|
|
|
| 影响冷喷涂粒子沉积的关键因素:粉末表面氧化综述 |
李文亚1( ), 杨景文1, 雒晓涛2, 殷硕3, 徐雅欣1 |
1 西北工业大学 材料学院 凝固技术全国重点实验室 陕西省摩擦焊接工程技术重点实验室 西安 710072 2 西安交通大学 材料科学与工程学院 西安 710049 3 School of Mechanical Manufacturing and Biomedical Engineering, Trinity University Dublin, D02PN40, Ireland |
|
| Key Factors Affecting Cold Spray Particle Deposition: A Review of Powder Surface Oxidation |
LI Wenya1( ), YANG Jingwen1, LUO Xiaotao2, YIN Shuo3, XU Yaxin1 |
1 Shaanxi Provincial Key Laboratory of Friction Welding Engineering Technology, State Key Laboratory of Solidification Technology, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China 2 School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China 3 School of Mechanical Manufacturing and Biomedical Engineering, Trinity University Dublin, D02PN40, Ireland |
引用本文:
李文亚, 杨景文, 雒晓涛, 殷硕, 徐雅欣. 影响冷喷涂粒子沉积的关键因素:粉末表面氧化综述[J]. 金属学报, 2026, 62(1): 17-28.
Wenya LI,
Jingwen YANG,
Xiaotao LUO,
Shuo YIN,
Yaxin XU.
Key Factors Affecting Cold Spray Particle Deposition: A Review of Powder Surface Oxidation[J]. Acta Metall Sin, 2026, 62(1): 17-28.
| [1] |
Li W Y, Cao C C, Yin S. Solid-state cold spraying of Ti and its alloys: A literature review [J]. Prog. Mater. Sci., 2020, 110: 100633
|
| [2] |
Yin S, Cavaliere P, Aldwell B, et al. Cold spray additive manufacturing and repair: Fundamentals and applications [J]. Addit. Manuf., 2018, 21: 628
|
| [3] |
Assadi H, Kreye H, Gärtner F, et al. Cold spraying—A materials perspective [J]. Acta Mater., 2016, 116: 382
|
| [4] |
Li W Y, Zhang Z Z, Xu Y X, et al. Research progress of cold sprayed Ni and Ni-based composite coatings: A review [J]. Acta Metall. Sin., 2022, 58: 1
|
| [4] |
李文亚, 张正茂, 徐雅欣 等. 冷喷涂Ni及镍基复合涂层研究进展 [J]. 金属学报, 2022, 58: 1
|
| [5] |
Li C J, Wang H T, Zhang Q, et al. Influence of spray materials and their surface oxidation on the critical velocity in cold spraying [J]. J. Therm. Spray Technol., 2010, 19: 95
|
| [6] |
Wu J W, Fang H Y, Yoon S, et al. The rebound phenomenon in kinetic spraying deposition [J]. Scr. Mater., 2006, 54: 665
|
| [7] |
Li W Y, Liao H L, Li C J, et al. On high velocity impact of micro-sized metallic particles in cold spraying [J]. Appl. Surf. Sci., 2006, 253: 2852
|
| [8] |
Lienhard J, Crook C, Azar M Z, et al. Surface oxide and hydroxide effects on aluminum microparticle impact bonding [J]. Acta Mater., 2020, 197: 28
|
| [9] |
Hassani-Gangaraj M, Veysset D, Nelson K A, et al. Impact-bonding with aluminum, silver, and gold microparticles: Toward understanding the role of native oxide layer [J]. Appl. Surf. Sci., 2019, 476: 528
|
| [10] |
Ko K H, Choi J O, Lee H, et al. Influence of oxide chemistry of feedstock on cold sprayed Cu coatings [J]. Powder Technol., 2012, 218: 119
|
| [11] |
Hasani S, Panjepour M, Shamanian M. The oxidation mechanism of pure aluminum powder particles [J]. Oxid. Met., 2012, 78: 179
|
| [12] |
Alkhimov A P, Kosarev V F, Papyrin A N. A method of “cold” gas-dynamic deposition [J]. Soviet Phys. Doklady, 1990, 35: 1047
|
| [13] |
Li C J, Li W Y, Luo X T, et al. Advanced Solid-State Cold Spray Deposition Technology for Metals: Theory and Application. [M]. Beijing: Science Press, 2023: 2
|
| [13] |
李长久, 李文亚, 雒晓涛 等. 先进冷喷涂金属固态沉积技术: 理论与应用 [M]. 北京, 科学出版社, 2023: 2
|
| [14] |
Li W Y, Zhang D D, Huang C J, et al. State of the art of cold spraying additive manufacturing and remanufacturing [J]. Weld. Joining, 2016, (4): 2
|
| [14] |
李文亚, 张冬冬, 黄春杰 等. 冷喷涂技术在增材制造和修复再制造领域的应用研究现状 [J]. 焊接, 2016, (4): 2
|
| [15] |
Li W Y, Cao C C, Wang G Q, et al. ‘Cold spray +’ as a new hybrid additive manufacturing technology: A literature review [J]. Sci. Technol. Weld. Joining, 2019, 24: 420
|
| [16] |
Gilmore D L, Dykhuizen R C, Neiser R A, et al. Particle velocity and deposition efficiency in the cold spray process [J]. J. Therm. Spray Technol., 1999, 8: 576
|
| [17] |
Dykhuizen R C, Smith M F, Gilmore D L, et al. Impact of high velocity cold spray particles [J]. J. Therm. Spray Technol., 1999, 8: 559
|
| [18] |
Van Steenkiste T H, Smith J R, Teets R E, et al. Kinetic spray coatings [J]. Surf. Coat. Technol., 1999, 111: 62
|
| [19] |
Van Steenkiste T H, Smith J R, Teets R E. Aluminum coatings via kinetic spray with relatively large powder particles [J]. Surf. Coat. Technol., 2002, 154: 237
|
| [20] |
Li C J, Li W Y, Liao H L. Examination of the critical velocity for deposition of particles in cold spraying [J]. J. Therm. Spray Technol., 2006, 15: 212
|
| [21] |
Li W Y. Study on the effect of particle parameters on deposition behavior, microstructure evolution and properties in cold spraying [D]. Xian: Xi'an Jiaotong University, 2005
|
| [21] |
李文亚. 粒子参量对冷喷涂层沉积行为、组织演变与性能影响的研究 [D]. 西安: 西安交通大学, 2005
|
| [22] |
Tao Q Y, Ding W W, Chen G, et al. Towards an atomic-scale understanding of oxide film in the Ti powder surface [J]. Scr. Mater., 2022, 210: 114471
|
| [23] |
Luo X T, Ge Y, Xie Y C, et al. Dynamic evolution of oxide scale on the surfaces of feed stock particles from cracking and segmenting to peel-off while cold spraying copper powder having a high oxygen content [J]. J. Mater. Sci. Technol., 2021, 67: 105
|
| [24] |
Vaquila I, Vergara L I, Passeggi M C G, et al. Chemical reactions at surfaces: Titanium oxidation [J]. Surf. Coat. Technol., 1999, 122: 67
|
| [25] |
Xia Y, Zhao J L, Tian Q H, et al. Review of the effect of oxygen on titanium and deoxygenation technologies for recycling of titanium metal [J]. JOM, 2019, 71: 3209
|
| [26] |
Yu M, Li W Y, Guo X P, et al. Impacting behavior of large oxidized copper particles in cold spraying [J]. J. Therm. Spray Technol., 2013, 22: 433
|
| [27] |
Li W Y, Li C J, Liao H L. Significant influence of particle surface oxidation on deposition efficiency, interface microstructure and adhesive strength of cold-sprayed copper coatings [J]. Appl. Surf. Sci., 2010, 256: 4953
|
| [28] |
Chen C Y, Xie Y C, Huang R Z, et al. On the role of oxide film's cleaning effect into the metallurgical bonding during cold spray [J]. Mater. Lett., 2018, 210: 199
|
| [29] |
Bu H Y, Lu C. Review of critical velocity in cold spraying and its factors [J]. Mater. Protec., 2011, 44(4): 46
|
| [29] |
卜恒勇, 卢 晨. 冷喷涂临界速度及其影响因素 [J]. 材料保护, 2011, 44(4): 46
|
| [30] |
Kang K, Yoon S, Ji Y, et al. Oxidation dependency of critical velocity for aluminum feedstock deposition in kinetic spraying process [J]. Mater. Sci. Eng., 2008, A486: 300
|
| [31] |
Li W Y, Zhang C, Wang H T, et al. Significant influences of metal reactivity and oxide films at particle surfaces on coating microstructure in cold spraying [J]. Appl. Surf. Sci., 2007, 253: 3557
|
| [32] |
Navabi A, Vandadi M, Bond T, et al. Deformation and cracking phenomena in cold sprayed 6061 Al alloy powders with nanoscale aluminum oxide films [J]. Mater. Sci. Eng., 2022, A841: 143036
|
| [33] |
Rahmati S, Veiga R G A, Zúñiga A, et al. A numerical approach to study the oxide layer effect on adhesion in cold spray [J]. J. Therm. Spray Technol., 2021, 30: 1777
|
| [34] |
Tiamiyu A A, Schuh C A. Particle flattening during cold spray: Mechanistic regimes revealed by single particle impact tests [J]. Surf. Coat. Technol., 2020, 403: 126386
|
| [35] |
Tang Q, Veysset D, Assadi H, et al. Strength gradient in impact-induced metallic bonding [J]. Nat. Commun., 2024, 15: 9630
|
| [36] |
Zhang Z M, Li W Y, Yang J W, et al. Effect of powder oxidation on microstructures and mechanical properties of cold-sprayed nickel coatings and improvement by post-spray heat treatment [J]. J. Therm. Spray Technol., 2024, 33: 1968
|
| [37] |
Li Y J, Luo X T, Li C J. Improving deposition efficiency and inter-particle bonding of cold sprayed Cu through removing the surficial oxide scale of the feedstock powder [J]. Surf. Coat. Technol., 2021, 407: 126709
|
| [38] |
Li W Y, Yang J W, Zhang Z M, et al. High ductility induced by twin-assisted grain rotation and merging in solid-state cold spray additive manufactured Cu [J]. J. Mater. Sci. Technol., 2025, 214: 11
|
| [39] |
Chen C Y, Xie Y C, Yin S, et al. Ductile and high strength Cu fabricated by solid-state cold spray additive manufacturing [J]. J. Mater. Sci. Technol., 2023, 134: 234
|
| [40] |
Huang C J, Chen T, Fu B L, et al. Ductility and fracture behavior of cold spray additive manufactured zinc [J]. Addit. Manuf., 2024, 89: 104310
|
| [41] |
Singh R, Kondás J, Bauer C, et al. Bulk-like ductility of cold spray additively manufactured copper in the as-sprayed state [J]. Addit. Manuf. Lett., 2022, 3: 100052
|
| [42] |
List A, Huang C, Wiehler L, et al. Influence of ductility on fracture in tensile testing of cold gas sprayed deposits [J]. J. Therm. Spray Technol., 2023, 32: 1780
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|