|
|
横向弱磁场对镍基高温合金发散双晶竞争生长行为的影响 |
谢信亮1, 周丽萍1, 余建波2( ), 玄伟东2, 陈超越2, 王江2, 任忠鸣2( ) |
1.南京工业大学 先进轻质高性能材料研究中心 南京 211816 2.上海大学 材料科学与工程学院 省部共建高品质特殊钢国家重点实验室 上海 200444 |
|
Effect of Weak Transverse Magnetic Field on the Competitive Grain Growth of Ni-Based Superalloy with Divergent Bi-Crystals |
XIE Xinliang1, ZHOU Liping1, YU Jianbo2( ), XUAN Weidong2, CHEN Chaoyue2, WANG Jiang2, REN Zhongming2( ) |
1.Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 211816, China 2.State Key laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China |
引用本文:
谢信亮, 周丽萍, 余建波, 玄伟东, 陈超越, 王江, 任忠鸣. 横向弱磁场对镍基高温合金发散双晶竞争生长行为的影响[J]. 金属学报, 2025, 61(8): 1203-1216.
Xinliang XIE,
Liping ZHOU,
Jianbo YU,
Weidong XUAN,
Chaoyue CHEN,
Jiang WANG,
Zhongming REN.
Effect of Weak Transverse Magnetic Field on the Competitive Grain Growth of Ni-Based Superalloy with Divergent Bi-Crystals[J]. Acta Metall Sin, 2025, 61(8): 1203-1216.
[1] |
Wagner A, Shollock B A, McLean M. Grain structure development in directional solidification of nickel-base superalloys [J]. Mater. Sci. Eng., 2004, A374: 270
|
[2] |
D'souza N, Ardakani M G, Wagner A, et al. Morphological aspects of competitive grain growth during directional solidification of a nickel-base superalloy, CMSX4 [J]. J. Mater. Sci., 2002, 37: 481
|
[3] |
Yan X W, Guo X, Liu Y L, et al. Numerical simulation of dendrite growth in Ni-based superalloy casting during directional solidification process [J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 338
|
[4] |
Stanford N, Djakovic A, Shollock B A, et al. Seeding of single crystal superalloys—Role of seed melt-back on casting defects [J]. Scr. Mater., 2004, 50: 159
|
[5] |
Stanford N, Djakovic A, Shollock B, et al. Defect grains in the melt-back region of CMSX-4 single crystal seeds [A]. 10th International Symposium on Superalloys [C]. Warrendale: TMS, 2004, 719
|
[6] |
Su Z Q, Zhang C J, Yuan X T, et al. Formation and evolution of stray grains on remelted interface in the seed crystal during the directional solidification of single-crystal superalloys assisted by vertical static magnetic field [J]. Acta Metall. Sin., 2023, 59: 1568
doi: 10.11900/0412.1961.2022.00193
|
[6] |
苏震奇, 张丛江, 袁笑坦 等. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化 [J]. 金属学报, 2023, 59: 1568
doi: 10.11900/0412.1961.2022.00193
|
[7] |
Xu W L, Wang F, Ma D X, et al. Sliver defect formation in single crystal Ni-based superalloy castings [J]. Mater. Des., 2020, 196: 109138
|
[8] |
Hu S S, Yang W C, Li Z R, et al. Formation mechanisms and control method for stray grains at melt-back region of Ni-based single crystal seed [J]. Prog. Nat. Sci. Mater. Int., 2021, 31: 624
|
[9] |
Lei Z L, Lu N N, Yu X F. Epitaxy and new stray grain formation mechanism during epitaxial laser melting deposition of Inconel 718 on directionally solidified nickel-based superalloys [J]. J. Manuf. Processes, 2019, 42: 11
|
[10] |
Walton D, Chalmers B. The origin of the preferred orientation in the columnar zone of ingots [J]. Trans. Am. Inst. Min. Metall. Eng., 1959, 215: 447
|
[11] |
Rappaz M, Gandin C A, Desbiolles J L, et al. Prediction of grain structures in various solidification processes [J]. Metall. Mater. Trans., 1996, 27A: 695
|
[12] |
Gandin C A, Rappaz M. A 3D cellular automaton algorithm for the prediction of dendritic grain growth [J]. Acta Mater., 1997, 45: 2187
|
[13] |
Zhou Y Z, Volek A, Green N R. Mechanism of competitive grain growth in directional solidification of a nickel-base superalloy [J]. Acta Mater., 2008, 56: 2631
|
[14] |
Zhou Y Z, Jin T, Sun X F. Structure evolution in directionally solidified bicrystals of nickel base superalloys [J]. Acta Metall. Sin., 2010, 46: 1327
|
[14] |
周亦胄, 金 涛, 孙晓峰. 双晶镍基高温合金定向凝固过程的结构演化 [J]. 金属学报, 2010, 46: 1327
doi: 10.3724/SP.J.1037.2010.00280
|
[15] |
Yu H L, Lin X, Li J J, et al. Research on diverged bi-crystal competitive growth in directional solidification [J]. Acta Metall. Sin., 2013, 49: 58
doi: 10.3724/SP.J.1037.2012.00569
|
[15] |
宇红雷, 林 鑫, 李俊杰 等. 定向凝固发散双晶的竞争生长研究 [J]. 金属学报, 2013, 49: 58
doi: 10.3724/SP.J.1037.2012.00569
|
[16] |
Tourret D, Karma A. Growth competition of columnar dendritic grains: A phase-field study [J]. Acta Mater., 2015, 82: 64
|
[17] |
Meng X B, Lu Q, Zhang X L, et al. Mechanism of competitive growth during directional solidification of a nickel-base superalloy in a three-dimensional reference frame [J]. Acta Mater., 2012, 60: 3965
|
[18] |
Guo C W, Li J J, Yu H L, et al. Branching-induced grain boundary evolution during directional solidification of columnar dendritic grains [J]. Acta Mater., 2017, 136: 148
|
[19] |
Guo C W, Weng K R, Wang J C, et al. Competitive growth of diverging columnar grains during directional solidification: A three-dimensional phase-field study [J]. Comput. Mater. Sci., 2022, 210: 111061
|
[20] |
Zhang X L, Feng L, Yang Y H, et al. Influence of secondary orientation on competitive grain growth of nickel-based superalloys [J]. Acta Metall. Sin., 2020, 56: 969
doi: 10.11900/0412.1961.2019.00396
|
[20] |
张小丽, 冯 丽, 杨彦红 等. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响 [J]. 金属学报, 2020, 56: 969
doi: 10.11900/0412.1961.2019.00396
|
[21] |
Li J J, Wang Z J, Wang Y Q, et al. Phase-field study of competitive dendritic growth of converging grains during directional solidification [J]. Acta Mater., 2012, 60: 1478
|
[22] |
Takaki T, Ohno M, Shimokawabe T, et al. Two-dimensional phase-field simulations of dendrite competitive growth during the directional solidification of a binary alloy bicrystal [J]. Acta Mater., 2014, 81: 272
|
[23] |
Yu H L, Li J J, Lin X, et al. Anomalous overgrowth of converging dendrites during directional solidification [J]. J. Cryst. Growth, 2014, 402: 210
|
[24] |
Yang W C, Hu S S, Huo M, et al. Orientation controlling of Ni-based single-crystal superalloy by a novel method: Grain selection assisted by un-melted reused seed [J]. J. Mater. Res. Technol., 2019, 8: 1347
|
[25] |
Huo M, Liu L, Yang W C, et al. Dendrite growth and defects formation with increasing withdrawal rates in the rejoined platforms of Ni-based single crystal superalloys [J]. Vacuum, 2019, 161: 29
|
[26] |
Li X, Fautrelle Y, Ren Z M, et al. Effect of a high magnetic field on the morphological instability and irregularity of the interface of a binary alloy during directional solidification [J]. Acta Mater., 2009, 57: 1689
|
[27] |
Li X, Fautrelle Y, Gagnoud A, et al. Effect of a weak transverse magnetic field on solidification structure during directional solidification [J]. Acta Mater., 2014, 64: 367
|
[28] |
Wang J, Ren Z M, Fautrelle Y, et al. Modification of liquid/solid interface shape in directionally solidifying Al-Cu alloys by a transverse magnetic field [J]. J. Mater. Sci., 2013, 48: 213
|
[29] |
Xuan W D, Ren Z M, Li C J. Effect of a high magnetic field on microstructures of Ni-based superalloy during directional solidification [J]. J. Alloys Compd., 2015, 620: 10
|
[30] |
Li X, Gagnoud A, Ren Z M, et al. Investigation of thermoelectric magnetic convection and its effect on solidification structure during directional solidification under a low axial magnetic field [J]. Acta Mater., 2009, 57: 2180
|
[31] |
Liu X, Wang Y H, Zhang X X, et al. Influence of longitudinal static magnetic field on microstructure and microsegregation during directional solidification of DD98M alloy [J]. Acta Metall. Sin., 2024, 60: 1595
doi: 10.11900/0412.1961.2022.00623
|
[31] |
刘 翔, 王英豪, 张小新 等. 纵向静磁场对DD98M合金定向凝固微观组织与偏析的影响 [J]. 金属学报, 2024, 60: 1595
|
[32] |
Zhu R, Wang J J, Zhang Y H, et al. Flow and solidification microstructure in metal melts driven by a combined magnetic field [J]. Acta Metall. Sin., 2024, 60: 231
doi: 10.11900/0412.1961.2022.00032
|
[32] |
朱 锐, 王俊杰, 张云虎 等. 复合磁场对金属熔体流动及凝固组织影响研究 [J]. 金属学报, 2024, 60: 231
|
[33] |
Zhao Y, Su H J, Fan G R, et al. Tailoring microstructure and microsegregation in a directionally solidified Ni-based SX superalloy by a weak transverse static magnetic field [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1164
|
[34] |
Zhou Y Z, Sun X F. Effect of solidification rate on competitive grain growth in directional solidification of a nickel-base superalloy [J]. Sci. China Technol. Sci., 2012, 55: 1327
|
[35] |
Lehmann P, Moreau R, Camel D, et al. Modification of interdendritic convection in directional solidification by a uniform magnetic field [J]. Acta Mater., 1998, 46: 4067
|
[36] |
Li X, Ren Z M, Gagnoud A, et al. Effects of thermoelectric magnetic convection on the solidification structure during directional solidification under lower transverse magnetic field [J]. Metall. Mater. Trans., 2011, 42A: 3459
|
[37] |
Wang J, Fautrelle Y, Ren Z M, et al. Thermoelectric magnetic flows in melt during directional solidification [J]. Appl. Phys. Lett., 2014, 104: 121916
|
[38] |
Dong J W, Ren Z M, Ren W L, et al. Effect of horizontal magnetic field on the microstructure of directionally solidified Ni-based superalloy [J]. Acta Metall. Sin., 2010, 46: 71
|
[38] |
董建文, 任忠鸣, 任维丽 等. 横向磁场对镍基高温合金定向凝固组织的影响 [J]. 金属学报, 2010, 46: 71
|
[39] |
Tong X, Beckermann C, Karma A, et al. Phase-field simulations of dendritic crystal growth in a forced flow [J]. Phys. Rev., 2001, 63E: 061601
|
[40] |
Yuan X T, Zhou T, Ren W L, et al. Nondestructive effect of the cusp magnetic field on the dendritic microstructure during the directional solidification of nickel-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 62: 52
doi: 10.1016/j.jmst.2020.05.059
|
[41] |
Zhong H, Li C J, Ren Z M, et al. Effect of interdendritic thermoelectric magnetic convection on evolution of tertiary dendrite during directional solidification [J]. J. Cryst. Growth, 2016, 439: 66
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|