Please wait a minute...
金属学报  2025, Vol. 61 Issue (8): 1256-1266    DOI: 10.11900/0412.1961.2023.00333
  研究论文 本期目录 | 过刊浏览 |
20CrMnTi齿轮钢表面FeS涂层的干摩擦性能
张国涛1,2(), 马镇1,2, 李其龙3, 李聪敏3, 马涛3, 马少波3, 尹延国4
1.安徽工业大学 机械工程学院 马鞍山 243032
2.安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室 马鞍山 243002
3.合肥波林新材料股份有限公司 合肥 230009
4.合肥工业大学 摩擦学研究所 合肥 230009
Dry Friction Performance of FeS Coating on the Surface of 20CrMnTi Gear Steel
ZHANG Guotao1,2(), MA Zhen1,2, LI Qilong3, LI Congmin3, MA Tao3, MA Shaobo3, YIN Yanguo4
1.School of Mechanical Engineering, Anhui University of Technology, Ma'anshan 243032, China
2.Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Ma'anshan 243002, China
3.Hefei Bolin Advanced Materials Co. Ltd., Hefei 230009, China
4.Institute of Tribology, Hefei University of Technology, Hefei 230009, China
引用本文:

张国涛, 马镇, 李其龙, 李聪敏, 马涛, 马少波, 尹延国. 20CrMnTi齿轮钢表面FeS涂层的干摩擦性能[J]. 金属学报, 2025, 61(8): 1256-1266.
Guotao ZHANG, Zhen MA, Qilong LI, Congmin LI, Tao MA, Shaobo MA, Yanguo YIN. Dry Friction Performance of FeS Coating on the Surface of 20CrMnTi Gear Steel[J]. Acta Metall Sin, 2025, 61(8): 1256-1266.

全文: PDF(4336 KB)   HTML
摘要: 

为改善齿轮表面摩擦学性能,本工作在20CrMnTi齿轮钢表面化学沉积具有良好润滑特性的FeS涂层。通过SEM、EDS、XRD、白光干涉仪、Raman光谱等手段对磨痕形貌和成分进行系统分析,考察了干摩擦条件下FeS涂层的摩擦学性能。结果表明,制备的FeS涂层纯度较好,涂层表面由大量微米片聚集而成,涂层厚度为5.4 μm左右。摩擦实验表明,相对齿轮钢基体,含FeS涂层试样的磨损程度较低、摩擦系数减小。随着载荷增加,FeS涂层的摩擦系数和磨损量呈降低趋势。随着转速增加,FeS涂层的摩擦系数变化不大但磨损量增加。微观分析表明,较高的载荷有利于润滑膜的铺展,而较高的转速会加重材料的氧化磨损和黏着磨损。在摩擦过程中,润滑膜向摩擦对偶件转移,在对偶件表面形成的转移膜能阻碍摩擦副微凸峰之间直接接触。涂层完全磨损后,转移膜仍能保持摩擦副间长效润滑性能,减少材料的磨损。

关键词 干摩擦FeS摩擦磨损转移膜    
Abstract

Gear transmission is a prevalent method in mechanical transmission; however, its effectiveness is often compromised by excessive wear on the meshing surfaces, primarily attributed to inadequate lubrication. This wear substantially hampers the overall service life of gears. In this study, a chemically deposited FeS coating, boasting favorable lubricating characteristics, was applied to 20CrMnTi gear steel to enhance the tribological performance of gear surfaces. The wear morphology and composition of the FeS coatings were analyzed using SEM, EDS, XRD, white light interferometry, and Raman spectroscopy. The tribological properties of the FeS coatings under dry friction conditions were examined. The FeS coating, with a thickness of about 5.4 μm, exhibited commendable purity, featuring an abundance of aggregated micron-sized sheets on its surface. Results revealed that the FeS-coated samples demonstrated reduced wear levels and friction coefficients compared with the gear steel substrate. Furthermore, the friction coefficient and wear volume of the FeS coating exhibited a noticeable decrease with increasing applied load. Although the friction coefficient of the FeS coating remained relatively stable with increasing rotational speed, wear volume increased. Microscopic analysis revealed that higher loads facilitated the spreading of the lubricating film, whereas elevated rotational speeds intensified oxidative and adhesive wear of the material. Throughout the experiment, the lubricating film transferred to the counterpart surface, forming a transfer film that impeded direct contact between the microasperities of the frictional pair. Even after the coating layer was fully worn, the transfer film can still maintain the long-lasting lubricating performance between the friction pairs and reduce the material wear.

Key wordsdry friction    FeS    friction and wear    transfer film
收稿日期: 2023-08-10     
ZTFLH:  TH117  
基金资助:国家自然科学基金项目(52005005);国家自然科学基金项目(51575151);先进金属材料绿色制备与表面技术教育部重点实验室开放基金项目(GFST2020KF08)
通讯作者: 张国涛,ahutt@ahut.edu.cn,主要从事自润滑材料、机械表面技术与润滑理论研究
Corresponding author: ZHANG Guotao, Tel: 15375283582, E-mail: ahutt@ahut.edu.cn
作者简介: 张国涛,男,1986年生,博士,副教授
图1  摩擦实验示意图
图2  改性前后试样(分别记为0#和1#试样)的宏观形貌
图3  0#和1#试样表面的SEM像和EDS分析
图4  1#试样表面XRD谱
图5  1#试样截面的SEM像和元素分布图
图6  0#、1#试样在不同工况下的摩擦系数曲线及其平均摩擦系数
图7  部分试样磨痕的三维形貌及表面轮廓曲线
Working condition

Wear scar width

mm

Wear scar depth

μm

A2.2922
B2.1219
C2.0518
D1.7310
E1.7613
F1.9216
G3.5045
表1  不同工况的磨痕宽度和磨痕深度
图8  转速为200 r/min、载荷分别为20和40 N时1#试样磨痕的SEM像及EDS元素分布
Load / NCFeOS
2011.2767.5916.550.60
308.0475.5512.160.29
408.2480.797.470.38
506.0284.156.290.45
表2  转速为200 r/min、不同载荷条件下1#试样磨损面部分元素含量 (mass fraction / %)
图9  载荷50 N、不同转速条件下1#和0#试样的磨痕形貌及EDS元素分布

Rotation

speed

r·min-1

C

Fe

O

S

2006.0284.156.290.45
3006.8280.438.720.20
4009.0974.1112.530.40
表3  不同转速条件1#试样磨损面部分元素含量 (mass fraction / %)
图10  对偶件表面SEM像以及EDS元素分布图
图11  对偶件表面Raman光谱
[1] Kong W D, Zhang D K, Tao Q, et al. Wear properties of the deep gradient wear-resistant layer applied to 20CrMnTi gear steel [J]. Wear, 2019, 424-425: 216
[2] Shang T R, Wang W L, Kang J B, et al. Precipitation behavior of TiN in solidification of 20CrMnTi under continuous casting conditions [J]. J. Mater. Res. Technol., 2023, 24: 3608
[3] Tang E, Yuan Q, Zhang R, et al. On the grain coarsening behavior of 20CrMnTi gear steel during pseudo carburizing: A comparison of Nb-Ti-Mo versus Ti-Mo microalloyed steel [J]. Mater. Charact., 2023, 203: 113138
[4] Xu J L, Li X X, Lu J, et al. An investigation into mechanics and tribology of SnAgCu and MoO3 containing in 20CrMnTi based composites [J]. J. Alloys Compd., 2020, 831: 154858
[5] Lv Y, Lei L Q, Sun L N, et al. Improvement of the wear resistance of 20CrMnTi steel gear by discrete laser surface melting [J]. Opt. Laser Technol., 2023, 165: 109598
[6] Zang L B, Chen Y, Hou W J, et al. Effect of manganese phosphate conversion coating with different crystal sizes on fatigue life of 20MnCrS5 steel helical gears [J]. Tribol. Int., 2023, 186: 108622
[7] Usca Ü A, Uzun M, Şap S, et al. Determination of machinability metrics of AISI 5140 steel for gear manufacturing using different cooling/lubrication conditions [J]. J. Mater. Res. Technol., 2022, 21: 893
[8] Zhang S N, Sun Z L, Guo F Y. Investigation on wear and contact fatigue of involute modified gears under minimum quantity lubrication [J]. Wear, 2021, 484-485: 204043
[9] Gunji T, Umehashi Y, Tsunoi H, et al. Preparation of chemical-resistant atomically ordered Sn-Ni alloy films by electroless plating [J]. J. Alloys Compd., 2021, 877: 160100
[10] Miao J, Gong H Y, Jiang T L, et al. Effects of polymer composited lubricant coating on tribological properties of low-carbon steel surface [J]. China Surf. Eng., 2019, 32(1): 152
[10] 缪 军, 龚红英, 姜天亮 等. 高分子复合润滑涂层对低碳钢表面摩擦学性能的影响 [J]. 中国表面工程, 2019, 32(1): 152
[11] Zhang G T, Ma Z, Li C M, et al. Friction-induced construction of FeS-based lubricating coating and its tribological mechanism on 18CrNiMo7-6 steel [J]. Tribol. Int., 2023, 184: 108458
[12] Liu C, Yin Y G, Li C M, et al. Preparation and properties of lead-free copper matrix composites by electroless plating and mechanical alloying [J]. Wear, 2022, 488-489: 204164
[13] Yong Q S, Ma G Z, Wang H D, et al. Development and application status of low-temperature ion sulfurizing technology [J]. Mater. Rep., 2016, 30(17): 115
[13] 雍青松, 马国政, 王海斗 等. 低温离子渗硫技术的发展历程和研究应用现状 [J]. 材料导报, 2016, 30(17): 115
[14] Liu Y, Zhang H X, Zhu Y Z. A study on friction and wear behavior of low temperature electrolytic sulphurizing surface of 0.45C Steel [J]. Spec. Steel, 2013, 34(2): 35
[14] 刘 瑶, 张红霞, 朱远志. 45钢低温电解渗硫表面摩擦性能的研究 [J]. 特殊钢, 2013, 34(2): 35
[15] Zhao Y C, He R S, Zhang B, et al. Research progress of lon implantation composite surface modification technology [J/OL]. Surf. Technol., 2023, 53(5): 18
[15] 赵燕春, 何瑞芳, 张 斌 等. 离子注渗复合表面改性技术研究进展 [J/OL]. 表面技术, 2023, 53(5): 18
[16] Wang Z, Han B. Research status and prospects of accelerating technology on low-temperature ion sulfurizing [J]. Mater. Prot., 2016, 49(8): 52
[16] 王 志, 韩 彬. 低温离子渗硫催渗技术研究现状及展望 [J]. 材料保护, 2016, 49(8): 52
[17] An J C, Zhang Y, Wang Z Y, et al. Sulphonitrocarburizing process of G20CrNi2MoA carburizing bearing steel [J]. Heat Treat. Met., 2018, 43(8): 184
[17] 安俊超, 张 毅, 王智勇 等. 渗碳轴承钢G20CrNi2MoA的硫氮碳共渗工艺 [J]. 金属热处理, 2018, 43(8): 184
[18] Zhang G T, Yan Y G. Surface sulfurization modification and tribological properties of iron-based oil bearing materials [J]. Chin. J. Nonferrous Met., 2020, 30: 348
[18] 张国涛, 尹延国. 铁基含油轴承材料表面硫化改性及摩擦学性能 [J]. 中国有色金属学报, 2020, 30: 348
[19] Duan J F, Li L K, Tong Y G, et al. Core-shell structured h-BN@Ni reinforced CoCrNi-based self-lubricating composites [J]. Surf. Coat. Technol., 2022, 448: 128939
[20] Zheng Z Z, Jin H, Wang F, et al. Comparison of tribological performance between ion sulfurized layer and liquid sulfurized layer of W6Mo5Cr4V2 steel [J]. Heat Treat. Met., 2023: 48(1): 245
doi: 10.13251/j.issn.0254-6051.2023.01.042
[20] 郑昭卓, 金 虹, 王 凡 等. W6Mo5Cr4V2钢离子渗硫层与液体渗硫层的摩擦磨损性能对比 [J]. 金属热处理, 2023, 48(1): 245
doi: 10.13251/j.issn.0254-6051.2023.01.042
[21] Li R R, Yin Y G, Zhang K Y, et al. Friction and wear properties of FeS/Cu composite materials fabricated by mechanical alloying [J]. China Mech. Eng., 2020, 31: 2024
[21] 李蓉蓉, 尹延国, 张开源 等. 机械合金化FeS/Cu复合材料的摩擦磨损性能 [J]. 中国机械工程, 2020, 31: 2024
doi: 10.3969/j.issn.1004-132X.2020.17.002
[22] Deng W, Zhao X Q, Li S J, et al. Preparation and tribological properties of Al2O3/MoS2 composite coating [J]. China Surf. Eng., 2017, 30(5): 110
[22] 邓 雯, 赵晓琴, 李双建 等. Al2O3/MoS2 复合涂层的制备及摩擦磨损性能 [J]. 中国表面工程, 2017, 30(5): 110
[23] Cai S, Guo P, Zuo X, et al. Effect of load on tribological behavior of MoS2/C composite films [J]. Tribology, 2018, 38: 51
[23] 蔡 胜, 郭 鹏, 左 潇 等. 载荷对MoS2/C复合薄膜摩擦学行为的影响 [J]. 摩擦学学报, 2018, 38: 51
[24] Chang J, Cheng A H. Preparation and Cr(VI) adsorption properties of FeS/chitosan-based carbon aerogel composites [J]. Chem. Ind. Eng. Prog., 2023, 42: 6042
[24] 常 娟, 程爱华. FeS/壳聚糖基碳气凝胶复合材料的制备及对Cr(VI)的吸附 [J]. 化工进展, 2023, 42: 6042
[25] Fu J H, Deng C Z, Zeng L Q, et al. Adsorption mechanism of ferrous sulfide on As(III) and its remediation of as contaminated soil [J]. Chin. J. Nonferrous Met., 2023, 33: 2998
[25] 付君浩, 邓朝政, 曾礼强 等. 硫化亚铁对As(Ⅲ)的吸附机理及其对As污染土壤的修复 [J]. 中国有色金属学报, 2023, 33: 2998
[1] 臧勃林, 杨延格, 曹京宜, 徐锋锋, 姚海华, 周正. 双非晶相铁基复合涂层的腐蚀与磨损行为[J]. 金属学报, 2025, 61(8): 1267-1275.
[2] 杨康, 辛越, 姜自滔, 刘侠, 薛召露, 张世宏. 纳米ZrB2 增强CoNiCrAlY复合粉末的机械合金化制备及其涂层的组织与性能[J]. 金属学报, 2025, 61(4): 619-631.
[3] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[4] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[5] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[6] 赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
[7] 赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
[8] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
[9] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[10] 喻利花, 董鸿志, 许俊华. C含量对TiWCN复合膜微结构、力学性能和摩擦磨损性能的影响[J]. 金属学报, 2014, 50(11): 1350-1356.
[11] 王振生,张孟恩,杨双双,郭建亭,周兰章,陈志钢. NiAl-2.5Ta-7.5Cr-1B合金的微观组织、力学性能与摩擦磨损特性[J]. 金属学报, 2013, 49(11): 1325-1332.
[12] 魏祥飞,张平则,魏东博,陈小虎,王琼,王若男. γ-TiAl合金表面Cr-W共渗合金层的摩擦磨损性能研究[J]. 金属学报, 2013, 49(11): 1406-1410.
[13] 许俊华 鞠洪博 喻利花. Mo含量对TiMoN薄膜微观组织和摩擦磨损性能的影响[J]. 金属学报, 2012, 48(9): 1132-1138.
[14] 许俊华, 曹峻, 喻利花. TiVCN复合膜的微结构、力学性能与摩擦磨损性能研究[J]. 金属学报, 2012, 48(5): 555-560.
[15] 喻利花, 马冰洋, 许俊华. C含量对ZrCN薄膜结构和力学性能的影响[J]. 金属学报, 2012, 48(4): 469-474.