Please wait a minute...
金属学报  2026, Vol. 62 Issue (1): 17-28    DOI: 10.11900/0412.1961.2025.00087
  综述 本期目录 | 过刊浏览 |
影响冷喷涂粒子沉积的关键因素:粉末表面氧化综述
李文亚1(), 杨景文1, 雒晓涛2, 殷硕3, 徐雅欣1
1 西北工业大学 材料学院 凝固技术全国重点实验室 陕西省摩擦焊接工程技术重点实验室 西安 710072
2 西安交通大学 材料科学与工程学院 西安 710049
3 School of Mechanical Manufacturing and Biomedical Engineering, Trinity University Dublin, D02PN40, Ireland
Key Factors Affecting Cold Spray Particle Deposition: A Review of Powder Surface Oxidation
LI Wenya1(), YANG Jingwen1, LUO Xiaotao2, YIN Shuo3, XU Yaxin1
1 Shaanxi Provincial Key Laboratory of Friction Welding Engineering Technology, State Key Laboratory of Solidification Technology, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
2 School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
3 School of Mechanical Manufacturing and Biomedical Engineering, Trinity University Dublin, D02PN40, Ireland
引用本文:

李文亚, 杨景文, 雒晓涛, 殷硕, 徐雅欣. 影响冷喷涂粒子沉积的关键因素:粉末表面氧化综述[J]. 金属学报, 2026, 62(1): 17-28.
Wenya LI, Jingwen YANG, Xiaotao LUO, Shuo YIN, Yaxin XU. Key Factors Affecting Cold Spray Particle Deposition: A Review of Powder Surface Oxidation[J]. Acta Metall Sin, 2026, 62(1): 17-28.

全文: PDF(4599 KB)   HTML
摘要: 

冷喷涂技术因具有低温固态沉积特性,在高性能金属或金属基复合涂层制备、修复及增材制造领域已有重要应用。然而,原始喷涂粉末的表面氧化状态对冷喷涂粒子沉积过程及所制备涂层或沉积体的微观组织、界面结合质量和力学性能具有重要影响。一般来说,粒子表面氧化膜的存在增加了粉末的临界沉积速率,降低了粒子塑性变形能力,并在界面处形成未结合区或脆性夹杂,从而显著影响粉末的沉积效率和沉积体的力学性能。然而,在特定条件下,粉末表面的氧化膜经过碰撞作用而破碎,不连续的氧化膜均匀分布在涂层中,通过弥散强化能够提高涂层的硬度。本文主要综述了粉末表面氧化膜在喷涂沉积过程中的破碎行为及其对涂层微观组织和性能的影响,重点探讨了氧化膜对界面结合、涂层组织及性能的影响机制。此外,本文还提出了高强塑性沉积体对粉末低O含量的严格要求,为优化冷喷涂材料性能提供理论指导。最后,对粉末表面氧化膜在冷喷涂增材制造中的影响及未来研究方向进行了展望。

关键词 冷喷涂冷喷涂增材制造氧化膜O含量粒子变形界面结合    
Abstract

Cold spraying (CS), recognized for its solid-state deposition characteristics, holds significant potential for the fabrication of high-performance coatings, the repair of damaged components, and the additive manufacturing of metals and metal matrix composites. However, oxide films present on the surfaces of powder particles exert a profound impact on particle deformation during CS, as well as on the interfacial microstructure, bonding quality, and mechanical properties of the resulting coatings or deposits. The presence of oxide films increases the critical deposition velocity, reduces the plastic deformation capacity of particles, and promotes the formation of unbonded regions or brittle inclusions at interfaces, thereby compromising deposition efficiency and mechanical integrity. Nevertheless, under specific conditions, the oxide film on the powder surface can be fractured by particle collisions, and the resulting discontinuous oxide film may become evenly distributed, potentially contributing to the dispersion strengthening and enhancing the hardness of the coating. This study presents a comprehensive review of the deformation behavior of oxide films during the CS process and their influence on coating microstructure and properties, with particular focus on the mechanism where how oxide film influences interfacial bonding, coating microstructure and performance. Furthermore, the study discusses the importance of minimizing oxygen content in feedstock powders to achieve high-strength and high-ductility deposits, providing theoretical guidance for optimizing coating performance. Finally, the role of oxide films in CS-based additive manufacturing is explored, and prospective research directions are outlined.

Key wordscold spraying    cold spray additive manufacturing    oxide film    oxygen content    particle deformation    interfacial bonding
收稿日期: 2025-03-27     
ZTFLH:  TG147  
基金资助:国家自然科学基金项目(52061135101);陕西省重点科技创新团队项目(2024RS-CXTD-20)
通讯作者: 李文亚,liwy@nwpu.edu.cn,主要从事冷喷涂与摩擦焊接工艺基础及应用研究
作者简介: 李文亚,男,1976年生,教授,博士
图1  冷喷涂技术原理示意图[13]
图2  冷喷涂粒子表面氧化膜破碎-结合过程示意图[27]
图3  不同粉末的临界沉积速率与粉末O含量的关系[5]
图4  利用人工氧化的铜粉冷喷涂制备铜涂层截面组织腐蚀前后的OM像[26]
图5  不同O含量镍粉末冷喷涂制备涂层截面形貌的OM像[36]
图6  不同O含量镍粉末冷喷涂制备涂层截面形貌的EBSD表征[36]
图7  不同O含量的镍粉冷喷涂制备涂层的硬度[36]
图8  储存态与酸洗后铜粉冷喷涂制备沉积体的拉伸力学性能[37]
图9  不同O含量铜粉冷喷涂制备沉积体的导电性[23]
图10  不同O含量铜粉沉积效率及不同粉末沉积效率下涂层截面组织形貌[23]
图11  冷喷涂增材制造铜沉积体的拉伸力学性能[39]
[1] Li W Y, Cao C C, Yin S. Solid-state cold spraying of Ti and its alloys: A literature review [J]. Prog. Mater. Sci., 2020, 110: 100633
[2] Yin S, Cavaliere P, Aldwell B, et al. Cold spray additive manufacturing and repair: Fundamentals and applications [J]. Addit. Manuf., 2018, 21: 628
[3] Assadi H, Kreye H, Gärtner F, et al. Cold spraying—A materials perspective [J]. Acta Mater., 2016, 116: 382
[4] Li W Y, Zhang Z Z, Xu Y X, et al. Research progress of cold sprayed Ni and Ni-based composite coatings: A review [J]. Acta Metall. Sin., 2022, 58: 1
[4] 李文亚, 张正茂, 徐雅欣 等. 冷喷涂Ni及镍基复合涂层研究进展 [J]. 金属学报, 2022, 58: 1
[5] Li C J, Wang H T, Zhang Q, et al. Influence of spray materials and their surface oxidation on the critical velocity in cold spraying [J]. J. Therm. Spray Technol., 2010, 19: 95
[6] Wu J W, Fang H Y, Yoon S, et al. The rebound phenomenon in kinetic spraying deposition [J]. Scr. Mater., 2006, 54: 665
[7] Li W Y, Liao H L, Li C J, et al. On high velocity impact of micro-sized metallic particles in cold spraying [J]. Appl. Surf. Sci., 2006, 253: 2852
[8] Lienhard J, Crook C, Azar M Z, et al. Surface oxide and hydroxide effects on aluminum microparticle impact bonding [J]. Acta Mater., 2020, 197: 28
[9] Hassani-Gangaraj M, Veysset D, Nelson K A, et al. Impact-bonding with aluminum, silver, and gold microparticles: Toward understanding the role of native oxide layer [J]. Appl. Surf. Sci., 2019, 476: 528
[10] Ko K H, Choi J O, Lee H, et al. Influence of oxide chemistry of feedstock on cold sprayed Cu coatings [J]. Powder Technol., 2012, 218: 119
[11] Hasani S, Panjepour M, Shamanian M. The oxidation mechanism of pure aluminum powder particles [J]. Oxid. Met., 2012, 78: 179
[12] Alkhimov A P, Kosarev V F, Papyrin A N. A method of “cold” gas-dynamic deposition [J]. Soviet Phys. Doklady, 1990, 35: 1047
[13] Li C J, Li W Y, Luo X T, et al. Advanced Solid-State Cold Spray Deposition Technology for Metals: Theory and Application. [M]. Beijing: Science Press, 2023: 2
[13] 李长久, 李文亚, 雒晓涛 等. 先进冷喷涂金属固态沉积技术: 理论与应用 [M]. 北京, 科学出版社, 2023: 2
[14] Li W Y, Zhang D D, Huang C J, et al. State of the art of cold spraying additive manufacturing and remanufacturing [J]. Weld. Joining, 2016, (4): 2
[14] 李文亚, 张冬冬, 黄春杰 等. 冷喷涂技术在增材制造和修复再制造领域的应用研究现状 [J]. 焊接, 2016, (4): 2
[15] Li W Y, Cao C C, Wang G Q, et al. ‘Cold spray +’ as a new hybrid additive manufacturing technology: A literature review [J]. Sci. Technol. Weld. Joining, 2019, 24: 420
[16] Gilmore D L, Dykhuizen R C, Neiser R A, et al. Particle velocity and deposition efficiency in the cold spray process [J]. J. Therm. Spray Technol., 1999, 8: 576
[17] Dykhuizen R C, Smith M F, Gilmore D L, et al. Impact of high velocity cold spray particles [J]. J. Therm. Spray Technol., 1999, 8: 559
[18] Van Steenkiste T H, Smith J R, Teets R E, et al. Kinetic spray coatings [J]. Surf. Coat. Technol., 1999, 111: 62
[19] Van Steenkiste T H, Smith J R, Teets R E. Aluminum coatings via kinetic spray with relatively large powder particles [J]. Surf. Coat. Technol., 2002, 154: 237
[20] Li C J, Li W Y, Liao H L. Examination of the critical velocity for deposition of particles in cold spraying [J]. J. Therm. Spray Technol., 2006, 15: 212
[21] Li W Y. Study on the effect of particle parameters on deposition behavior, microstructure evolution and properties in cold spraying [D]. Xian: Xi'an Jiaotong University, 2005
[21] 李文亚. 粒子参量对冷喷涂层沉积行为、组织演变与性能影响的研究 [D]. 西安: 西安交通大学, 2005
[22] Tao Q Y, Ding W W, Chen G, et al. Towards an atomic-scale understanding of oxide film in the Ti powder surface [J]. Scr. Mater., 2022, 210: 114471
[23] Luo X T, Ge Y, Xie Y C, et al. Dynamic evolution of oxide scale on the surfaces of feed stock particles from cracking and segmenting to peel-off while cold spraying copper powder having a high oxygen content [J]. J. Mater. Sci. Technol., 2021, 67: 105
[24] Vaquila I, Vergara L I, Passeggi M C G, et al. Chemical reactions at surfaces: Titanium oxidation [J]. Surf. Coat. Technol., 1999, 122: 67
[25] Xia Y, Zhao J L, Tian Q H, et al. Review of the effect of oxygen on titanium and deoxygenation technologies for recycling of titanium metal [J]. JOM, 2019, 71: 3209
[26] Yu M, Li W Y, Guo X P, et al. Impacting behavior of large oxidized copper particles in cold spraying [J]. J. Therm. Spray Technol., 2013, 22: 433
[27] Li W Y, Li C J, Liao H L. Significant influence of particle surface oxidation on deposition efficiency, interface microstructure and adhesive strength of cold-sprayed copper coatings [J]. Appl. Surf. Sci., 2010, 256: 4953
[28] Chen C Y, Xie Y C, Huang R Z, et al. On the role of oxide film's cleaning effect into the metallurgical bonding during cold spray [J]. Mater. Lett., 2018, 210: 199
[29] Bu H Y, Lu C. Review of critical velocity in cold spraying and its factors [J]. Mater. Protec., 2011, 44(4): 46
[29] 卜恒勇, 卢 晨. 冷喷涂临界速度及其影响因素 [J]. 材料保护, 2011, 44(4): 46
[30] Kang K, Yoon S, Ji Y, et al. Oxidation dependency of critical velocity for aluminum feedstock deposition in kinetic spraying process [J]. Mater. Sci. Eng., 2008, A486: 300
[31] Li W Y, Zhang C, Wang H T, et al. Significant influences of metal reactivity and oxide films at particle surfaces on coating microstructure in cold spraying [J]. Appl. Surf. Sci., 2007, 253: 3557
[32] Navabi A, Vandadi M, Bond T, et al. Deformation and cracking phenomena in cold sprayed 6061 Al alloy powders with nanoscale aluminum oxide films [J]. Mater. Sci. Eng., 2022, A841: 143036
[33] Rahmati S, Veiga R G A, Zúñiga A, et al. A numerical approach to study the oxide layer effect on adhesion in cold spray [J]. J. Therm. Spray Technol., 2021, 30: 1777
[34] Tiamiyu A A, Schuh C A. Particle flattening during cold spray: Mechanistic regimes revealed by single particle impact tests [J]. Surf. Coat. Technol., 2020, 403: 126386
[35] Tang Q, Veysset D, Assadi H, et al. Strength gradient in impact-induced metallic bonding [J]. Nat. Commun., 2024, 15: 9630
[36] Zhang Z M, Li W Y, Yang J W, et al. Effect of powder oxidation on microstructures and mechanical properties of cold-sprayed nickel coatings and improvement by post-spray heat treatment [J]. J. Therm. Spray Technol., 2024, 33: 1968
[37] Li Y J, Luo X T, Li C J. Improving deposition efficiency and inter-particle bonding of cold sprayed Cu through removing the surficial oxide scale of the feedstock powder [J]. Surf. Coat. Technol., 2021, 407: 126709
[38] Li W Y, Yang J W, Zhang Z M, et al. High ductility induced by twin-assisted grain rotation and merging in solid-state cold spray additive manufactured Cu [J]. J. Mater. Sci. Technol., 2025, 214: 11
[39] Chen C Y, Xie Y C, Yin S, et al. Ductile and high strength Cu fabricated by solid-state cold spray additive manufacturing [J]. J. Mater. Sci. Technol., 2023, 134: 234
[40] Huang C J, Chen T, Fu B L, et al. Ductility and fracture behavior of cold spray additive manufactured zinc [J]. Addit. Manuf., 2024, 89: 104310
[41] Singh R, Kondás J, Bauer C, et al. Bulk-like ductility of cold spray additively manufactured copper in the as-sprayed state [J]. Addit. Manuf. Lett., 2022, 3: 100052
[42] List A, Huang C, Wiehler L, et al. Influence of ductility on fracture in tensile testing of cold gas sprayed deposits [J]. J. Therm. Spray Technol., 2023, 32: 1780
[1] 付海阳, 张家榕, 李尧志, 王旗涛, 李新乐, 严伟, 单以银, 李艳芬. 聚变用低活化9Cr-ODS钢在高温高压水中的腐蚀行为及机理[J]. 金属学报, 2025, 61(9): 1305-1319.
[2] 张晓晨, 李静, 李长记, 熊良银, 刘实. Zr ODS FeCrAl合金在550Pb-Bi熔液中的腐蚀行为[J]. 金属学报, 2025, 61(9): 1320-1334.
[3] 周志春, 刘仁慈, 张建达, 杨超, 崔玉友, 杨锐. γ-TiAl合金在700 ℃空气中的长时高温氧化行为和组织演变[J]. 金属学报, 2025, 61(8): 1217-1228.
[4] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[5] 李丹, 宫得伦, 郝玉琳. O含量对Ti2448合金时效析出行为及力学性能的影响[J]. 金属学报, 2025, 61(12): 1790-1802.
[6] 刘瑞良, 刘泉利, 李富霖. 冷喷涂后处理技术及其研究进展[J]. 金属学报, 2025, 61(10): 1449-1468.
[7] 孟泽, 李光强, 李腾飞, 郑庆, 曾斌, 刘昱. Ce75Cr1钢洁净度、组织与耐点蚀性能的影响[J]. 金属学报, 2024, 60(9): 1229-1238.
[8] 吕云蕾, 任延杰, 冯抗抗, 周梦妮, 王文, 陈荐, 牛焱. 四元Co-Ni-Cr-Al合金高温氧化模式及其转变机理[J]. 金属学报, 2024, 60(7): 947-956.
[9] 潘霞, 张洋鹏, 董志宏, 陈胜虎, 姜海昌, 戎利建. 预氧化处理对12Cr铁素体/马氏体钢耐Pb-Bi腐蚀性能的影响[J]. 金属学报, 2024, 60(5): 639-649.
[10] 彭祥阳, 张乐, 李聪聪, 侯硕, 刘迪, 周建明, 路广遥, 蒋虽合. AlCr协同作用提高核用高强钢耐水蒸气氧化性能[J]. 金属学报, 2024, 60(3): 357-366.
[11] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[12] 熊天英, 王吉强. 中国科学院金属研究所冷喷涂技术研究进展[J]. 金属学报, 2023, 59(4): 537-546.
[13] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[14] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[15] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.