Please wait a minute...
金属学报  2025, Vol. 61 Issue (6): 826-836    DOI: 10.11900/0412.1961.2023.00188
  研究论文 本期目录 | 过刊浏览 |
FGH4720Li粉末高温合金在近服役条件下的组织与力学性能演变规律
李大禹1, 姚志浩1(), 赵杰1, 董建新1, 郭婧2, 赵宇2
1 北京科技大学 材料科学与工程学院 北京 100083
2 中国航发湖南动力机械研究所 株洲 412002
Evolution of Microstructure and Mechanical Properties of FGH4720Li P/M Superalloy Under Near-Service Conditions
LI Dayu1, YAO Zhihao1(), ZHAO Jie1, DONG Jianxin1, GUO Jing2, ZHAO Yu2
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 AECC Hunan Powerplant Research Institute, Zhuzhou 412002, China
引用本文:

李大禹, 姚志浩, 赵杰, 董建新, 郭婧, 赵宇. FGH4720Li粉末高温合金在近服役条件下的组织与力学性能演变规律[J]. 金属学报, 2025, 61(6): 826-836.
Dayu LI, Zhihao YAO, Jie ZHAO, Jianxin DONG, Jing GUO, Yu ZHAO. Evolution of Microstructure and Mechanical Properties of FGH4720Li P/M Superalloy Under Near-Service Conditions[J]. Acta Metall Sin, 2025, 61(6): 826-836.

全文: PDF(4431 KB)   HTML
摘要: 

高温合金服役过程中的热力耦合状态可使组织发生退化,进而影响其力学性能。对FGH4720Li粉末高温合金在近服役状态下的组织与性能演变规律进行研究,可为同类合金用于涡轮盘的制造提供参考。本工作对FGH4720Li粉末高温合金在500 MPa、600和650 ℃下进行500、1000和2000 h持久实验,研究其在持久实验过程中的组织演变规律及在650 ℃持久实验后合金屈服强度的变化规律。结果表明,FGH4720Li粉末高温合金在650 ℃持久实验后屈服强度维持在约1120 MPa,合金中二次γ'相的形貌由椭球状逐渐变为花瓣状最后演变为带圆角的立方状,三次γ'相出现聚合粗化现象。采用高γ'相含量且强化相多模态分布的沉淀强化预测模型计算了持久实验后合金的屈服强度,进一步证明了三次γ'相含量和尺寸的变化是引起合金屈服强度变化的主要原因。

关键词 粉末高温合金持久实验组织演变屈服强度    
Abstract

The FGH4720Li superalloy is produced by GH4720Li through the powder metallurgy (P/M) process, a method that effectively addresses the shortcomings of the original alloy production process, such as significant segregation, low alloying levels, and manufacturing difficulties. The P/M method also results in a finer and more uniform microstructure. However, during the service life of superalloys, the thermodynamic conditions can degrade the microstructure, potentially affecting their mechanical properties. There is currently limited research on how the microstructure and properties of FGH4720Li P/M superalloy evolve under near-service conditions. Therefore, it is essential to investigate this evolution to provide valuable insights for the manufacture of turbine disks. In this study, the microstructure evolution of FGH4720Li P/M superalloy and the variations in its yield strength have been examined after subjecting it to stress rupture for 500, 1000, and 2000 h at 600 and 650 oC under a stress level of 500 MPa. The results show that the yield strength of FGH4720Li P/M superalloy remains relatively high, at 1120 MPa, after stress rupture at 650 oC. Furthermore, the microstructure of FGH4720Li P/M superalloy undergoes a complex transformation during stress rupture. The secondary γ' phase's morphology gradually changes from an ellipsoidal shape to a flowerlike shape and ultimately to a cubic shape with rounded corners. The coarsening in the polymerization growth of tertiary γ' phases is also observed. To understand the changes in yield strength after stress rupture, a precipitation strengthening prediction model specifically designed for high γ' phase content and a multi-mode distribution of γ' phases was utilized. This calculation confirmed that the alteration in the content and size of the tertiary γ' phase is the primary factor responsible for the yield strength changes in the alloy.

Key wordsP/M superalloy    stress rupture test    microstructure evolution    yield strength
收稿日期: 2023-04-25     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金项目(52271087);国家科技重大专项项目(J2017-VI-0017-089)
通讯作者: 姚志浩,zhihaoyao@ustb.edu.cn,主要从事高温合金的研究
Corresponding author: YAO Zhihao, professor, Tel: (010)62332884, E-mail: zhihaoyao@ustb.edu.cn
作者简介: 李大禹,男,1998年生,硕士
图1  热处理后FGH4720Li合金微观组织的SEM像
图2  FGH4720Li合金经不同条件持久实验后的EBSD像
图3  不同条件持久实验后FGH4720Li合金的晶粒尺寸演变
图4  FGH4720Li合金经不同条件持久实验后二次γ'相的SEM像及粒径分布
图5  FGH4720Li合金经不同条件持久实验后二次γ'相的高倍SEM像
图6  FGH4720Li合金经不同条件持久实验后三次γ'相形貌的SEM像
图7  持久实验过程中FGH4720Li合金晶粒及γ'相形貌演变示意图
图8  FGH4720Li合金经不同条件持久实验后位错形态的TEM明场像
图9  FGH4720Li合金经650 ℃时效和持久实验不同时间后的拉伸性能
Experimental condition

fs

%

rs

nm

ft

%

rt

nm

650 oC, 500 h33.2104.93.1212.4
650 oC, 1000 h34.3108.02.8312.6
650 oC, 2000 h35.9114.92.2712.9
表1  FGH4720Li合金持久实验过程中二次γ'相和三次γ'相的平均体积分数及尺寸
ParameterValueUnit
γAPB[6]0.30J·m-2
b[7]0.256nm
kY[30]710MPa·μm1/2
μ[35]70.3GPa
M[41]3-
表2  屈服强度计算过程中所使用的参数取值[6,7,30,35,41]
图10  理论计算的FGH4720Li合金经650 ℃不同时间持久实验后的屈服强度与实验值的对比
1 Yang J J, Zhang C S, Li H J, et al. Effect of tension-torsion coupled loading on the mechanical properties and deformation mechanism of GH4169 superalloys [J]. Acta Metall. Sin., 2024, 60: 30
doi: 10.11900/0412.1961.2022.00142
1 杨俊杰, 张昌盛, 李洪佳 等. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响 [J]. 金属学报, 2024, 60: 30
doi: 10.11900/0412.1961.2022.00142
2 Li F L, Bai Y R, Meng L C, et al. Impact of aging heat treatment on microstructure and mechanical properties of a newly developed GH4096 disk superalloy [J]. Mater. Charact., 2020, 161: 110175
3 Locq D, Caron P. On some advanced nickel-based superalloys for disk applications [J]. Aerosp. Lab, 2011, 3: 1
4 Azadi M, Marbout A, Safarloo S, et al. Effects of solutioning and ageing treatments on properties of Inconel-713C nickel-based superalloy under creep loading [J]. Mater. Sci. Eng., 2018, A711: 195
5 Jiang X W, Wang D, Xie G, et al. The effect of long-term thermal exposure on the microstructure and stress rupture property of a directionally solidified Ni-based superalloy [J]. Metall. Mater. Trans., 2014, 45A: 6016
6 Jackson M P, Reed R C. Heat treatment of UDIMET 720Li: The effect of microstructure on properties [J]. Mater. Sci. Eng., 1999, A259: 85
7 Tan L M, Li Y P, Deng W K, et al. Tensile properties of three newly developed Ni-base powder metallurgy superalloys [J]. J. Alloys Compd., 2019, 804: 322
8 Deng W K, Zhang D, Wu H Y, et al. Prediction of yield strength in a polycrystalline nickel base superalloy during interrupt cooling [J]. Scr. Mater., 2020, 183: 139
9 Yao Z H, Hou J, Chen Y, et al. Effect of micron-sized particles on the crack growth behavior of a Ni-based powder metallurgy superalloy [J]. Mater. Sci. Eng., 2022, A860: 144242
10 Radis R, Schaffer M, Albu M, et al. Multimodal size distributions of γ′ precipitates during continuous cooling of UDIMET 720 Li [J]. Acta Mater., 2009, 57: 5739
11 Wan Z P, Hu L X, Sun Y, et al. Effect of solution treatment on microstructure and tensile properties of a U720LI Ni-based superalloy [J]. Vacuum, 2018, 156: 248
12 Mao J, Chang K M, Yang W H, et al. Cooling precipitation and strengthening study in powder metallurgy superalloy U720LI [J]. Metall. Mater. Trans., 2001, 32A: 2441
13 Huang Z L, Xie X F, Gu Y, et al. Tensile properties of Ni-based GH4720Li superalloys with different microstructures at 650 oC [J]. Chin. J. Rare Met., 2021, 45: 1269
13 黄子琳, 谢兴飞, 谷 雨 等. GH4720Li镍基合金显微组织对650 ℃拉伸性能影响 [J]. 稀有金属, 2021, 45: 1269
14 Yuan Y, Gu Y F, Cui C Y, et al. Creep mechanisms of U720Li disc superalloy at intermediate temperature [J]. Mater. Sci. Eng., 2011, A528: 5106
15 Terzi S, Couturier R, Guétaz L, et al. Modelling the plastic deformation during high-temperature creep of a powder-metallurgy coarse-grained superalloy [J]. Mater. Sci. Eng., 2008, A483-484: 598
16 Zhao G D, Zang X M, Jing Y, et al. Role of carbides on hot deformation behavior and dynamic recrystallization of hard-deformed superalloy U720Li [J]. Mater. Sci. Eng., 2021, A815: 141293
17 Wang T, Li Z, Fu S H, et al. Hot deformation behavior and microstructure of U720Li alloy [J]. Adv. Mater. Res., 2013, 709: 143
18 Pang H T, Reed P A S. Microstructure effects on high temperature fatigue crack initiation and short crack growth in turbine disc nickel-base superalloy Udimet 720Li [J]. Mater. Sci. Eng., 2007, A448: 67
19 Tucker A M, Henderson M B, Wilkinson A J, et al. High temperature fatigue crack growth in powder processed nickel based superalloy U720Li [J]. Mater. Sci. Technol., 2002, 18: 349
20 Liu C, Yao Z H, Jiang H, et al. The feasibility and process control of uniform equiaxed grains by hot deformation in GH4720Li alloy with millimeter-level coarse grains [J]. Acta Metall. Sin., 2021, 57: 1309
doi: 10.11900/0412.1961.2020.00415
20 刘 超, 姚志浩, 江 河 等. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制 [J]. 金属学报, 2021, 57: 1309
21 Liu C, Yao Z H, Guo J, et al. Microstructure evolution behavior of powder superalloy FGH4720Li at near service temperature [J]. Acta Metall. Sin., 2021, 57: 1549
doi: 10.11900/0412.1961.2021.00140
21 刘 超, 姚志浩, 郭 婧 等. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律 [J]. 金属学报, 2021, 57: 1549
22 Li M Z, Coakley J, Isheim D, et al. Influence of the initial cooling rate from γ′ supersolvus temperatures on microstructure and phase compositions in a nickel superalloy [J]. J. Alloys Compd., 2018, 732: 765
23 Hu B F, Liu G Q, Wu K, et al. Morphological instability of γ′ phase in nickel-based powder metallurgy superalloys [J]. Acta Metall. Sin., 2012, 48: 257
23 胡本芙, 刘国权, 吴 凯 等. 镍基粉末冶金高温合金中γ′相形态不稳定性研究 [J]. 金属学报, 2012, 48: 257
doi: 10.3724/SP.J.1037.2011.00731
24 Kong W W, Wang Y Q, Yuan C, et al. Microstructural evolution and stress rupture behaviour of a Ni-Based wrought superalloy during thermal exposure [J]. Mater. Sci. Eng., 2021, A822: 141659
25 Schulz F, Li H Y, Kitaguchi H, et al. Influence of tertiary gamma prime (γ′) size evolution on dwell fatigue crack growth behavior in CG RR1000 [J]. Metall. Mater. Trans., 2018, 49A: 3874
26 Raynor D, Silcock J M. Strengthening mechanisms in γ′ precipitating alloys [J]. Met. Sci. J., 1970, 4: 121
27 Dang C X, Zhang P, Li J, et al. The role of <112> {111} slip in the initial plastic deformation of Ni-base superalloys at room temperature [J]. Mater. Charact., 2020, 170: 110648
28 Zhang P, Yuan Y, Li B, et al. Tensile deformation behavior of a new Ni-base superalloy at room temperature [J]. Mater. Sci. Eng., 2016, A655: 152
29 Goodfellow A J. Strengthening mechanisms in polycrystalline nickel-based superalloys [J]. Mater. Sci. Technol., 2018, 34: 1793
30 Kozar R W, Suzuki A, Milligan W W, et al. Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys [J]. Metall. Mater. Trans., 2019, 40A: 1588
31 Nembach E, Neite G. Precipitation hardening of superalloys by ordered γ′-particles [J]. Prog. Mater. Sci., 1985, 29: 177
32 Zhao C L, Wang Q, Tang Y, et al. Microstructure and property stability of powder metallurgy nickel-based U720Li superalloy during long-term aging [J]. Rare Met. Mater. Eng., 2022, 51: 2356
33 Yao Z H, Dong J X, Chen X, et al. Gamma prime phase evolution during long-time exposure for GH738 superalloy [J]. Trans. Mater. Heat Treat., 2013, 34(1): 31
33 姚志浩, 董建新, 陈 旭 等. GH738高温合金长期时效过程中γ′相演变规律 [J]. 材料热处理学报, 2013, 34(1): 31
34 Torster F, Baumeister G, Albrecht J, et al. Influence of grain size and heat treatment on the microstructure and mechanical properties of the nickel-base superalloy U 720 LI [J]. Mater. Sci. Eng., 1997, A234: 189
35 Xu Y L, Jin Q M, Xiao X S, et al. Strengthening mechanisms of carbon in modified nickel-based superalloy Nimonic 80A [J]. Mater. Sci. Eng., 2011, A528: 4600
36 Huang H L, Liu G Q, Wang H, et al. Effect of cooling rate and resulting microstructure on tensile properties and deformation mechanisms of an advanced PM nickel-based superalloy [J]. J. Alloys Compd., 2019, 805: 1254
37 Osada T, Nagashima N, Gu Y, et al. Factors contributing to the strength of a polycrystalline nickel-cobalt base superalloy [J]. Scr. Mater., 2011, 64: 892
38 Galindo-Nava E I, Connor L D, Rae C M F. On the prediction of the yield stress of unimodal and multimodal γ′ nickel-base superalloys [J]. Acta Mater., 2015, 98: 377
39 Gerold V, Haberkorn H. On the critical resolved shear stress of solid solutions containing coherent precipitates [J]. Phys. Status Solidi, 1966, 16B: 675
40 Ahmadi M R, Povoden-Karadeniz E, Whitmore L, et al. Yield strength prediction in Ni-base alloy 718Plus based on thermo-kinetic precipitation simulation [J]. Mater. Sci. Eng., 2014, A608: 114
41 Kocks U F, Mecking H. Physics and phenomenology of strain hardening: The FCC case [J]. Prog. Mater. Sci., 2003, 48: 171
42 Zhang H K, Li Y, Ma T F, et al. Tailoring of nanoscale γ′ precipitates and unveiling their strengthening mechanisms in multimodal nickel-based superalloy GH4720Li [J]. Mater. Charact., 2022, 188: 111918
43 Labusch R. A statistical theory of solid solution hardening [J]. Phys. Status Solidi, 1970, 41B: 659
44 Gypen L A, Deruyttere A. Multi-component solid solution hardening: part 2 Agreement with experimental results [J]. J. Mater. Sci., 1977, 12: 1034
45 Reppich B, Schepp P, Wehner G. Some new aspects concerning particle hardening mechanisms in γ′ precipitating nickel-base alloys—II. Experiments [J]. Acta Metall., 1982, 30: 95
[1] 李新宇, 白佳铭, 张浩鹏, 李晓鲲, 贾建, 刘常升, 刘建涛, 张义文. 先进镍基粉末高温合金FGH4108在不同应力条件下的蠕变行为[J]. 金属学报, 2025, 61(5): 757-769.
[2] 雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
[3] 张浩鹏, 白佳铭, 李新宇, 李晓鲲, 贾建, 刘建涛, 张义文. HfTa对镍基粉末高温合金蠕变断裂特征和性能的影响[J]. 金属学报, 2025, 61(4): 583-596.
[4] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[5] 郭星星, 帅美荣, 楚志兵, 李玉贵, 谢广明. 不锈钢复合钢筋近界面微观组织演变及元素扩散动力学[J]. 金属学报, 2025, 61(2): 336-348.
[6] 周生玉, 胡明昊, 李冲, 丁海民, 郭乾应, 刘永长. 一种 γ'/γ'' 相强化镍基高温合金的蠕变行为[J]. 金属学报, 2025, 61(2): 226-234.
[7] 韩英, 吴雨航, 赵春禄, 张靖实, 李振民, 冉旭. 选区激光熔化成形Al-Si-Fe-Mn-Ni合金的高温蠕变行为[J]. 金属学报, 2025, 61(1): 154-164.
[8] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[9] 杨伟阳, 黎先浩, 赵鹏飞, 于海彬, 赵松山, 罗海文. 取向硅钢不同常化工艺下组织及抑制剂的变化[J]. 金属学报, 2024, 60(5): 605-615.
[10] 耿汝伟, 王林, 魏正英, 麻宁绪. 铝合金熔滴复合电弧增材组织演化及外延生长特性[J]. 金属学报, 2024, 60(11): 1584-1594.
[11] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[12] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[13] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[14] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[15] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.