Please wait a minute...
金属学报  2025, Vol. 61 Issue (8): 1203-1216    DOI: 10.11900/0412.1961.2023.00438
  研究论文 本期目录 | 过刊浏览 |
横向弱磁场对镍基高温合金发散双晶竞争生长行为的影响
谢信亮1, 周丽萍1, 余建波2(), 玄伟东2, 陈超越2, 王江2, 任忠鸣2()
1.南京工业大学 先进轻质高性能材料研究中心 南京 211816
2.上海大学 材料科学与工程学院 省部共建高品质特殊钢国家重点实验室 上海 200444
Effect of Weak Transverse Magnetic Field on the Competitive Grain Growth of Ni-Based Superalloy with Divergent Bi-Crystals
XIE Xinliang1, ZHOU Liping1, YU Jianbo2(), XUAN Weidong2, CHEN Chaoyue2, WANG Jiang2, REN Zhongming2()
1.Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 211816, China
2.State Key laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
引用本文:

谢信亮, 周丽萍, 余建波, 玄伟东, 陈超越, 王江, 任忠鸣. 横向弱磁场对镍基高温合金发散双晶竞争生长行为的影响[J]. 金属学报, 2025, 61(8): 1203-1216.
Xinliang XIE, Liping ZHOU, Jianbo YU, Weidong XUAN, Chaoyue CHEN, Jiang WANG, Zhongming REN. Effect of Weak Transverse Magnetic Field on the Competitive Grain Growth of Ni-Based Superalloy with Divergent Bi-Crystals[J]. Acta Metall Sin, 2025, 61(8): 1203-1216.

全文: PDF(8038 KB)   HTML
摘要: 

静磁场作为外加物理场,可以有效调控材料成形过程,为调控镍基高温合金的凝固组织和晶体定向生长提供了新的思路。本工作研究了DD483镍基高温合金发散双晶在横向弱磁场下(0.1和0.7 T)的定向竞争生长规律和组织形貌演变特征。结果表明,未施加磁场时,发散双晶中择优取向晶粒(晶粒A)淘汰非择优取向晶粒(晶粒B),且晶粒淘汰速率与抽拉速率无关。磁场能显著影响发散双晶的竞争生长速率,且其受到双晶在磁场下的摆放方式和抽拉速率的影响。当发散双晶在磁场下按A-to-B方式摆放时,施加磁场抑制了晶粒A在晶界处的分枝,减缓了晶粒A的淘汰速率。当发散双晶按B-to-A方式摆放时,施加磁场进一步促进了晶粒A在晶界处的分枝,加速了晶粒A的淘汰速率。随着抽拉速率的提高,磁场对减缓或加速晶粒的竞争淘汰作用逐渐减弱。磁场在枝晶间产生的热电磁对流效应改变了发散双晶晶界处的溶质分布,从而影响枝晶在晶界处的侧枝生长,这是导致晶粒竞争生长行为发生变化的主要原因。随着抽拉速率的增加,磁场作用时间变短,热电磁对流对晶界处分枝作用的影响减弱。

关键词 镍基高温合金晶粒竞争生长横向磁场热电磁对流    
Abstract

Ni-based single-crystal superalloys have excellent high-temperature mechanical properties and creep properties, rendering them as preferred turbine blade materials in advanced aerospace and gas engines. Controlling competitive grain growth during directional solidification is of great substantial importance for achieving high-quality single-crystal blades. As an external physical field, a static magnetic field can be used to effectively control material forming. The use of static magnetic fields during directional solidification has evolved as an effective method for controlling microstructures and grain growth. However, the influence of static magnetic fields on competitive grain growth during the directional solidification of Ni-based superalloys requires further investigation. Therefore, this study explored the competitive growth behavior of divergent grains during the directional solidification of Ni-based superalloy using bi-crystal seeds at various withdrawal rates under a weak transverse magnetic field (0.1 and 0.7 T). Results showed that the favorably oriented grain (grain A) overgrew the unfavorably oriented grain (grain B) without the application of a magnetic field, and the overgrowth rate was independent of the withdrawal rate. The application of a magnetic field substantially changed the overgrowth rate of divergent bi-crystals, and the overgrowth rate was affected by the placed patterns of the divergent bi-crystals and the withdrawal rate. When the divergent bi-crystal seeds were placed under the magnetic field in an A-to-B pattern, with the favorably oriented grain A positioned on the left side and the unfavorably oriented grain B on the right side, the side branching of favorably oriented grain was suppressed at the grain boundary (GB), decreasing the overgrowth rate of divergent bi-crystals. However, when the divergent bi-crystal seeds were placed under the magnetic field in a B-to-A pattern, with the unfavorably oriented grain B on the left side and the favorably oriented grain A on the right side, branching from the favorably oriented grain at the GB was enhanced, increasing the overgrowth rate of divergent bi-crystals. With increasing the withdrawal rate, the effect of the magnetic field on slowing down or accelerating the grain overgrowth rate gradually diminished. In addition, a tilted interface and refined dendrites were observed under a transverse magnetic field, especially at a low withdrawal rate. The application of a magnetic field produces a thermomagnetic convective effect at the interdendrite that changes the solute distribution at the divergent bi-crystal GBs, thereby affecting the side branching behavior of dendrites at GBs. With increasing withdrawal rate, the effect of thermoelectric magnetic convection on dendrite side branching at GBs is weakened.

Key wordsNi-based superalloy    competitive grain growth    transverse magnetic field    thermoelectric magnetic convection
收稿日期: 2023-11-06     
ZTFLH:  TG132.3  
基金资助:国家重点研发计划项目(2019YFA0705300);国家重大科研仪器研制项目(52127807)
通讯作者: 余建波,jbyu@shu.edu.cn,主要从事高温合金制备研究;
任忠鸣,renzm2201@163.com,主要从事磁场下金属凝固研究
Corresponding author: YU Jianbo, professor, Tel: (021)56331102, E-mail: jbyu@shu.edu.cn;
作者简介: 谢信亮,男,1990年生,副教授,博士
图 1  发散双晶籽晶在横向磁场下的摆放方式示意图
图2  晶界偏离角(θGB)测定方法示意图及双晶籽晶纵截面平面图
图3  无磁场条件下在拉速为1和3 mm/min时发散双晶定向凝固试样不同高度的横截面组织
图4  拉速为0.5和3 mm/min时发散双晶起始凝固阶段的纵截面组织
图5  无磁场下发散双晶θGB随拉速的变化
图6  当磁场强度为0.1 T,发散双晶按A-to-B方式摆放时,不同拉速下发散双晶的纵截面和横截面组织
图7  当磁场强度为0.1 T,发散双晶按B-to-A方式摆放时,不同拉速下发散双晶纵截面和横截面组织
图8  磁场强度为0、0.1和0.7 T时发散双晶中θGB随拉速的变化
图9  当磁场强度为0.1 T、发散双晶按A-to-B方式摆放时,不同抽拉速率下的纵截面凝固组织
图10  当磁场强度为0.1 T、发散双晶按B-to-A方式摆放时,不同抽拉速率下的纵截面凝固组织
图11  当磁场强度为0.7 T、发散双晶按B-to-A方式摆放时,不同抽拉速率下的纵截面凝固组织
图12  磁场强度为0.7 T、发散双晶按B to A方式摆放时,不同抽拉速率下固-液界面处的横截面组织
图13  有/无磁场下一次枝晶间距随抽拉速率的变化
图14  有/无磁场下发散双晶竞争生长示意图
[1] Wagner A, Shollock B A, McLean M. Grain structure development in directional solidification of nickel-base superalloys [J]. Mater. Sci. Eng., 2004, A374: 270
[2] D'souza N, Ardakani M G, Wagner A, et al. Morphological aspects of competitive grain growth during directional solidification of a nickel-base superalloy, CMSX4 [J]. J. Mater. Sci., 2002, 37: 481
[3] Yan X W, Guo X, Liu Y L, et al. Numerical simulation of dendrite growth in Ni-based superalloy casting during directional solidification process [J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 338
[4] Stanford N, Djakovic A, Shollock B A, et al. Seeding of single crystal superalloys—Role of seed melt-back on casting defects [J]. Scr. Mater., 2004, 50: 159
[5] Stanford N, Djakovic A, Shollock B, et al. Defect grains in the melt-back region of CMSX-4 single crystal seeds [A]. 10th International Symposium on Superalloys [C]. Warrendale: TMS, 2004, 719
[6] Su Z Q, Zhang C J, Yuan X T, et al. Formation and evolution of stray grains on remelted interface in the seed crystal during the directional solidification of single-crystal superalloys assisted by vertical static magnetic field [J]. Acta Metall. Sin., 2023, 59: 1568
doi: 10.11900/0412.1961.2022.00193
[6] 苏震奇, 张丛江, 袁笑坦 等. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化 [J]. 金属学报, 2023, 59: 1568
doi: 10.11900/0412.1961.2022.00193
[7] Xu W L, Wang F, Ma D X, et al. Sliver defect formation in single crystal Ni-based superalloy castings [J]. Mater. Des., 2020, 196: 109138
[8] Hu S S, Yang W C, Li Z R, et al. Formation mechanisms and control method for stray grains at melt-back region of Ni-based single crystal seed [J]. Prog. Nat. Sci. Mater. Int., 2021, 31: 624
[9] Lei Z L, Lu N N, Yu X F. Epitaxy and new stray grain formation mechanism during epitaxial laser melting deposition of Inconel 718 on directionally solidified nickel-based superalloys [J]. J. Manuf. Processes, 2019, 42: 11
[10] Walton D, Chalmers B. The origin of the preferred orientation in the columnar zone of ingots [J]. Trans. Am. Inst. Min. Metall. Eng., 1959, 215: 447
[11] Rappaz M, Gandin C A, Desbiolles J L, et al. Prediction of grain structures in various solidification processes [J]. Metall. Mater. Trans., 1996, 27A: 695
[12] Gandin C A, Rappaz M. A 3D cellular automaton algorithm for the prediction of dendritic grain growth [J]. Acta Mater., 1997, 45: 2187
[13] Zhou Y Z, Volek A, Green N R. Mechanism of competitive grain growth in directional solidification of a nickel-base superalloy [J]. Acta Mater., 2008, 56: 2631
[14] Zhou Y Z, Jin T, Sun X F. Structure evolution in directionally solidified bicrystals of nickel base superalloys [J]. Acta Metall. Sin., 2010, 46: 1327
[14] 周亦胄, 金 涛, 孙晓峰. 双晶镍基高温合金定向凝固过程的结构演化 [J]. 金属学报, 2010, 46: 1327
doi: 10.3724/SP.J.1037.2010.00280
[15] Yu H L, Lin X, Li J J, et al. Research on diverged bi-crystal competitive growth in directional solidification [J]. Acta Metall. Sin., 2013, 49: 58
doi: 10.3724/SP.J.1037.2012.00569
[15] 宇红雷, 林 鑫, 李俊杰 等. 定向凝固发散双晶的竞争生长研究 [J]. 金属学报, 2013, 49: 58
doi: 10.3724/SP.J.1037.2012.00569
[16] Tourret D, Karma A. Growth competition of columnar dendritic grains: A phase-field study [J]. Acta Mater., 2015, 82: 64
[17] Meng X B, Lu Q, Zhang X L, et al. Mechanism of competitive growth during directional solidification of a nickel-base superalloy in a three-dimensional reference frame [J]. Acta Mater., 2012, 60: 3965
[18] Guo C W, Li J J, Yu H L, et al. Branching-induced grain boundary evolution during directional solidification of columnar dendritic grains [J]. Acta Mater., 2017, 136: 148
[19] Guo C W, Weng K R, Wang J C, et al. Competitive growth of diverging columnar grains during directional solidification: A three-dimensional phase-field study [J]. Comput. Mater. Sci., 2022, 210: 111061
[20] Zhang X L, Feng L, Yang Y H, et al. Influence of secondary orientation on competitive grain growth of nickel-based superalloys [J]. Acta Metall. Sin., 2020, 56: 969
doi: 10.11900/0412.1961.2019.00396
[20] 张小丽, 冯 丽, 杨彦红 等. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响 [J]. 金属学报, 2020, 56: 969
doi: 10.11900/0412.1961.2019.00396
[21] Li J J, Wang Z J, Wang Y Q, et al. Phase-field study of competitive dendritic growth of converging grains during directional solidification [J]. Acta Mater., 2012, 60: 1478
[22] Takaki T, Ohno M, Shimokawabe T, et al. Two-dimensional phase-field simulations of dendrite competitive growth during the directional solidification of a binary alloy bicrystal [J]. Acta Mater., 2014, 81: 272
[23] Yu H L, Li J J, Lin X, et al. Anomalous overgrowth of converging dendrites during directional solidification [J]. J. Cryst. Growth, 2014, 402: 210
[24] Yang W C, Hu S S, Huo M, et al. Orientation controlling of Ni-based single-crystal superalloy by a novel method: Grain selection assisted by un-melted reused seed [J]. J. Mater. Res. Technol., 2019, 8: 1347
[25] Huo M, Liu L, Yang W C, et al. Dendrite growth and defects formation with increasing withdrawal rates in the rejoined platforms of Ni-based single crystal superalloys [J]. Vacuum, 2019, 161: 29
[26] Li X, Fautrelle Y, Ren Z M, et al. Effect of a high magnetic field on the morphological instability and irregularity of the interface of a binary alloy during directional solidification [J]. Acta Mater., 2009, 57: 1689
[27] Li X, Fautrelle Y, Gagnoud A, et al. Effect of a weak transverse magnetic field on solidification structure during directional solidification [J]. Acta Mater., 2014, 64: 367
[28] Wang J, Ren Z M, Fautrelle Y, et al. Modification of liquid/solid interface shape in directionally solidifying Al-Cu alloys by a transverse magnetic field [J]. J. Mater. Sci., 2013, 48: 213
[29] Xuan W D, Ren Z M, Li C J. Effect of a high magnetic field on microstructures of Ni-based superalloy during directional solidification [J]. J. Alloys Compd., 2015, 620: 10
[30] Li X, Gagnoud A, Ren Z M, et al. Investigation of thermoelectric magnetic convection and its effect on solidification structure during directional solidification under a low axial magnetic field [J]. Acta Mater., 2009, 57: 2180
[31] Liu X, Wang Y H, Zhang X X, et al. Influence of longitudinal static magnetic field on microstructure and microsegregation during directional solidification of DD98M alloy [J]. Acta Metall. Sin., 2024, 60: 1595
doi: 10.11900/0412.1961.2022.00623
[31] 刘 翔, 王英豪, 张小新 等. 纵向静磁场对DD98M合金定向凝固微观组织与偏析的影响 [J]. 金属学报, 2024, 60: 1595
[32] Zhu R, Wang J J, Zhang Y H, et al. Flow and solidification microstructure in metal melts driven by a combined magnetic field [J]. Acta Metall. Sin., 2024, 60: 231
doi: 10.11900/0412.1961.2022.00032
[32] 朱 锐, 王俊杰, 张云虎 等. 复合磁场对金属熔体流动及凝固组织影响研究 [J]. 金属学报, 2024, 60: 231
[33] Zhao Y, Su H J, Fan G R, et al. Tailoring microstructure and microsegregation in a directionally solidified Ni-based SX superalloy by a weak transverse static magnetic field [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1164
[34] Zhou Y Z, Sun X F. Effect of solidification rate on competitive grain growth in directional solidification of a nickel-base superalloy [J]. Sci. China Technol. Sci., 2012, 55: 1327
[35] Lehmann P, Moreau R, Camel D, et al. Modification of interdendritic convection in directional solidification by a uniform magnetic field [J]. Acta Mater., 1998, 46: 4067
[36] Li X, Ren Z M, Gagnoud A, et al. Effects of thermoelectric magnetic convection on the solidification structure during directional solidification under lower transverse magnetic field [J]. Metall. Mater. Trans., 2011, 42A: 3459
[37] Wang J, Fautrelle Y, Ren Z M, et al. Thermoelectric magnetic flows in melt during directional solidification [J]. Appl. Phys. Lett., 2014, 104: 121916
[38] Dong J W, Ren Z M, Ren W L, et al. Effect of horizontal magnetic field on the microstructure of directionally solidified Ni-based superalloy [J]. Acta Metall. Sin., 2010, 46: 71
[38] 董建文, 任忠鸣, 任维丽 等. 横向磁场对镍基高温合金定向凝固组织的影响 [J]. 金属学报, 2010, 46: 71
[39] Tong X, Beckermann C, Karma A, et al. Phase-field simulations of dendritic crystal growth in a forced flow [J]. Phys. Rev., 2001, 63E: 061601
[40] Yuan X T, Zhou T, Ren W L, et al. Nondestructive effect of the cusp magnetic field on the dendritic microstructure during the directional solidification of nickel-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 62: 52
doi: 10.1016/j.jmst.2020.05.059
[41] Zhong H, Li C J, Ren Z M, et al. Effect of interdendritic thermoelectric magnetic convection on evolution of tertiary dendrite during directional solidification [J]. J. Cryst. Growth, 2016, 439: 66
[1] 周一鸣, 韩勇军, 谢光, 郑伟, 肖炎彬, 潘阳, 张健. 一种镍基高温合金的高温HCl腐蚀行为[J]. 金属学报, 2025, 61(5): 770-782.
[2] 周生玉, 胡明昊, 李冲, 丁海民, 郭乾应, 刘永长. 一种 γ'/γ'' 相强化镍基高温合金的蠕变行为[J]. 金属学报, 2025, 61(2): 226-234.
[3] 曹姝婷, 赵剑, 巩桐兆, 张少华, 张健. Cu含量对K4061合金显微组织和拉伸性能的影响[J]. 金属学报, 2024, 60(9): 1179-1188.
[4] 王京京, 姚志浩, 张鹏, 赵杰, 张迈, 王蕾, 董建新, 陈迎. 镍基高温合金中S元素对基体与热障涂层界面稳定性的影响[J]. 金属学报, 2024, 60(9): 1250-1264.
[5] 凡莉花, 李金临, 孙九栋, 吕梦甜, 王清, 董闯. Cr/Mo/W元素对镍基高温合金γ/γ′共格组织热稳定性的影响[J]. 金属学报, 2024, 60(4): 453-463.
[6] 刘翔, 王英豪, 张小新, 陈超越, 孟杰, 余建波, 王江, 任忠鸣. 纵向静磁场对DD98M合金定向凝固微观组织与偏析的影响[J]. 金属学报, 2024, 60(12): 1595-1606.
[7] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
[8] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[9] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[10] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[11] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[12] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[13] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[14] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[15] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.