|
|
FGH4720Li粉末高温合金在近服役条件下的组织与力学性能演变规律 |
李大禹1, 姚志浩1( ), 赵杰1, 董建新1, 郭婧2, 赵宇2 |
1 北京科技大学 材料科学与工程学院 北京 100083 2 中国航发湖南动力机械研究所 株洲 412002 |
|
Evolution of Microstructure and Mechanical Properties of FGH4720Li P/M Superalloy Under Near-Service Conditions |
LI Dayu1, YAO Zhihao1( ), ZHAO Jie1, DONG Jianxin1, GUO Jing2, ZHAO Yu2 |
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2 AECC Hunan Powerplant Research Institute, Zhuzhou 412002, China |
引用本文:
李大禹, 姚志浩, 赵杰, 董建新, 郭婧, 赵宇. FGH4720Li粉末高温合金在近服役条件下的组织与力学性能演变规律[J]. 金属学报, 2025, 61(6): 826-836.
Dayu LI,
Zhihao YAO,
Jie ZHAO,
Jianxin DONG,
Jing GUO,
Yu ZHAO.
Evolution of Microstructure and Mechanical Properties of FGH4720Li P/M Superalloy Under Near-Service Conditions[J]. Acta Metall Sin, 2025, 61(6): 826-836.
1 |
Yang J J, Zhang C S, Li H J, et al. Effect of tension-torsion coupled loading on the mechanical properties and deformation mechanism of GH4169 superalloys [J]. Acta Metall. Sin., 2024, 60: 30
doi: 10.11900/0412.1961.2022.00142
|
1 |
杨俊杰, 张昌盛, 李洪佳 等. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响 [J]. 金属学报, 2024, 60: 30
doi: 10.11900/0412.1961.2022.00142
|
2 |
Li F L, Bai Y R, Meng L C, et al. Impact of aging heat treatment on microstructure and mechanical properties of a newly developed GH4096 disk superalloy [J]. Mater. Charact., 2020, 161: 110175
|
3 |
Locq D, Caron P. On some advanced nickel-based superalloys for disk applications [J]. Aerosp. Lab, 2011, 3: 1
|
4 |
Azadi M, Marbout A, Safarloo S, et al. Effects of solutioning and ageing treatments on properties of Inconel-713C nickel-based superalloy under creep loading [J]. Mater. Sci. Eng., 2018, A711: 195
|
5 |
Jiang X W, Wang D, Xie G, et al. The effect of long-term thermal exposure on the microstructure and stress rupture property of a directionally solidified Ni-based superalloy [J]. Metall. Mater. Trans., 2014, 45A: 6016
|
6 |
Jackson M P, Reed R C. Heat treatment of UDIMET 720Li: The effect of microstructure on properties [J]. Mater. Sci. Eng., 1999, A259: 85
|
7 |
Tan L M, Li Y P, Deng W K, et al. Tensile properties of three newly developed Ni-base powder metallurgy superalloys [J]. J. Alloys Compd., 2019, 804: 322
|
8 |
Deng W K, Zhang D, Wu H Y, et al. Prediction of yield strength in a polycrystalline nickel base superalloy during interrupt cooling [J]. Scr. Mater., 2020, 183: 139
|
9 |
Yao Z H, Hou J, Chen Y, et al. Effect of micron-sized particles on the crack growth behavior of a Ni-based powder metallurgy superalloy [J]. Mater. Sci. Eng., 2022, A860: 144242
|
10 |
Radis R, Schaffer M, Albu M, et al. Multimodal size distributions of γ′ precipitates during continuous cooling of UDIMET 720 Li [J]. Acta Mater., 2009, 57: 5739
|
11 |
Wan Z P, Hu L X, Sun Y, et al. Effect of solution treatment on microstructure and tensile properties of a U720LI Ni-based superalloy [J]. Vacuum, 2018, 156: 248
|
12 |
Mao J, Chang K M, Yang W H, et al. Cooling precipitation and strengthening study in powder metallurgy superalloy U720LI [J]. Metall. Mater. Trans., 2001, 32A: 2441
|
13 |
Huang Z L, Xie X F, Gu Y, et al. Tensile properties of Ni-based GH4720Li superalloys with different microstructures at 650 oC [J]. Chin. J. Rare Met., 2021, 45: 1269
|
13 |
黄子琳, 谢兴飞, 谷 雨 等. GH4720Li镍基合金显微组织对650 ℃拉伸性能影响 [J]. 稀有金属, 2021, 45: 1269
|
14 |
Yuan Y, Gu Y F, Cui C Y, et al. Creep mechanisms of U720Li disc superalloy at intermediate temperature [J]. Mater. Sci. Eng., 2011, A528: 5106
|
15 |
Terzi S, Couturier R, Guétaz L, et al. Modelling the plastic deformation during high-temperature creep of a powder-metallurgy coarse-grained superalloy [J]. Mater. Sci. Eng., 2008, A483-484: 598
|
16 |
Zhao G D, Zang X M, Jing Y, et al. Role of carbides on hot deformation behavior and dynamic recrystallization of hard-deformed superalloy U720Li [J]. Mater. Sci. Eng., 2021, A815: 141293
|
17 |
Wang T, Li Z, Fu S H, et al. Hot deformation behavior and microstructure of U720Li alloy [J]. Adv. Mater. Res., 2013, 709: 143
|
18 |
Pang H T, Reed P A S. Microstructure effects on high temperature fatigue crack initiation and short crack growth in turbine disc nickel-base superalloy Udimet 720Li [J]. Mater. Sci. Eng., 2007, A448: 67
|
19 |
Tucker A M, Henderson M B, Wilkinson A J, et al. High temperature fatigue crack growth in powder processed nickel based superalloy U720Li [J]. Mater. Sci. Technol., 2002, 18: 349
|
20 |
Liu C, Yao Z H, Jiang H, et al. The feasibility and process control of uniform equiaxed grains by hot deformation in GH4720Li alloy with millimeter-level coarse grains [J]. Acta Metall. Sin., 2021, 57: 1309
doi: 10.11900/0412.1961.2020.00415
|
20 |
刘 超, 姚志浩, 江 河 等. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制 [J]. 金属学报, 2021, 57: 1309
|
21 |
Liu C, Yao Z H, Guo J, et al. Microstructure evolution behavior of powder superalloy FGH4720Li at near service temperature [J]. Acta Metall. Sin., 2021, 57: 1549
doi: 10.11900/0412.1961.2021.00140
|
21 |
刘 超, 姚志浩, 郭 婧 等. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律 [J]. 金属学报, 2021, 57: 1549
|
22 |
Li M Z, Coakley J, Isheim D, et al. Influence of the initial cooling rate from γ′ supersolvus temperatures on microstructure and phase compositions in a nickel superalloy [J]. J. Alloys Compd., 2018, 732: 765
|
23 |
Hu B F, Liu G Q, Wu K, et al. Morphological instability of γ′ phase in nickel-based powder metallurgy superalloys [J]. Acta Metall. Sin., 2012, 48: 257
|
23 |
胡本芙, 刘国权, 吴 凯 等. 镍基粉末冶金高温合金中γ′相形态不稳定性研究 [J]. 金属学报, 2012, 48: 257
doi: 10.3724/SP.J.1037.2011.00731
|
24 |
Kong W W, Wang Y Q, Yuan C, et al. Microstructural evolution and stress rupture behaviour of a Ni-Based wrought superalloy during thermal exposure [J]. Mater. Sci. Eng., 2021, A822: 141659
|
25 |
Schulz F, Li H Y, Kitaguchi H, et al. Influence of tertiary gamma prime (γ′) size evolution on dwell fatigue crack growth behavior in CG RR1000 [J]. Metall. Mater. Trans., 2018, 49A: 3874
|
26 |
Raynor D, Silcock J M. Strengthening mechanisms in γ′ precipitating alloys [J]. Met. Sci. J., 1970, 4: 121
|
27 |
Dang C X, Zhang P, Li J, et al. The role of <112> {111} slip in the initial plastic deformation of Ni-base superalloys at room temperature [J]. Mater. Charact., 2020, 170: 110648
|
28 |
Zhang P, Yuan Y, Li B, et al. Tensile deformation behavior of a new Ni-base superalloy at room temperature [J]. Mater. Sci. Eng., 2016, A655: 152
|
29 |
Goodfellow A J. Strengthening mechanisms in polycrystalline nickel-based superalloys [J]. Mater. Sci. Technol., 2018, 34: 1793
|
30 |
Kozar R W, Suzuki A, Milligan W W, et al. Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys [J]. Metall. Mater. Trans., 2019, 40A: 1588
|
31 |
Nembach E, Neite G. Precipitation hardening of superalloys by ordered γ′-particles [J]. Prog. Mater. Sci., 1985, 29: 177
|
32 |
Zhao C L, Wang Q, Tang Y, et al. Microstructure and property stability of powder metallurgy nickel-based U720Li superalloy during long-term aging [J]. Rare Met. Mater. Eng., 2022, 51: 2356
|
33 |
Yao Z H, Dong J X, Chen X, et al. Gamma prime phase evolution during long-time exposure for GH738 superalloy [J]. Trans. Mater. Heat Treat., 2013, 34(1): 31
|
33 |
姚志浩, 董建新, 陈 旭 等. GH738高温合金长期时效过程中γ′相演变规律 [J]. 材料热处理学报, 2013, 34(1): 31
|
34 |
Torster F, Baumeister G, Albrecht J, et al. Influence of grain size and heat treatment on the microstructure and mechanical properties of the nickel-base superalloy U 720 LI [J]. Mater. Sci. Eng., 1997, A234: 189
|
35 |
Xu Y L, Jin Q M, Xiao X S, et al. Strengthening mechanisms of carbon in modified nickel-based superalloy Nimonic 80A [J]. Mater. Sci. Eng., 2011, A528: 4600
|
36 |
Huang H L, Liu G Q, Wang H, et al. Effect of cooling rate and resulting microstructure on tensile properties and deformation mechanisms of an advanced PM nickel-based superalloy [J]. J. Alloys Compd., 2019, 805: 1254
|
37 |
Osada T, Nagashima N, Gu Y, et al. Factors contributing to the strength of a polycrystalline nickel-cobalt base superalloy [J]. Scr. Mater., 2011, 64: 892
|
38 |
Galindo-Nava E I, Connor L D, Rae C M F. On the prediction of the yield stress of unimodal and multimodal γ′ nickel-base superalloys [J]. Acta Mater., 2015, 98: 377
|
39 |
Gerold V, Haberkorn H. On the critical resolved shear stress of solid solutions containing coherent precipitates [J]. Phys. Status Solidi, 1966, 16B: 675
|
40 |
Ahmadi M R, Povoden-Karadeniz E, Whitmore L, et al. Yield strength prediction in Ni-base alloy 718Plus based on thermo-kinetic precipitation simulation [J]. Mater. Sci. Eng., 2014, A608: 114
|
41 |
Kocks U F, Mecking H. Physics and phenomenology of strain hardening: The FCC case [J]. Prog. Mater. Sci., 2003, 48: 171
|
42 |
Zhang H K, Li Y, Ma T F, et al. Tailoring of nanoscale γ′ precipitates and unveiling their strengthening mechanisms in multimodal nickel-based superalloy GH4720Li [J]. Mater. Charact., 2022, 188: 111918
|
43 |
Labusch R. A statistical theory of solid solution hardening [J]. Phys. Status Solidi, 1970, 41B: 659
|
44 |
Gypen L A, Deruyttere A. Multi-component solid solution hardening: part 2 Agreement with experimental results [J]. J. Mater. Sci., 1977, 12: 1034
|
45 |
Reppich B, Schepp P, Wehner G. Some new aspects concerning particle hardening mechanisms in γ′ precipitating nickel-base alloys—II. Experiments [J]. Acta Metall., 1982, 30: 95
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|