Joining, 2013, 18: 603
[32] Beidokhti B, Kokabi A H, Dolati A. A comprehensive study on the microstructure of high strength low alloy pipeline welds [J]. J. Alloys Compd., 2014, 597: 142
[33] Lee T K, Kim H J, Kang B Y, et al. Effect of inclusion size on the nucleation of acicular ferrite in welds [J]. ISIJ Int., 2000, 40: 1260
[34] Jiang Q L, Li Y J, Wang J, et al. Effects of inclusions on formation of acicular ferrite and propagation of crack in high strength low alloy steel weld metal [J]. Mater. Sci. Technol., 2011, 27: 1565
[35] Schrittwieser D, Rinnhofer N, Obersteiner D, et al. Retained austenite in multipass high-strength weld metal with a yield strength exceeding 1100 MPa [J]. J. Mater. Res. Technol., 2025, 36: 6499
[36] Peng Y, Peng X N, Zhang X M, et al. Microstructure and mechanical properties of GMAW weld metal of 890 MPa class steel [J]. J. Iron Steel Res. Int., 2014, 21: 539
[37] Kang B Y, Kim H J, Hwang S K. Effect of Mn and Ni on the variation of the microstructure and mechanical properties of low-carbon weld metals [J]. ISIJ Int., 2000, 40: 1237
[38] Khodir S, Shibayanagi T, Takahashi M, et al. Microstructural evolution and mechanical properties of high strength 3-9% Ni-steel alloys weld metals produced by electron beam welding [J]. Mater. Des., 2014, 60: 391
[39] Keehan E, Karlsson L, Bhadeshia H K D H, et al. Electron backscattering diffraction study of coalesced bainite in high strength steel weld metals [J]. Mater. Sci. Technol., 2008, 24: 1183
[40] Liu J W, Sun J, Wei S T, et al. The effect of nickel contents on the microstructure evolution and toughness of 800 MPa grade low carbon bainite deposited metal [J]. Crystals, 2021, 11: 709
[41] Liu J W, Sun J, Wei S T, et al. Influence of chromium content on the bainite transformation nucleation mechanism and the properties of 800 MPa grade low carbon bainite weld deposited metal [J]. Mater. Sci. Eng., 2022, A840: 142893
[42] Liu J W, Wei S T, Lu S P. Bainite nucleation mechanism and mechanical properties in low carbon bainite deposited metals with different nickel additions [J]. Mater. Sci. Eng., 2022, A857: 144036
[43] Liu J W, Wei S T, Sun Q S, et al. Microstructure characteristics and mechanical properties of deposited metals with different types of bainite [J]. J. Mater. Res. Technol., 2023, 23: 744
[44] Keehan E, Karlsson L, Andrén H O. Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: Part 1—Effect of nickel content [J]. Sci. Technol. Weld. Joining, 2006, 11: 1
[45] Keehan E, Karlsson L, Andrén H O, et al. Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: Part 2—Impact toughness gain resulting from manganese reductions [J]. Sci. Technol. Weld. Joining, 2006, 11: 9
[46] Keehan E, Karlsson L, Andrén H O, et al. Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: Part 3—Increased strength resulting from carbon additions [J]. Sci. Technol. Weld. Joining, 2006, 11: 19
[47] An T B, Wei J S, Zhao L, et al. Influence of carbon content on microstructure and mechanical properties of 1000 MPa deposited metal by gas metal arc welding [J]. J. Iron Steel Res. Int., 2019, 26: 512
[48] Haslberger P, Ernst W, Schnitzer R. High resolution imaging of martensitic all-weld metal [J]. Sci. Technol. Weld. Joining, 2017, 22: 336
[49] Liu X, Xu M J, Shi Q Y, et al. Analysis of niobium-rich phases in the submerged arc welds of high strength low alloy steel [J]. Materialia, 2019, 7: 100340
[50] Patterson T, Lippold J C. Effect of niobium on the microstructure and properties of submerged arc welds in HSLA steel [J]. Weld. World, 2020, 64: 1089
[51] Haslberger P, Ernst W, Schneider C, et al. Influence of inhomogeneity on several length scales on the local mechanical properties in V-alloyed all-weld metal [J]. Weld. World, 2018, 62: 1153
[52] Sun J, Liu J W, Wei S T, et al. Local microstructure evolution of a V-containing Fe-Cr-Ni-Mo weld metal subjected to post-weld heat treatment [J]. Mater. Charact., 2023, 203: 113096
[53] Haslberger P, Holly S, Ernst W, et al. Microstructure and mechanical properties of high-strength steel welding consumables with a minimum yield strength of 1100 MPa [J]. J. Mater. Sci., 2018, 53: 6968
[54] Gagliano M S, Fine M E. Characterization of the nucleation and growth behavior of copper precipitates in low-carbon steels [J]. Metall. Mater. Trans., 2004, 35A: 2323
[55] Wang H H, Tong Z, Hou T P, et al. Effects of evolution of nanoscale copper precipitation and copper content on mechanical properties of high-strength steel weld metal [J]. Sci. Technol. Weld. Joining, 2017, 22: 191
[56] Wang H H, Yu X H, Isheim D, et al. High strength weld metal design through nanoscale copper precipitation [J]. Mater. Des., 2013, 50: 962
[57] Ramirez J E, Liu S, Olson D L. Dual precipitation strengthening effect of copper and niobium in high strength steel weld metal [J]. Mater. Sci. Eng., 1996, A216: 91
[58] Yang X H, Chen X H, Pan S W, et al. Microstructure and mechanical properties of ultralow carbon high-strength steel weld metals with or without Cu-Nb addition [J]. Int. J. Miner. Metall. Mater., 2021, 28: 120
[59] Haslberger P, Holly S, Ernst W, et al. Precipitates in microalloyed ultra-high strength weld metal studied by atom probe tomography [J]. Weld. World, 2018, 62: 713
[60] Pouriamanesh R, Dehghani K, Vallant R, et al. Effect of Ti addition on the microstructure and mechanical properties of weld metals in HSLA steels [J]. J. Mater. Eng. Perform., 2018, 27: 6058
[61] Su L H. Research on arc ignition control method of Tandem dual-wire arc welding [J]. Hot Working Technol., 2021, 50(17): 132
[61] 苏立虎. Tandem双丝气保焊引弧控制方法的研究 [J]. 热加工工艺, 2021, 50(17): 132
[62] Pamnani R, Jayakumar T, Vasudevan M, et al. Investigations on the impact toughness of HSLA steel arc welded joints [J]. J. Manuf. Process., 2016, 21: 75
[63] Deb P, Challenger K D, Therrien A E. Structure-property correlation of submerged-arc and gas-metal-arc weldments in HY-100 steel [J]. Metall. Trans., 1987, 18A: 987
[64] Losz J M B, Saboury S, McNutt T M. Microstructural characterization of submerged-arc and gas-metal-arc weldments in HY-130 steel [J]. ISIJ Int., 1995, 35: 71
[65] Guo W, Li L, Dong S Y, et al. Comparison of microstructure and mechanical properties of ultra-narrow gap laser and gas-metal-arc welded S960 high strength steel [J]. Opt. Lasers Eng., 2017, 91: 1
[66] Seo J S, Lee C, Kim H J. Influence of oxygen content on microstructure and inclusion characteristics of Bainitic weld metals [J]. ISIJ Int., 2013, 53: 279
[67] Gouda M, Takahashi M, Ikeuchi K. Microstructures of gas metal arc weld metal of 950 MPa class steel [J]. Sci. Technol. Weld. Joining, 2005, 10: 369
[68] An T B, Wei J S, Shan J G, et al. Influence of shielding gas composition on microstructure characteristics of 1000 MPa grade deposited metals [J]. Acta Metall. Sin., 2019, 55: 575
[68] 安同邦, 魏金山, 单际国 等. 保护气成分对1000MPa级高强熔敷金属组织特征的影响 [J]. 金属学报, 2019, 55: 575
[69] Terashima S, Bhadeshia H K D H. Changes in toughness at low oxygen concentrations in steel weld metals [J]. Sci. Technol. Weld. Joining, 2006, 11: 509
[70] Lan L Y, Kong X W, Qiu C L, et al. Influence of microstructural aspects on impact toughness of multi-pass submerged arc welded HSLA steel joints [J]. Mater. Des., 2016, 90: 488
[71] An T B, Shan J G, Wei J S, et al. Effect of heat input on microstructure and performance of welded joint in 1000 MPa grade steel for construction machinery [J]. J. Mech. Eng., 2014, 50(22): 42
[71] 安同邦, 单际国, 魏金山 等. 热输入对1000 MPa级工程机械用钢接头组织性能的影响 [J]. 机械工程学报, 2014, 50(22): 42
[72] Keehan E, Zachrisson J, Karlsson L. Influence of cooling rate on microstructure and properties of high strength steel weld metal [J]. Sci. Technol. Weld. Joining, 2010, 15: 233
[73] Schönmaier H, Krein R, Schmitz-Niederau M, et al. Influence of the heat input on the dendritic solidification structure and the mechanical properties of 2.25Cr-1Mo-0.25V submerged-arc weld metal [J]. J. Mater. Eng. Perform., 2021, 30: 7138
[74] Prasad K, Dwivedi D K. Some investigations on microstructure and mechanical properties of submerged arc welded HSLA steel joints [J]. Int. J. Adv. Manuf. Technol., 2008, 36: 475
[75] Moon D W, Metzbower E A. Hardness changes on pass-by-pass basis in HSLA 65 steel gas metal arc welds [J]. Sci. Technol. Weld. Joining, 2008, 13: 533
[76] Jorge J C F, Monteiro J L D, Gomes A J D C, et al. Influence of welding procedure and PWHT on HSLA steel weld metals [J]. J. Mater. Res. Technol., 2019, 8: 561
[77] Gomes A J C, Jorge J C F, Bott I S, et al. Influence of chemical composition on the mechanical and microstructural properties of high strength steel weld metals submitted to PWHT [J]. Metallogr. Microstruct. Anal., 2019, 8: 815
[78] Wang C, Li C N, Dai L S, et al. Simultaneously enhancing strength and fracture toughness via tailoring the microstructure in X80 girth weld metal [J]. J. Mater. Res. Technol., 2024, 29: 3096
[79] Harati E, Harati E, Onochie U. Effect of post-weld heat treatment on mechanical and microstructural properties of high strength steel weld metal [J]. Weld. Int., 2024, 38: 422
[80] Lu S P, Wang X, Dong W C, et al. Effects of normalizing processes on microstructure and impact toughness in Ti-bearing weld metal of multilayer MAG welded HSLA Steel [J]. ISIJ Int., 2013, 53: 96
[81] Liu J W, Wei S T, Sun J, et al. Effect of tempering temperature on the microstructural evolution and properties of 800 MPa grade low-carbon bainite-deposited metals [J]. Metall. Mater. Trans., 2022, 53A: 4272
[82] Sun J, Lu S P. Influence of inter-dendritic segregation on the precipitation behaviour and mechanical properties in a vanadium-containing Fe-Cr-Ni-Mo weld metal [J]. Scr. Mater., 2020, 186: 174
[83] Sun J, Lu S P. Effect of inhomogeneity on the microstructural evolution and mechanical behaviour of a vanadium-containing Fe-Cr-Ni-Mo weld metal [J]. Mater. Sci. Eng., 2021, A806: 140758
[84] Sun J, Wei S T, Lu S P. Influence of vanadium content on the precipitation evolution and mechanical properties of high-strength Fe-Cr-Ni-Mo weld metal [J]. Mater. Sci. Eng., 2020, A772: 138739
[85] Schrittwieser D, Pahr H, Musi M, et al. Revealing the embrittlement phenomena after post-weld heat treatment of high-strength weld metal using high-resolution microscopy [J]. J. Mater. Res. Technol., 2024, 33: 5289
[86] Guo W B, An T B, Zheng S X, et al. Influence mechanism of PWHT on strength and toughness of deposited metal with 1500 MPa grade ultra-high strength steel welding wire [J]. Mater. Sci. Eng., 2025, A925: 147846
[1] 曹睿, 刘梓申. 高强钢焊缝金属强韧性研究进展[J]. 金属学报, 2026, 62(1): 64-80.
[2] 阴嘉琳, 石磊, 武传松. 超声振动对镁/铝异质合金搅拌摩擦搭接焊接头界面组织演变的影响[J]. 金属学报, 2026, 62(1): 133-147.
[3] 王启勇, 李晓博, 刘小超, 王心成, 张泰瑞, 倪中华, 陈彪. 低碳钢预制涡流搅拌摩擦焊工艺研究[J]. 金属学报, 2026, 62(1): 217-234.
[4] 李红, 姜玉清, 曹玉鹏, 王加友, 刘澍彬. 冷丝辅助旋转/摇动电弧窄间隙MAG焊缝成形特性及接头组织性能演变机制[J]. 金属学报, 2026, 62(1): 235-252.
[5] 王洪瑛, 姚志浩, 李大禹, 郭婧, 姚凯俊, 董建新. γ' 相含量粉末及变形高温合金组织和力学性能的异同性[J]. 金属学报, 2025, 61(9): 1364-1374.
[6] 肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
[7] 吴泽威, 颜俊雄, 胡励, 韩修柱. 双峰分离非基面织构AZ31镁合金板材反常中温轧制变形行为及机理[J]. 金属学报, 2025, 61(8): 1165-1173.
[8] 谢旭, 万一博, 钟明, 邹晓东, 王聪. CaF2-TiO2 焊剂作用下EH36船板钢气电立焊焊缝金属组织优化及力学性能调控[J]. 金属学报, 2025, 61(7): 998-1010.
[9] 孙欢腾, 马运柱, 蔡青山, 王健宁, 段有腾, 张梦祥. fccbcc钢板在超高速撞击下的微观组织差异[J]. 金属学报, 2025, 61(7): 1011-1023.
[10] 韩晓东, 安子冰, 毛圣成, 龙海波, 杨鲁岩, 张泽. 负混合焓合金化推动高强韧合金发展[J]. 金属学报, 2025, 61(7): 953-960.
[11] 郝旭邦, 程伟丽, 李戬, 王利飞, 崔泽琴, 闫国庆, 翟凯, 余晖. 低合金化Mg-Ag镁空气电池阳极材料的电化学行为和放电性能[J]. 金属学报, 2025, 61(6): 837-847.
[12] 刘子儒, 郭乾应, 张虹雨, 刘永长. V添加对Ti2AlNb合金组织演变及硬度的影响[J]. 金属学报, 2025, 61(6): 848-856.
[13] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[14] 蒋斌, 张昂, 宋江凤, 黎田, 游国强, 郑江, 潘复生. 镁合金一体化压铸缺陷控制[J]. 金属学报, 2025, 61(3): 383-396.
[15] 黄科, 李新志, 方学伟, 卢秉恒. 镁合金电弧熔丝增材制造技术研究现状与展望[J]. 金属学报, 2025, 61(3): 397-419.