|
|
|
| 高强钢焊缝金属组织设计与强韧化机理研究进展 |
陆善平( ), 孙健 |
| 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 |
|
| Research Progress on Microstructural Design and Strengthening-Toughening Mechanisms of Weld Metal in High-Strength Steels |
LU Shanping( ), SUN Jian |
| Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
陆善平, 孙健. 高强钢焊缝金属组织设计与强韧化机理研究进展[J]. 金属学报, 2026, 62(1): 1-16.
Shanping LU,
Jian SUN.
Research Progress on Microstructural Design and Strengthening-Toughening Mechanisms of Weld Metal in High-Strength Steels[J]. Acta Metall Sin, 2026, 62(1): 1-16.
| [1] |
Mao G J, Cao R, Yang J, et al. Effect of nickel contents on the microstructure and mechanical properties for low-carbon bainitic weld metals [J]. J. Mater. Eng. Perform., 2017, 26: 2057
|
| [2] |
Khurshid M, Barsoum Z, Mumtaz N A. Ultimate strength and failure modes for fillet welds in high strength steels [J]. Mater. Des., 2012, 40: 36
|
| [3] |
Bose-Filho W W, Carvalho A L M, Strangwood M. Effects of alloying elements on the microstructure and inclusion formation in HSLA multipass welds [J]. Mater. Charact., 2007, 58: 29
|
| [4] |
Mukhopadhyay S, Pal T K. Effect of shielding gas mixture on gas metal arc welding of HSLA steel using solid and flux-cored wires [J]. Int. J. Adv. Manuf. Technol., 2006, 29: 262
|
| [5] |
Harati E, Karlsson L, Svensson L E, et al. The relative effects of residual stresses and weld toe geometry on fatigue life of weldments [J]. Int. J. Fatigue, 2015, 77: 160
|
| [6] |
Ramirez J E. Characterization of high-strength steel weld metals: Chemical composition, microstructure, and nonmetallic inclusions [J]. Weld. J., 2008, 87: 65s
|
| [7] |
Sampath K. Constraints-based modeling enables successful development of a welding electrode specification for critical navy applications [J]. Weld. J., 2005, 84: 131s
|
| [8] |
Yang Z, Debroy T. Modeling macro-and microstructures of gas-metal-arc welded HSLA-100 steel [J]. Metall. Mater. Trans., 1999, 30B: 483
|
| [9] |
Schnitzer R, Zügner D, Haslberger P, et al. Influence of alloying elements on the mechanical properties of high-strength weld metal [J]. Sci. Technol. Weld. Joi., 2017, 22: 536
|
| [10] |
Zhang T, Li Z, Ma S, et al. High strength steel (600-900 MPa) deposited metals: Microstructure and mechanical properties [J]. Sci. Technol. Weld. Joining, 2016, 21: 186
|
| [11] |
Wang Z Q, Wang X L, Nan Y R, et al. Effect of Ni content on the microstructure and mechanical properties of weld metal with both-side submerged arc welding technique [J]. Mater. Charact., 2018, 138: 67
|
| [12] |
Trindade V B D, Payão J D C, Souza L F G, et al. The role of addition of Ni on the microstructure and mechanical behaviour of C-Mn weld metals [J]. Exacta, 2008, 5: 177
|
| [13] |
Bhole S D, Nemade J B, Collins L, et al. Effect of nickel and molybdenum additions on weld metal toughness in a submerged arc welded HSLA line-pipe steel [J]. J. Mater. Process. Technol., 2006, 173: 92
|
| [14] |
Fattahi M, Nabhani N, Hosseini M, et al. Effect of Ti-containing inclusions on the nucleation of acicular ferrite and mechanical properties of multipass weld metals [J]. Micron, 2013, 45: 107
|
| [15] |
Koseki T, Thewlis G. Overview Inclusion assisted microstructure control in C-Mn and low alloy steel welds [J]. Mater. Sci. Technol., 2005, 21: 867
|
| [16] |
Jiang Q L, Li Y J, Wang J, et al. Effects of Mn and Ti on microstructure and inclusions in weld metal of high strength low alloy steel [J]. Mater. Sci. Technol., 2011, 27: 1385
|
| [17] |
Zhang L, Li Y J, Wang J A, et al. Effect of acicular ferrite on cracking sensibility in the weld metal of Q690 + Q550 high strength steels [J]. ISIJ Int., 2011, 51: 1132
|
| [18] |
Beidokhti B, Koukabi A H, Dolati A. Effect of titanium addition on the microstructure and inclusion formation in submerged arc welded HSLA pipeline steel [J]. J. Mater. Process. Technol., 2009, 209: 4027
|
| [19] |
Jorge J C F, Bott I S, Souza L F G, et al. Mechanical and microstructural behavior of C-Mn steel weld deposits with varying titanium contents [J]. J. Mater. Res. Technol., 2019, 8: 4659
|
| [20] |
Trindade V B, Mello R S T, Payão J C, et al. Influence of zirconium on microstructure and toughness of low-alloy steel weld metals [J]. J. Mater. Eng. Perform., 2006, 15: 284
|
| [21] |
Cai Y C, Liu R P, Wei Y H, et al. Influence of Y on microstructures and mechanical properties of high strength steel weld metal [J]. Mater. Des., 2014, 62: 83
|
| [22] |
Takahashi J, Kisaka Y, Kawakami K, et al. Atomic-scale analysis of oxide inclusion in weld metal using atom probe tomography [J]. Metall. Mater. Trans., 2022, 53A: 1693
|
| [23] |
Wang H H, Li G Q, Wan X L, et al. Microstructural characteristics and impact toughness in YS690MPa steel weld metal for offshore structures [J]. Sci. Technol. Weld. Joining, 2017, 22: 133
|
| [24] |
Qi X N, Wang X N, Di H S, et al. Acicular ferrite nucleation mechanism in laser-MAG hybrid welds of X100 pipeline steel [J]. Mater. Lett., 2021, 304: 130603
|
| [25] |
Kang Y, Jang J, Park J H, et al. Influence of Ti on non-metallic inclusion formation and acicular ferrite nucleation in high-strength low-alloy steel weld metals [J]. Met. Mater. Int., 2014, 20: 119
|
| [26] |
Kang Y, Han K, Park J H, et al. Mn-depleted zone formation in rapidly cooled high-strength low-alloy steel welds [J]. Metall. Mater. Trans., 2014, 45A: 4753
|
| [27] |
Seo J S, Kim H J, Lee C. Effect of Ti addition on weld microstructure and inclusion characteristics of bainitic GMA welds [J]. ISIJ Int., 2013, 53: 880
|
| [28] |
Blais C, L'Espérance G, Evans G M. Characterisation of inclusions found in C-Mn steel welds containing titanium [J]. Sci. Technol. Weld. Joining, 1999, 4: 143
|
| [29] |
Abson D J. Acicular ferrite and bainite in C-Mn and low-alloy steel arc weld metals [J]. Sci. Technol. Weld. Joining, 2018, 23: 635
|
| [30] |
Terasaki H, Yamada T, Komizo Y I. Analysis of inclusion core under the weld pool of high strength and low alloy steel [J]. ISIJ Int., 2008, 48: 1752
|
| [31] |
Zachrisson J, Börjesson J, Karlsson L. Role of inclusions in formation of high strength steel weld metal microstructures [J]. Sci. Technol. Weld. Joining, 2013, 18: 603
|
| [32] |
Beidokhti B, Kokabi A H, Dolati A. A comprehensive study on the microstructure of high strength low alloy pipeline welds [J]. J. Alloys Compd., 2014, 597: 142
|
| [33] |
Lee T K, Kim H J, Kang B Y, et al. Effect of inclusion size on the nucleation of acicular ferrite in welds [J]. ISIJ Int., 2000, 40: 1260
|
| [34] |
Jiang Q L, Li Y J, Wang J, et al. Effects of inclusions on formation of acicular ferrite and propagation of crack in high strength low alloy steel weld metal [J]. Mater. Sci. Technol., 2011, 27: 1565
|
| [35] |
Schrittwieser D, Rinnhofer N, Obersteiner D, et al. Retained austenite in multipass high-strength weld metal with a yield strength exceeding 1100 MPa [J]. J. Mater. Res. Technol., 2025, 36: 6499
|
| [36] |
Peng Y, Peng X N, Zhang X M, et al. Microstructure and mechanical properties of GMAW weld metal of 890 MPa class steel [J]. J. Iron Steel Res. Int., 2014, 21: 539
|
| [37] |
Kang B Y, Kim H J, Hwang S K. Effect of Mn and Ni on the variation of the microstructure and mechanical properties of low-carbon weld metals [J]. ISIJ Int., 2000, 40: 1237
|
| [38] |
Khodir S, Shibayanagi T, Takahashi M, et al. Microstructural evolution and mechanical properties of high strength 3-9% Ni-steel alloys weld metals produced by electron beam welding [J]. Mater. Des., 2014, 60: 391
|
| [39] |
Keehan E, Karlsson L, Bhadeshia H K D H, et al. Electron backscattering diffraction study of coalesced bainite in high strength steel weld metals [J]. Mater. Sci. Technol., 2008, 24: 1183
|
| [40] |
Liu J W, Sun J, Wei S T, et al. The effect of nickel contents on the microstructure evolution and toughness of 800 MPa grade low carbon bainite deposited metal [J]. Crystals, 2021, 11: 709
|
| [41] |
Liu J W, Sun J, Wei S T, et al. Influence of chromium content on the bainite transformation nucleation mechanism and the properties of 800 MPa grade low carbon bainite weld deposited metal [J]. Mater. Sci. Eng., 2022, A840: 142893
|
| [42] |
Liu J W, Wei S T, Lu S P. Bainite nucleation mechanism and mechanical properties in low carbon bainite deposited metals with different nickel additions [J]. Mater. Sci. Eng., 2022, A857: 144036
|
| [43] |
Liu J W, Wei S T, Sun Q S, et al. Microstructure characteristics and mechanical properties of deposited metals with different types of bainite [J]. J. Mater. Res. Technol., 2023, 23: 744
|
| [44] |
Keehan E, Karlsson L, Andrén H O. Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: Part 1—Effect of nickel content [J]. Sci. Technol. Weld. Joining, 2006, 11: 1
|
| [45] |
Keehan E, Karlsson L, Andrén H O, et al. Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: Part 2—Impact toughness gain resulting from manganese reductions [J]. Sci. Technol. Weld. Joining, 2006, 11: 9
|
| [46] |
Keehan E, Karlsson L, Andrén H O, et al. Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: Part 3—Increased strength resulting from carbon additions [J]. Sci. Technol. Weld. Joining, 2006, 11: 19
|
| [47] |
An T B, Wei J S, Zhao L, et al. Influence of carbon content on microstructure and mechanical properties of 1000 MPa deposited metal by gas metal arc welding [J]. J. Iron Steel Res. Int., 2019, 26: 512
|
| [48] |
Haslberger P, Ernst W, Schnitzer R. High resolution imaging of martensitic all-weld metal [J]. Sci. Technol. Weld. Joining, 2017, 22: 336
|
| [49] |
Liu X, Xu M J, Shi Q Y, et al. Analysis of niobium-rich phases in the submerged arc welds of high strength low alloy steel [J]. Materialia, 2019, 7: 100340
|
| [50] |
Patterson T, Lippold J C. Effect of niobium on the microstructure and properties of submerged arc welds in HSLA steel [J]. Weld. World, 2020, 64: 1089
|
| [51] |
Haslberger P, Ernst W, Schneider C, et al. Influence of inhomogeneity on several length scales on the local mechanical properties in V-alloyed all-weld metal [J]. Weld. World, 2018, 62: 1153
|
| [52] |
Sun J, Liu J W, Wei S T, et al. Local microstructure evolution of a V-containing Fe-Cr-Ni-Mo weld metal subjected to post-weld heat treatment [J]. Mater. Charact., 2023, 203: 113096
|
| [53] |
Haslberger P, Holly S, Ernst W, et al. Microstructure and mechanical properties of high-strength steel welding consumables with a minimum yield strength of 1100 MPa [J]. J. Mater. Sci., 2018, 53: 6968
|
| [54] |
Gagliano M S, Fine M E. Characterization of the nucleation and growth behavior of copper precipitates in low-carbon steels [J]. Metall. Mater. Trans., 2004, 35A: 2323
|
| [55] |
Wang H H, Tong Z, Hou T P, et al. Effects of evolution of nanoscale copper precipitation and copper content on mechanical properties of high-strength steel weld metal [J]. Sci. Technol. Weld. Joining, 2017, 22: 191
|
| [56] |
Wang H H, Yu X H, Isheim D, et al. High strength weld metal design through nanoscale copper precipitation [J]. Mater. Des., 2013, 50: 962
|
| [57] |
Ramirez J E, Liu S, Olson D L. Dual precipitation strengthening effect of copper and niobium in high strength steel weld metal [J]. Mater. Sci. Eng., 1996, A216: 91
|
| [58] |
Yang X H, Chen X H, Pan S W, et al. Microstructure and mechanical properties of ultralow carbon high-strength steel weld metals with or without Cu-Nb addition [J]. Int. J. Miner. Metall. Mater., 2021, 28: 120
|
| [59] |
Haslberger P, Holly S, Ernst W, et al. Precipitates in microalloyed ultra-high strength weld metal studied by atom probe tomography [J]. Weld. World, 2018, 62: 713
|
| [60] |
Pouriamanesh R, Dehghani K, Vallant R, et al. Effect of Ti addition on the microstructure and mechanical properties of weld metals in HSLA steels [J]. J. Mater. Eng. Perform., 2018, 27: 6058
|
| [61] |
Su L H. Research on arc ignition control method of Tandem dual-wire arc welding [J]. Hot Working Technol., 2021, 50(17): 132
|
| [61] |
苏立虎. Tandem双丝气保焊引弧控制方法的研究 [J]. 热加工工艺, 2021, 50(17): 132
|
| [62] |
Pamnani R, Jayakumar T, Vasudevan M, et al. Investigations on the impact toughness of HSLA steel arc welded joints [J]. J. Manuf. Process., 2016, 21: 75
|
| [63] |
Deb P, Challenger K D, Therrien A E. Structure-property correlation of submerged-arc and gas-metal-arc weldments in HY-100 steel [J]. Metall. Trans., 1987, 18A: 987
|
| [64] |
Losz J M B, Saboury S, McNutt T M. Microstructural characterization of submerged-arc and gas-metal-arc weldments in HY-130 steel [J]. ISIJ Int., 1995, 35: 71
|
| [65] |
Guo W, Li L, Dong S Y, et al. Comparison of microstructure and mechanical properties of ultra-narrow gap laser and gas-metal-arc welded S960 high strength steel [J]. Opt. Lasers Eng., 2017, 91: 1
|
| [66] |
Seo J S, Lee C, Kim H J. Influence of oxygen content on microstructure and inclusion characteristics of Bainitic weld metals [J]. ISIJ Int., 2013, 53: 279
|
| [67] |
Gouda M, Takahashi M, Ikeuchi K. Microstructures of gas metal arc weld metal of 950 MPa class steel [J]. Sci. Technol. Weld. Joining, 2005, 10: 369
|
| [68] |
An T B, Wei J S, Shan J G, et al. Influence of shielding gas composition on microstructure characteristics of 1000 MPa grade deposited metals [J]. Acta Metall. Sin., 2019, 55: 575
|
| [68] |
安同邦, 魏金山, 单际国 等. 保护气成分对1000MPa级高强熔敷金属组织特征的影响 [J]. 金属学报, 2019, 55: 575
|
| [69] |
Terashima S, Bhadeshia H K D H. Changes in toughness at low oxygen concentrations in steel weld metals [J]. Sci. Technol. Weld. Joining, 2006, 11: 509
|
| [70] |
Lan L Y, Kong X W, Qiu C L, et al. Influence of microstructural aspects on impact toughness of multi-pass submerged arc welded HSLA steel joints [J]. Mater. Des., 2016, 90: 488
|
| [71] |
An T B, Shan J G, Wei J S, et al. Effect of heat input on microstructure and performance of welded joint in 1000 MPa grade steel for construction machinery [J]. J. Mech. Eng., 2014, 50(22): 42
|
| [71] |
安同邦, 单际国, 魏金山 等. 热输入对1000 MPa级工程机械用钢接头组织性能的影响 [J]. 机械工程学报, 2014, 50(22): 42
|
| [72] |
Keehan E, Zachrisson J, Karlsson L. Influence of cooling rate on microstructure and properties of high strength steel weld metal [J]. Sci. Technol. Weld. Joining, 2010, 15: 233
|
| [73] |
Schönmaier H, Krein R, Schmitz-Niederau M, et al. Influence of the heat input on the dendritic solidification structure and the mechanical properties of 2.25Cr-1Mo-0.25V submerged-arc weld metal [J]. J. Mater. Eng. Perform., 2021, 30: 7138
|
| [74] |
Prasad K, Dwivedi D K. Some investigations on microstructure and mechanical properties of submerged arc welded HSLA steel joints [J]. Int. J. Adv. Manuf. Technol., 2008, 36: 475
|
| [75] |
Moon D W, Metzbower E A. Hardness changes on pass-by-pass basis in HSLA 65 steel gas metal arc welds [J]. Sci. Technol. Weld. Joining, 2008, 13: 533
|
| [76] |
Jorge J C F, Monteiro J L D, Gomes A J D C, et al. Influence of welding procedure and PWHT on HSLA steel weld metals [J]. J. Mater. Res. Technol., 2019, 8: 561
|
| [77] |
Gomes A J C, Jorge J C F, Bott I S, et al. Influence of chemical composition on the mechanical and microstructural properties of high strength steel weld metals submitted to PWHT [J]. Metallogr. Microstruct. Anal., 2019, 8: 815
|
| [78] |
Wang C, Li C N, Dai L S, et al. Simultaneously enhancing strength and fracture toughness via tailoring the microstructure in X80 girth weld metal [J]. J. Mater. Res. Technol., 2024, 29: 3096
|
| [79] |
Harati E, Harati E, Onochie U. Effect of post-weld heat treatment on mechanical and microstructural properties of high strength steel weld metal [J]. Weld. Int., 2024, 38: 422
|
| [80] |
Lu S P, Wang X, Dong W C, et al. Effects of normalizing processes on microstructure and impact toughness in Ti-bearing weld metal of multilayer MAG welded HSLA Steel [J]. ISIJ Int., 2013, 53: 96
|
| [81] |
Liu J W, Wei S T, Sun J, et al. Effect of tempering temperature on the microstructural evolution and properties of 800 MPa grade low-carbon bainite-deposited metals [J]. Metall. Mater. Trans., 2022, 53A: 4272
|
| [82] |
Sun J, Lu S P. Influence of inter-dendritic segregation on the precipitation behaviour and mechanical properties in a vanadium-containing Fe-Cr-Ni-Mo weld metal [J]. Scr. Mater., 2020, 186: 174
|
| [83] |
Sun J, Lu S P. Effect of inhomogeneity on the microstructural evolution and mechanical behaviour of a vanadium-containing Fe-Cr-Ni-Mo weld metal [J]. Mater. Sci. Eng., 2021, A806: 140758
|
| [84] |
Sun J, Wei S T, Lu S P. Influence of vanadium content on the precipitation evolution and mechanical properties of high-strength Fe-Cr-Ni-Mo weld metal [J]. Mater. Sci. Eng., 2020, A772: 138739
|
| [85] |
Schrittwieser D, Pahr H, Musi M, et al. Revealing the embrittlement phenomena after post-weld heat treatment of high-strength weld metal using high-resolution microscopy [J]. J. Mater. Res. Technol., 2024, 33: 5289
|
| [86] |
Guo W B, An T B, Zheng S X, et al. Influence mechanism of PWHT on strength and toughness of deposited metal with 1500 MPa grade ultra-high strength steel welding wire [J]. Mater. Sci. Eng., 2025, A925: 147846
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|