|
|
镁合金的多系滑移与塑性调控 |
曾小勤1,2( ), 于铭迪1,2, 王静雅1,2 |
1 上海交通大学 轻合金精密成型国家工程研究中心 上海 200240 2 上海交通大学 金属基复合材料国家重点实验室 上海 200240 |
|
Multi-Slips and Ductility Regulation of Magnesium Alloys |
ZENG Xiaoqin1,2( ), YU Mingdi1,2, WANG Jingya1,2 |
1 National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai 200240, China 2 State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
曾小勤, 于铭迪, 王静雅. 镁合金的多系滑移与塑性调控[J]. 金属学报, 2025, 61(3): 361-371.
Xiaoqin ZENG,
Mingdi YU,
Jingya WANG.
Multi-Slips and Ductility Regulation of Magnesium Alloys[J]. Acta Metall Sin, 2025, 61(3): 361-371.
1 |
Zeng X Q, Chen Y W, Wang J Y, et al. Research progress of high-performance rare earth magnesium alloys [J]. Chin. J. Nonferrous Met., 2021, 31: 2963
|
1 |
曾小勤, 陈义文, 王静雅 等. 高性能稀土镁合金研究新进展 [J]. 中国有色金属学报, 2021, 31: 2963
|
2 |
Shen Z, Wang Z P, Hu B, et al. Research progress on the mechanisms controlling high-temperature oxidation resistance of Mg alloys [J]. Acta Metall. Sin., 2023, 59: 371
doi: 10.11900/0412.1961.2022.00495
|
2 |
沈 朝, 王志鹏, 胡 波 等. 镁合金抗高温氧化机理研究进展 [J]. 金属学报, 2023, 59: 371
|
3 |
Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
|
3 |
吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
|
4 |
Yang B B, Wang J, Li Y P, et al. Deformation mechanisms of dual-textured Mg-6.5Zn alloy with limited tension-compression yield asymmetry [J]. Acta Mater., 2023, 248: 118766
|
5 |
Chen Y W, Wang J Y, Zheng W S, et al. CALPHAD-guided design of Mg-Y-Al alloy with improved strength and ductility via regulating the LPSO phase [J]. Acta Mater., 2024, 263: 119521
|
6 |
Conrad H, Robertson W D. Effect of temperature on the flow stress and strain-hardening coefficient of magnesium single crystals [J]. JOM, 1957, 9(4): 503
|
7 |
Agnew S R, Duygulu Ö. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B [J]. Int. J. Plast., 2005, 21: 1161
|
8 |
Zhu G M, Wang L Y, Zhou H, et al. Improving ductility of a Mg alloy via non-basal <a> slip induced by Ca addition [J]. Int. J. Plast., 2019, 120: 164
|
9 |
Liu B Y, Liu F, Yang N, et al. Large plasticity in magnesium mediated by pyramidal dislocations [J]. Science, 2019, 365: 73
|
10 |
Yu M D, Cui Y C, Wang J Y, et al. Critical resolved shear stresses for slip and twinning in Mg-Y-Ca alloys and their effect on the ductility [J]. Int. J. Plast., 2023, 162: 103525
|
11 |
El Kadiri H, Barrett C D, Wang J, et al. Why are $\left\{ 10\bar{1}2 \right\}$ twins profuse in magnesium? [J]. Acta Mater., 2015, 85: 354
|
12 |
Wang J Y, Molina-Aldareguía J M, LLorca J. Effect of Al content on the critical resolved shear stress for twin nucleation and growth in Mg alloys [J]. Acta Mater., 2020, 188: 215
|
13 |
Sułkowski B, Chulist R. Twin-induced stability and mechanical properties of pure magnesium [J]. Mater. Sci. Eng., 2019, A749: 89
|
14 |
Wang T, Zha M, Gao Y P, et al. Deformation mechanisms in a novel multiscale hetero-structured Mg alloy with high strength-ductility synergy [J]. Int. J. Plast., 2023, 170: 103766
|
15 |
Ma E, Liu C. Chemical inhomogeneities in high-entropy alloys help mitigate the strength-ductility trade-off [J]. Prog. Mater. Sci., 2024, 143: 101252
|
16 |
Li B, Zhang Q W, Mathaudhu S N. Basal-pyramidal dislocation lock in deformed magnesium [J]. Scr. Mater., 2017, 134: 37
|
17 |
Bertin N, Tomé C N, Beyerlein I J, et al. On the strength of dislocation interactions and their effect on latent hardening in pure magnesium [J]. Int. J. Plast., 2014, 62: 72
|
18 |
Orozco-Caballero A, Lunt D, Robson J D, et al. How magnesium accommodates local deformation incompatibility: A high-resolution digital image correlation study [J]. Acta Mater., 2017, 133: 367
|
19 |
Zeng Z R, Nie J F, Xu S W, et al. Super-formable pure magnesium at room temperature [J]. Nat. Commun., 2017, 8: 972
doi: 10.1038/s41467-017-01330-9
pmid: 29042555
|
20 |
Wang J, Yuan Y, Chen T, et al. Multi-solute solid solution behavior and its effect on the properties of magnesium alloys [J]. J. Magnes. Alloy., 2022, 10: 1786
|
21 |
Sandlöbes S, Friák M, Korte-Kerzel S, et al. A rare-earth free magnesium alloy with improved intrinsic ductility [J]. Sci. Rep., 2017, 7: 10458
doi: 10.1038/s41598-017-10384-0
pmid: 28874798
|
22 |
Yasi J A, Hector L G, Trinkle D R. First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties [J]. Acta Mater., 2010, 58: 5704
|
23 |
Wu Z X, Ahmad R, Yin B L, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys [J]. Science, 2018, 359: 447
doi: 10.1126/science.aap8716
pmid: 29371467
|
24 |
Stanford N, Barnett M R. Solute strengthening of prismatic slip, basal slip and $\left\{ 10\bar{1}2 \right\}$ twinning in Mg and Mg-Zn binary alloys [J]. Int. J. Plast., 2013, 47: 165
|
25 |
Barnett M R. Twinning and the ductility of magnesium alloys: Part II. “Contraction” twins [J]. Mater. Sci. Eng., 2007, A464: 8
|
26 |
Ma X, Zha M, Wang S Q, et al. A rolled Mg-8Al-0.5Zn-0.8Ce alloy with high strength-ductility synergy via engineering high-density low angle boundaries [J]. J. Magnes. Alloy., 2022, 10: 2889
|
27 |
Zha M, Zhang H M, Jia H L, et al. Prominent role of multi-scale microstructural heterogeneities on superplastic deformation of a high solid solution Al-7Mg alloy [J]. Int. J. Plast., 2021, 146: 103108
|
28 |
Dong Q, Luo Z, Zhu H, et al. Basal-plane stacking-fault energies of Mg alloys: A first-principles study of metallic alloying effects [J]. J. Mater. Sci. Technol., 2018, 34: 1773
doi: 10.1016/j.jmst.2018.02.009
|
29 |
Wang C, Zhang H Y, Wang H Y, et al. Effects of doping atoms on the generalized stacking-fault energies of Mg alloys from first-principles calculations [J]. Scr. Mater., 2013, 69: 445
|
30 |
Ding Z G, Zhao G X, Sun H, et al. Alloying effects on the plasticity of magnesium: Comprehensive analysis of influences of all five slip systems [J]. J. Phys.: Condens. Matter, 2020, 32: 015401
|
31 |
Garg P, Adlakha I, Solanki K N. Effect of solutes on ideal shear resistance and electronic properties of magnesium: A first-principles study [J]. Acta Mater., 2018, 153: 327
|
32 |
Zeng Y, Shi O L, Jiang B, et al. Improved formability with theoretical critical shear strength transforming in Mg alloys with Sn addition [J]. J. Alloy. Compd., 2018, 764: 555
|
33 |
Liu Z R, Li D Y. The electronic origin of strengthening and ductilizing magnesium by solid solutes [J]. Acta Mater., 2015, 89: 225
|
34 |
Wu Z X, Curtin W A. Mechanism and energetics of <c + a> dislocation cross-slip in hcp metals [J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 11137
|
35 |
Shang S L, Wang W Y, Zhou B C, et al. Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys:A first-principles study of shear deformation [J]. Acta Mater., 2014, 67: 168
|
36 |
Ding Z G, Liu W, Sun H, et al. Origins and dissociation of pyramidal <c + a> dislocations in magnesium and its alloys [J]. Acta Mater., 2018, 146: 265
|
37 |
Sandlöbes S, Friák M, Zaefferer S, et al. The relation between ductility and stacking fault energies in Mg and Mg-Y alloys [J]. Acta Mater., 2012, 60: 3011
|
38 |
Wu Z X, Curtin W A. The origins of high hardening and low ductility in magnesium [J]. Nature, 2015, 526: 62
|
39 |
Ma X L, Jiao Q, Kecskes L J, et al. Effect of basal precipitates on extension twinning and pyramidal slip: A micro-mechanical and electron microscopy study of a Mg-Al binary alloy [J]. Acta Mater., 2020, 189: 35
|
40 |
Wang L Y, Huang Z H, Wang H M, et al. Study of slip activity in a Mg-Y alloy by in situ high energy X-ray diffraction microscopy and elastic viscoplastic self-consistent modeling [J]. Acta Mater., 2018, 155: 138
|
41 |
Huang Z H, Wang L Y, Zhou B J, et al. Observation of non-basal slip in Mg-Y by in situ three-dimensional X-ray diffraction [J]. Scr. Mater., 2018, 143: 44
|
42 |
Sabat R K, Brahme A P, Mishra R K, et al. Ductility enhancement in Mg-0.2%Ce alloys [J]. Acta Mater., 2018, 161: 246
|
43 |
Liu Y, Li N, Arul Kumar M, et al. Experimentally quantifying critical stresses associated with basal slip and twinning in magnesium using micropillars [J]. Acta Mater., 2017, 135: 411
|
44 |
Lilleodden E. Microcompression study of Mg (0001) single crystal [J]. Scr. Mater., 2010, 62: 532
|
45 |
Wang J Y, Chen Y W, Chen Z, et al. Deformation mechanisms of Mg-Ca-Zn alloys studied by means of micropillar compression tests [J]. Acta Mater., 2021, 217: 117151
|
46 |
Wang J Y, Li N, Alizadeh R, et al. Effect of solute content and temperature on the deformation mechanisms and critical resolved shear stress in Mg-Al and Mg-Zn alloys [J]. Acta Mater., 2019, 170: 155
doi: 10.1016/j.actamat.2019.03.027
|
47 |
Wu J, Si S S, Takagi K, et al. Study of basal <a> and pyramidal<c + a> slips in Mg-Y alloys using micro-pillar compression [J]. Philos. Mag., 2020, 100: 1454
|
48 |
Chapuis A, Driver J H. Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals [J]. Acta Mater., 2011, 59: 1986
|
49 |
Shin K S, Wang L F, Bian M Z, et al. Effects of temperature on critical resolved shear stresses of slip and twining in Mg single crystal via experimental and crystal plasticity modeling [J]. J. Magnes. Alloy., 2023, 11: 2027
|
50 |
Qi X X, Li Y X, Xu X Y, et al. Enhancing strength-ductility synergy in a Mg-Gd-Y-Zr alloy at sub-zero temperatures via high dislocation density and shearable precipitates [J]. J. Mater. Sci. Technol., 2023, 166: 123
doi: 10.1016/j.jmst.2023.05.029
|
51 |
Luo X, Feng Z Q, Yu T B, et al. Transitions in mechanical behavior and in deformation mechanisms enhance the strength and ductility of Mg-3Gd [J]. Acta Mater., 2020, 183: 398
|
52 |
Zhu G M, Wang L Y, Sun Y J, et al. Grain-size effect on the deformation of Mg-3Al-3Sn alloy: Experiments and elastic-viscoplastic self-consistent modeling [J]. Int. J. Plast., 2021, 143: 103018
|
53 |
Cheng R S, Pan H C, Xie D S, et al. Research progress of newly developed high-strength and low-alloyed magnesium alloy [J]. Mater. China, 2020, 39: 31
|
53 |
程仁山, 潘虎成, 谢东升 等. 新型高强度低合金化镁合金研究进展 [J]. 中国材料进展, 2020, 39: 31
|
54 |
Zheng R X, Du J P, Gao S, et al. Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer [J]. Acta Mater., 2020, 198: 35
|
55 |
Liu B Y, Zhang Z, Liu F, et al. Rejuvenation of plasticity via deformation graining in magnesium [J]. Nat. Commun., 2022, 13: 1060
|
56 |
Zhu G M, Wang L Y, Wang J, et al. Highly deformable Mg-Al-Ca alloy with Al2Ca precipitates [J]. Acta Mater., 2020, 200: 236
|
57 |
Luo S Z, Wang L Y, Wang J Y, et al. Micro-compression of Al2Ca particles in a Mg-Al-Ca alloy [J]. Materialia, 2022, 21: 101300
|
58 |
Chen R, Sandlöbes S, Zeng X Q, et al. Room temperature deformation of LPSO structures by non-basal slip [J]. Mater. Sci. Eng., 2017, A682: 354
|
59 |
Li Q, Song J, Chen Y W, et al. In-situ TEM characterization of basal dislocations between nano-spaced long-period stacking ordered phases in MgYZn alloy [J]. Scr. Mater., 2023, 235: 115601
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|