Please wait a minute...
金属学报  2025, Vol. 61 Issue (8): 1267-1275    DOI: 10.11900/0412.1961.2023.00449
  研究论文 本期目录 | 过刊浏览 |
双非晶相铁基复合涂层的腐蚀与磨损行为
臧勃林1, 杨延格2(), 曹京宜1, 徐锋锋3, 姚海华3(), 周正3
1.中国人民解放军92228部队 北京 100072
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3.北京工业大学 材料与制造学部 北京 100124
Corrosion and Wear Behaviors of Fe-Based Composite Coating with Dual Amorphous Phases
ZANG Bolin1, YANG Yange2(), CAO Jingyi1, XU Fengfeng3, YAO Haihua3(), ZHOU Zheng3
1.Unit 92228, People's Liberation Army, Beijing 100072, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
引用本文:

臧勃林, 杨延格, 曹京宜, 徐锋锋, 姚海华, 周正. 双非晶相铁基复合涂层的腐蚀与磨损行为[J]. 金属学报, 2025, 61(8): 1267-1275.
Bolin ZANG, Yange YANG, Jingyi CAO, Fengfeng XU, Haihua YAO, Zheng ZHOU. Corrosion and Wear Behaviors of Fe-Based Composite Coating with Dual Amorphous Phases[J]. Acta Metall Sin, 2025, 61(8): 1267-1275.

全文: PDF(3167 KB)   HTML
摘要: 

为提高铁基非晶涂层的综合性能,本工作设计并制备了双非晶相铁基复合涂层(FH),并与Fe48Cr15Mo14C15B6Y2 (FM)和Fe59Cr12Nb5B20Si4 (FN) 2种单一非晶相涂层的腐蚀与磨损行为进行对比研究。结果表明,FH涂层具有较高的非晶化程度和致密度,2种非晶相变形粒子分布均匀,无明显元素互扩散。在3.5%NaCl溶液中,FH涂层表现出与2种单一非晶相涂层相似的钝化行为,且具有更低的腐蚀电流密度和更高的极化电阻,耐腐蚀性能有所提高。在干摩擦磨损条件下,FH涂层的摩擦系数升高,磨损率接近耐磨性较好的FN非晶涂层,磨损机制主要为疲劳磨损。

关键词 铁基非晶涂层复合涂层双非晶相腐蚀摩擦磨损    
Abstract

Fe-based amorphous composite coatings have attracted great attention because their specific properties can be enhanced by introducing other metallic or ceramic particles. This work introduces a novel approach, distinct from traditional methods, by designing a composite coating with dual amorphous phases. The composite coating (named FH) was fabricated using high-velocity oxygen-fuel spraying of a blended amorphous powder. This powder comprised well-established Fe48Cr15Mo14C15B6Y2 (named FM) and Fe59Cr12Nb5B20Si4 (named FN) amorphous powders. This study focuses on investigating the corrosion and wear behaviors of the FH coating in comparison with those of monolithic amorphous coatings. The findings reveal that the FH coating possesses a high amorphous content and a compact structure. It features a uniform distribution of two types of amorphous splats, with no evident element diffusion. In 3.5%NaCl solution, the FH coating exhibits passivation behavior, similar to the two monolithic amorphous coatings, and yields a lower corrosion current and higher polarization resistance, indicating enhanced its corrosion resistance. This improved corrosion resistance of the FH coating is attributed to a harmonious balance between beneficial alloy elements and its compact structure, addressing the limitations of monolithic amorphous coatings. Furthermore, the FH coating displays a high friction coefficient under dry friction conditions and maintains a low wear rate, comparable to those of the FN coating. The wear mechanisms of the three amorphous coatings under dry friction primarily involve fatigue wear, supplemented by minor abrasive and oxidative wear. Compared to the monolithic amorphous coating, the FH coating shows enhanced interfacial bonding of splats and a balanced combination of strengthening and toughening, which effectively inhibit crack propagation caused by fatigue wear, thereby endowing the coating with superior wear resistance. Therefore, the composite coating with dual amorphous phases achieves a balance in cost efficiency, corrosion resistance, and wear resistance.

Key wordsFe-based amorphous coating    composite coating    dual amorphous phase    corrosion    friction and wear
收稿日期: 2023-11-13     
ZTFLH:  TG174  
基金资助:国家自然科学基金项目(52371043);国家自然科学基金项目(51771005);国家自然科学基金项目(52171060)
通讯作者: 杨延格,ygyang@imr.ac.cn,主要从事海洋腐蚀与防护研究;
姚海华,yaohaihua@bjut.edu.cn,主要从事亚稳态金属材料研究
Corresponding author: YANG Yange, professor, Tel: (024)23881473, E-mail: ygyang@imr.ac.cn;
YAO Haihua, Tel: (010)67392168, E-mail: yaohaihua@bjut.edu.cn
作者简介: 臧勃林,男,1985年生,硕士
图1  铁基非晶涂层的XRD谱
图2  铁基非晶涂层典型截面的背散射电子(BSE)像及EDS分析结果
图3  铁基非晶涂层微区TEM明场像及选区电子衍射(SAED)花样
图4  铁基非晶涂层在3.5%NaCl溶液中的动电位极化曲线
Specimen

Ecorr

mVSCE

icorr

μA·cm-2

ipass

μA·cm-2

Epit

mVSCE

FN-3333.727631030
FM-1971.34272940
FH-1831.242641010
表1  根据动电位极化曲线得到的腐蚀参数
图5  铁基非晶涂层在3.5%NaCl溶液中的Nyquist图、Bode图和等效电路

Specimen

Rs

Ω·cm2

CPE-f

Rf

Ω·cm2

CPE-dl

Rt

Ω·cm2

Y0

Ω-1·cm-2·s n

n

Y0

Ω-1·cm-2·s n

n
FN22.602.08 × 10-30.8147368.80 × 10-40.531410
FM21.132.17 × 10-30.96146208.16 × 10-40.611706
FH23.551.55 × 10-30.99163905.56 × 10-40.603163
表2  铁基非晶涂层的电化学阻抗参数
图6  铁基非晶涂层摩擦系数监测曲线
图7  铁基非晶涂层磨痕形貌及测量结果
图8  铁基非晶涂层的显微硬度及磨损率
图9  铁基非晶涂层磨痕表面形貌
RegionFeCrMoNbSiYO
A68.617.8-10.43.2--
B37.910.2-5.65.1-41.2
C53.116.626.5--3.8-
D33.310.618.1--0.837.2
E52.116.428.1--3.4-
F68.619.2-9.52.7--
G36.210.69.52.73.11.536.4
表3  图9中标记区域的EDS结果 (mass fraction / %)
[1] Si J J, Mei J N, Wang R S, et al. Fe-B-Si-Zr bulk metallic glasses with ultrahigh compressive strength and excellent soft magnetic properties [J]. Mater. Lett., 2016, 181: 282
[2] Li J F, Liu X, Zhao S F, et al. Fe-based bulk amorphous alloys with iron contents as high as 82 at% [J]. J. Magn. Magn. Mater., 2015, 386: 107
[3] Zhang W B, Li Q, Duan H M. Study of the effects of metalloid elements (P, C, B) on Fe-based amorphous alloys by ab initio molecular dynamics simulations [J]. J. Appl. Phys., 2015, 117: 104901
[4] Li H X, Lu Z C, Wang S L, et al. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications [J]. Prog. Mater. Sci., 2019, 103: 235
[5] Lin C Y, Tien H Y, Chin T S. Soft magnetic ternary iron-boron-based bulk metallic glasses [J]. Appl. Phys. Lett., 2005, 86: 162501
[6] Dmowski W, Fan C, Morrison M L, et al. Structural changes in bulk metallic glass after annealing below the glass-transition temperature [J]. Mater. Sci. Eng., 2007, A471: 125
[7] Zhang S D, Wu J, Qi W B, et al. Effect of porosity defects on the long-term corrosion behaviour of Fe-based amorphous alloy coated mild steel [J]. Corros. Sci., 2016, 110: 57
[8] Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys [J]. Acta Mater., 2011, 59: 2243
[9] Suryanarayana C, Inoue A. Iron-based bulk metallic glasses [J]. Int. Mater. Rev., 2013, 58: 131
[10] Zhou Z, Wang L, Wang F C, et al. Formation and corrosion behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying [J]. Surf. Coat. Technol., 2009, 204: 563
[11] Zhou Z, Han F X, Yao H H, et al. Novel Fe-based amorphous composite coating with a unique interfacial layer improving thermal barrier application [J]. ACS Appl. Mater. Interfaces, 2021, 13: 23057
[12] Segu D Z, Choi J H, Yi S, et al. Dry sliding tribological properties of Fe-based bulk metallic glass [J]. Tribol. Lett., 2012, 47: 131
[13] Yao H H, Wang L, Zhou Z, et al. Thermal transport property correlated with microstructural evolution of Fe-based amorphous alloy [J]. Acta Mater., 2020, 200: 793
[14] Ye X Y, Shin Y C. Synthesis and characterization of Fe-based amorphous composite by laser direct deposition [J]. Surf. Coat. Technol., 2014, 239: 34
[15] Xu F F, Yao H H, Tang K Z, et al. Degeneration of thermal insulation property for Fe-based amorphous coating during long-term heat exposure [J]. J. Non-Cryst. Solids, 2023, 606: 122203
[16] Terajima T, Takeuchi F, Nakata K, et al. Composite coating containing WC/12Co cermet and Fe-based metallic glass deposited by high-velocity oxygen fuel spraying [J]. J. Alloys Compd., 2010, 504: S288
[17] Yasir M, Zhang C, Wang W, et al. Enhancement of impact resistance of Fe-based amorphous coating by Al2O3 dispersion [J]. Mater. Lett., 2016, 171: 112
[18] Zhou H, Zhang C, Wang W, et al. Microstructure and mechanical properties of Fe-based amorphous composite coatings reinforced by stainless steel powders [J]. J. Mater. Sci. Technol., 2014, 31: 43
[19] Yoon S, Kim J, Kim B D, et al. Tribological behavior of B4C reinforced Fe-base bulk metallic glass composite coating [J]. Surf. Coat. Technol., 2010, 205: 1962
[20] Yugeswaran S, Kobayashi A, Suresh K, et al. Characterization of gas tunnel type plasma sprayed TiN reinforced Fe-based metallic glass coatings [J]. J. Alloys Compd., 2013, 551: 168
[21] Cui C, Hou W A. Properties of Fe-based amorphous alloy coatings with Al2O3-13% TiO2 deposited by plasma spraying [J]. Rare Met. Mater. Eng., 2014, 43: 2576
[22] Wang S L, Cheng J C, Yi S H, et al. Corrosion resistance of Fe-based amorphous metallic matrix coating fabricated by HVOF thermal spraying [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 146
[23] Xu P, Zhang C, Wang W, et al. Pitting mechanism in a stainless steel-reinforced Fe-based amorphous coating [J]. Electrochim. Acta, 2016, 206: 61
[24] Zhou Z, Wang L, Wang F C, et al. Microstructure and properties of Fe-based amorphous alloy coatings [J]. Trans. Beijing Inst. Technol., 2008, 28: 817
[24] 周 正, 王 鲁, 王富耻 等. Fe基非晶合金涂层的微结构与性能研究 [J]. 北京理工大学学报自然版, 2008, 28: 817
[25] Pang S J, Zhang T, Asami K, et al. Bulk glassy Fe-Cr-Mo-C-B alloys with high corrosion resistance [J]. Corros. Sci., 2002, 44: 1847
[26] Huang F, Kang J J, Yue W, et al. Corrosion behavior of FeCrMoCBY amorphous coating fabricated by high-velocity air fuel spraying [J]. J. Therm. Spray Technol., 2019, 28: 842
[27] Zhang H, Hu Y, Hou G L, et al. The effect of high-velocity oxy-fuel spraying parameters on microstructure, corrosion and wear resistance of Fe-based metallic glass coatings [J]. J. Non-Cryst. Solids, 2014, 406: 37
[28] Yao H H, Zhou Z, Xue Y F, et al. Microstructure and thermal conductivity of wire-arc sprayed FeCrNbBSiC amorphous coating [J]. J. Alloys Compd., 2019, 788: 514
[29] Liang X B, Chen Y X, Cheng J B, et al. Arc Spray Substable Composite Coating Technology [M]. Beijing: Science Press, 2014: 57
[29] 梁秀兵, 陈永雄, 程江波 等. 电弧喷涂亚稳态复合涂层技术 [M]. 北京: 科学出版社, 2014: 57
[30] Zeng Z, Kuroda S, Era H. Comparison of oxidation behavior of Ni-20Cr alloy and Ni-base self-fluxing alloy during air plasma spraying [J]. Surf. Coat. Technol., 2009, 204: 69
[31] Farmer J C, Turchi P E A, Perepezko J H. Iron-based amorphous metals—An important family of high-performance corrosion-resistant materials [J]. Metall. Mater. Trans., 2009, 40A: 1288
[32] Guo R Q, Zhang C, Chen Q, et al. Study of structure and corrosion resistance of Fe-based amorphous coatings prepared by HVAF and HVOF [J]. Corros. Sci., 2011, 53: 2351
[33] Guo R Q, Zhang C, Yang Y, et al. Corrosion and wear resistance of a Fe-based amorphous coating in underground environment [J]. Intermetallics, 2012, 30: 94
[1] 李雪, 喻政, 解志文, 王金龙, 陈明辉, 王福会. 耐热钢及搪瓷涂层在600 ℃高温CO2 气氛中的腐蚀行为[J]. 金属学报, 2025, 61(8): 1245-1255.
[2] 张国涛, 马镇, 李其龙, 李聪敏, 马涛, 马少波, 尹延国. 20CrMnTi齿轮钢表面FeS涂层的干摩擦性能[J]. 金属学报, 2025, 61(8): 1256-1266.
[3] 龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工改性Mg-5Zn合金的显微组织与耐腐蚀性能[J]. 金属学报, 2025, 61(7): 1071-1081.
[4] 谷少杰, 刘洋, 李彩霞, 胡上茂, 杜艳霞. 阴极保护条件对高压直流干扰下X80钢腐蚀行为的影响规律及作用机制[J]. 金属学报, 2025, 61(6): 917-928.
[5] 周一鸣, 韩勇军, 谢光, 郑伟, 肖炎彬, 潘阳, 张健. 一种镍基高温合金的高温HCl腐蚀行为[J]. 金属学报, 2025, 61(5): 770-782.
[6] 蔡正清, 尹大伟, 杨靓, 王文祥, 王飞龙, 温永清, 马明臻. Ag替换CuZr-Ti-Cu-Al非晶合金性能的影响[J]. 金属学报, 2025, 61(4): 572-582.
[7] 杨康, 辛越, 姜自滔, 刘侠, 薛召露, 张世宏. 纳米ZrB2 增强CoNiCrAlY复合粉末的机械合金化制备及其涂层的组织与性能[J]. 金属学报, 2025, 61(4): 619-631.
[8] 付辉, 孙勇, 邹国栋, 张帆, 杨许生, 张涛, 彭秋明. 高性能超高压镁合金研究进展[J]. 金属学报, 2025, 61(3): 475-487.
[9] 庞梦瑶, 巫瑞智, 马晓春, 靳思远, 于哲, Boris Krit. 热轧加工工艺对快速降解Mg-Li合金力学性能及腐蚀行为的影响[J]. 金属学报, 2025, 61(3): 509-520.
[10] 吴炀, 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb奥氏体不锈钢中NbC的液态Pb-Bi共晶腐蚀行为及其对氧化层形成的影响[J]. 金属学报, 2025, 61(2): 287-296.
[11] 顾天真, 刘雨薇, 彭灿, 张鹏, 王振尧, 汪川, 马成, 曹宏玮. Zn-2.0Al-1.5Mg镀层在模拟海洋大气中的腐蚀行为[J]. 金属学报, 2025, 61(2): 278-286.
[12] 闫茂鑫, 李杰, 王哲超, 姚旭, 胡秉晨, 葛峰, 崔中雨, 王昕, 崔洪芝. 南极大气环境下Q460Q690 低合金钢的腐蚀行为[J]. 金属学报, 2025, 61(2): 297-308.
[13] 宋昱杉, 刘叡, 崔宇, 刘莉, 王福会. 静水压力和拉伸应力交互作用下Ni-Cr-Mo-V钢在3.5%NaCl溶液中的应力腐蚀行为[J]. 金属学报, 2025, 61(2): 309-322.
[14] 高瞻, 张泽荣, 程军胜, 王秋良. Nb3Sn超导线材中Ta层的去除及腐蚀机理[J]. 金属学报, 2024, 60(7): 968-976.
[15] 谢云, Zhang Jianqiang, 彭晓. Ni-Cr合金在富CO2 气氛中的高温腐蚀研究进展[J]. 金属学报, 2024, 60(6): 731-742.