Research progress of high-performance rare earth magnesium alloys
1
2021
... 镁合金具有密度低、比强度高、储氢量高、阻尼减振、电磁屏蔽等优异的性能[1~3].随着科技的不断发展和对“双碳”目标的不断追求,镁合金在航空航天、海洋装备、交通运输、电子信息等国民经济和国家安全重大关键领域已经成为最具竞争力的轻质金属结构材料之一.中国是镁资源最丰富的国家之一,大力发展镁合金应用对于缓解铁、铝等金属矿产资源贫乏的压力具有重要战略价值.然而,Mg及其合金存在绝对强度低、室温塑性差、可加工性不足以及耐腐蚀性能差等问题,严重阻碍了其更广泛的应用.过去20年间,通过稀土元素合金化及调控长周期堆垛有序(LPSO)结构等方法,镁合金的抗拉强度已从200 MPa跃升至500 MPa,接近普通商用铝合金水平,服役温度也从200 ℃提升至300 ℃,从而实现了镁合金在航空航天领域的应用.但是,由于镁合金的hcp结构对称性差,导致其可动滑移系不足,无法有效协调塑性变形[4].因此,镁合金的塑性较差,强塑性匹配不足,导致镁合金构件在加工成形过程中有诸多限制.本文归纳整理了镁合金的塑性变形机制,提出了基于多系滑移的增塑策略,阐释了多尺度微观结构与宏观性能之间的内在关联,并深入探讨了基于多系滑移的镁合金塑性调控原理,展望了实现镁合金强度-塑性匹配的发展方向,旨在突破高强韧镁合金的瓶颈,推动其实际应用. ...
高性能稀土镁合金研究新进展
1
2021
... 镁合金具有密度低、比强度高、储氢量高、阻尼减振、电磁屏蔽等优异的性能[1~3].随着科技的不断发展和对“双碳”目标的不断追求,镁合金在航空航天、海洋装备、交通运输、电子信息等国民经济和国家安全重大关键领域已经成为最具竞争力的轻质金属结构材料之一.中国是镁资源最丰富的国家之一,大力发展镁合金应用对于缓解铁、铝等金属矿产资源贫乏的压力具有重要战略价值.然而,Mg及其合金存在绝对强度低、室温塑性差、可加工性不足以及耐腐蚀性能差等问题,严重阻碍了其更广泛的应用.过去20年间,通过稀土元素合金化及调控长周期堆垛有序(LPSO)结构等方法,镁合金的抗拉强度已从200 MPa跃升至500 MPa,接近普通商用铝合金水平,服役温度也从200 ℃提升至300 ℃,从而实现了镁合金在航空航天领域的应用.但是,由于镁合金的hcp结构对称性差,导致其可动滑移系不足,无法有效协调塑性变形[4].因此,镁合金的塑性较差,强塑性匹配不足,导致镁合金构件在加工成形过程中有诸多限制.本文归纳整理了镁合金的塑性变形机制,提出了基于多系滑移的增塑策略,阐释了多尺度微观结构与宏观性能之间的内在关联,并深入探讨了基于多系滑移的镁合金塑性调控原理,展望了实现镁合金强度-塑性匹配的发展方向,旨在突破高强韧镁合金的瓶颈,推动其实际应用. ...
Research progress on the mechanisms controlling high-temperature oxidation resistance of Mg alloys
0
2023
Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect
1
2022
... 镁合金具有密度低、比强度高、储氢量高、阻尼减振、电磁屏蔽等优异的性能[1~3].随着科技的不断发展和对“双碳”目标的不断追求,镁合金在航空航天、海洋装备、交通运输、电子信息等国民经济和国家安全重大关键领域已经成为最具竞争力的轻质金属结构材料之一.中国是镁资源最丰富的国家之一,大力发展镁合金应用对于缓解铁、铝等金属矿产资源贫乏的压力具有重要战略价值.然而,Mg及其合金存在绝对强度低、室温塑性差、可加工性不足以及耐腐蚀性能差等问题,严重阻碍了其更广泛的应用.过去20年间,通过稀土元素合金化及调控长周期堆垛有序(LPSO)结构等方法,镁合金的抗拉强度已从200 MPa跃升至500 MPa,接近普通商用铝合金水平,服役温度也从200 ℃提升至300 ℃,从而实现了镁合金在航空航天领域的应用.但是,由于镁合金的hcp结构对称性差,导致其可动滑移系不足,无法有效协调塑性变形[4].因此,镁合金的塑性较差,强塑性匹配不足,导致镁合金构件在加工成形过程中有诸多限制.本文归纳整理了镁合金的塑性变形机制,提出了基于多系滑移的增塑策略,阐释了多尺度微观结构与宏观性能之间的内在关联,并深入探讨了基于多系滑移的镁合金塑性调控原理,展望了实现镁合金强度-塑性匹配的发展方向,旨在突破高强韧镁合金的瓶颈,推动其实际应用. ...
铸造Mg-RE合金晶粒细化行为研究现状与展望
1
2022
... 镁合金具有密度低、比强度高、储氢量高、阻尼减振、电磁屏蔽等优异的性能[1~3].随着科技的不断发展和对“双碳”目标的不断追求,镁合金在航空航天、海洋装备、交通运输、电子信息等国民经济和国家安全重大关键领域已经成为最具竞争力的轻质金属结构材料之一.中国是镁资源最丰富的国家之一,大力发展镁合金应用对于缓解铁、铝等金属矿产资源贫乏的压力具有重要战略价值.然而,Mg及其合金存在绝对强度低、室温塑性差、可加工性不足以及耐腐蚀性能差等问题,严重阻碍了其更广泛的应用.过去20年间,通过稀土元素合金化及调控长周期堆垛有序(LPSO)结构等方法,镁合金的抗拉强度已从200 MPa跃升至500 MPa,接近普通商用铝合金水平,服役温度也从200 ℃提升至300 ℃,从而实现了镁合金在航空航天领域的应用.但是,由于镁合金的hcp结构对称性差,导致其可动滑移系不足,无法有效协调塑性变形[4].因此,镁合金的塑性较差,强塑性匹配不足,导致镁合金构件在加工成形过程中有诸多限制.本文归纳整理了镁合金的塑性变形机制,提出了基于多系滑移的增塑策略,阐释了多尺度微观结构与宏观性能之间的内在关联,并深入探讨了基于多系滑移的镁合金塑性调控原理,展望了实现镁合金强度-塑性匹配的发展方向,旨在突破高强韧镁合金的瓶颈,推动其实际应用. ...
Deformation mechanisms of dual-textured Mg-6.5Zn alloy with limited tension-compression yield asymmetry
2
2023
... 镁合金具有密度低、比强度高、储氢量高、阻尼减振、电磁屏蔽等优异的性能[1~3].随着科技的不断发展和对“双碳”目标的不断追求,镁合金在航空航天、海洋装备、交通运输、电子信息等国民经济和国家安全重大关键领域已经成为最具竞争力的轻质金属结构材料之一.中国是镁资源最丰富的国家之一,大力发展镁合金应用对于缓解铁、铝等金属矿产资源贫乏的压力具有重要战略价值.然而,Mg及其合金存在绝对强度低、室温塑性差、可加工性不足以及耐腐蚀性能差等问题,严重阻碍了其更广泛的应用.过去20年间,通过稀土元素合金化及调控长周期堆垛有序(LPSO)结构等方法,镁合金的抗拉强度已从200 MPa跃升至500 MPa,接近普通商用铝合金水平,服役温度也从200 ℃提升至300 ℃,从而实现了镁合金在航空航天领域的应用.但是,由于镁合金的hcp结构对称性差,导致其可动滑移系不足,无法有效协调塑性变形[4].因此,镁合金的塑性较差,强塑性匹配不足,导致镁合金构件在加工成形过程中有诸多限制.本文归纳整理了镁合金的塑性变形机制,提出了基于多系滑移的增塑策略,阐释了多尺度微观结构与宏观性能之间的内在关联,并深入探讨了基于多系滑移的镁合金塑性调控原理,展望了实现镁合金强度-塑性匹配的发展方向,旨在突破高强韧镁合金的瓶颈,推动其实际应用. ...
... Mg的合金化是改变滑移系CRSS最常见和最有效方法[20,21].镁合金中的固溶原子能够引起晶格畸变,产生位错-固溶原子的弹性交互作用、化学交互作用等[22,23],从而影响位错的滑移,产生固溶强化或软化作用,进一步改变不同滑移系的启动能力.近年来,国内外学者开展了大量的理论及实验工作[4,24~27],测定Mg及其合金中合金元素对于不同滑移系启动能力的影响,研究合金元素对Mg及其合金滑移机制的影响. ...
CALPHAD-guided design of Mg-Y-Al alloy with improved strength and ductility via regulating the LPSO phase
1
2024
... Mg是典型的hcp晶体结构,其室温下主要的塑性变形方式是位错的滑移[5].当外加应力达到一定的临界值时,滑移系才能开启,这个应力值被称为临界剪切应力(critical resolved shear stress,CRSS).金属晶体的密排面间距最大,密排方向的Burgers矢量模最小,因此滑移通常发生在材料密排面的密排方向上.Mg的密排面为{0001}基面,密排方向为密排面上的<110>晶向,由密排面和密排方向组成的基面<a>滑移系{0001}<110>是镁合金中最常见的滑移系,如图1a所示.基面<a>滑移系的CRSS极低,室温下仅为0.5 MPa[6],通常会在塑性变形过程中优先启动并占据主导地位.通常来说,金属晶体的塑性变形要满足Von-Mises准则,即多晶体至少需要激活5个独立滑移系来协调均匀塑性变形.然而,Mg中基面<a>滑移只能提供2个独立的滑移系,会破坏材料的运动学相容性,导致材料失效,这被认为是导致Mg塑性差的主要原因.此外,基面滑移系的启动也使得Mg在变形过程中产生强烈的基面织构,导致塑性变形的各向异性,使得材料在弯曲或加工、成形过程中极易开裂[7]. ...
Effect of temperature on the flow stress and strain-hardening coefficient of magnesium single crystals
1
1957
... Mg是典型的hcp晶体结构,其室温下主要的塑性变形方式是位错的滑移[5].当外加应力达到一定的临界值时,滑移系才能开启,这个应力值被称为临界剪切应力(critical resolved shear stress,CRSS).金属晶体的密排面间距最大,密排方向的Burgers矢量模最小,因此滑移通常发生在材料密排面的密排方向上.Mg的密排面为{0001}基面,密排方向为密排面上的<110>晶向,由密排面和密排方向组成的基面<a>滑移系{0001}<110>是镁合金中最常见的滑移系,如图1a所示.基面<a>滑移系的CRSS极低,室温下仅为0.5 MPa[6],通常会在塑性变形过程中优先启动并占据主导地位.通常来说,金属晶体的塑性变形要满足Von-Mises准则,即多晶体至少需要激活5个独立滑移系来协调均匀塑性变形.然而,Mg中基面<a>滑移只能提供2个独立的滑移系,会破坏材料的运动学相容性,导致材料失效,这被认为是导致Mg塑性差的主要原因.此外,基面滑移系的启动也使得Mg在变形过程中产生强烈的基面织构,导致塑性变形的各向异性,使得材料在弯曲或加工、成形过程中极易开裂[7]. ...
Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B
2
2005
... Mg是典型的hcp晶体结构,其室温下主要的塑性变形方式是位错的滑移[5].当外加应力达到一定的临界值时,滑移系才能开启,这个应力值被称为临界剪切应力(critical resolved shear stress,CRSS).金属晶体的密排面间距最大,密排方向的Burgers矢量模最小,因此滑移通常发生在材料密排面的密排方向上.Mg的密排面为{0001}基面,密排方向为密排面上的<110>晶向,由密排面和密排方向组成的基面<a>滑移系{0001}<110>是镁合金中最常见的滑移系,如图1a所示.基面<a>滑移系的CRSS极低,室温下仅为0.5 MPa[6],通常会在塑性变形过程中优先启动并占据主导地位.通常来说,金属晶体的塑性变形要满足Von-Mises准则,即多晶体至少需要激活5个独立滑移系来协调均匀塑性变形.然而,Mg中基面<a>滑移只能提供2个独立的滑移系,会破坏材料的运动学相容性,导致材料失效,这被认为是导致Mg塑性差的主要原因.此外,基面滑移系的启动也使得Mg在变形过程中产生强烈的基面织构,导致塑性变形的各向异性,使得材料在弯曲或加工、成形过程中极易开裂[7]. ...
... 从晶体结构上看,除了基面<a>滑移系,Mg中常见的滑移系还有柱面<a>滑移系{100}<110>、一级锥面<a>滑移系{101}<110>、一级锥面<c + a>滑移系{101}<113>以及二级锥面<c + a>滑移系{112}<113>,如图1b~d所示.不同滑移系的位错运动能力及行为区别较大,同时也存在着位错的分解、交滑移或双交滑移等现象.Agnew和Duygulu[7]在AZ31镁合金多晶材料中观察到大量<a>位错在基面-柱面的交滑移现象,证实了基面<a>位错能够通过交滑移的方式运动到柱面.Zhu等[8]也在Mg-Ca合金中观察到<a>位错在基面和柱面的交滑移现象,认为交滑移能够有效增加<a>位错的运动路径,缓解应力集中.但是基面<a>和柱面<a>滑移系都只能协调a轴方向的塑性应变,Mg仍会出现塑性变形的各向异性.从晶体学角度来说,锥面<c + a>滑移系的启动能够有效协调c轴方向的塑性应变,这对Mg的塑性变形至关重要.Liu等[9]采用原位透射电镜表征结合三维重构分析,观测到室温下单晶Mg纳米柱中的刃型、螺型以及混合型<c + a>位错的平面滑移及交滑移现象,直接说明锥面<c + a>位错的可动性,证明其能够作为协调c轴变形的有效载体.然而,纯Mg室温下非基面滑移系的CRSS较高,是基面<a>滑移系的上百倍[10].因此,多晶体中非基面滑移系的启动较难,尤其是锥面<c + a>滑移系,通常会在塑性变形的中后期、应力集中的情况下才能出现. ...
Improving ductility of a Mg alloy via non-basal <a> slip induced by Ca addition
2
2019
... 从晶体结构上看,除了基面<a>滑移系,Mg中常见的滑移系还有柱面<a>滑移系{100}<110>、一级锥面<a>滑移系{101}<110>、一级锥面<c + a>滑移系{101}<113>以及二级锥面<c + a>滑移系{112}<113>,如图1b~d所示.不同滑移系的位错运动能力及行为区别较大,同时也存在着位错的分解、交滑移或双交滑移等现象.Agnew和Duygulu[7]在AZ31镁合金多晶材料中观察到大量<a>位错在基面-柱面的交滑移现象,证实了基面<a>位错能够通过交滑移的方式运动到柱面.Zhu等[8]也在Mg-Ca合金中观察到<a>位错在基面和柱面的交滑移现象,认为交滑移能够有效增加<a>位错的运动路径,缓解应力集中.但是基面<a>和柱面<a>滑移系都只能协调a轴方向的塑性应变,Mg仍会出现塑性变形的各向异性.从晶体学角度来说,锥面<c + a>滑移系的启动能够有效协调c轴方向的塑性应变,这对Mg的塑性变形至关重要.Liu等[9]采用原位透射电镜表征结合三维重构分析,观测到室温下单晶Mg纳米柱中的刃型、螺型以及混合型<c + a>位错的平面滑移及交滑移现象,直接说明锥面<c + a>位错的可动性,证明其能够作为协调c轴变形的有效载体.然而,纯Mg室温下非基面滑移系的CRSS较高,是基面<a>滑移系的上百倍[10].因此,多晶体中非基面滑移系的启动较难,尤其是锥面<c + a>滑移系,通常会在塑性变形的中后期、应力集中的情况下才能出现. ...
... 从实验研究的角度来说,研究人员采用多种微观力学测试手段测定了不同镁合金滑移系的CRSS,并深入研究了镁合金的塑性变形机制[10,39].Wang等[40]基于三维X射线衍射(3DXRD)技术,测定了多晶Mg-3Y (质量分数,%,下同)体系中非基面与基面滑移系的比值为CRSSprismatic<a>∶CRSSpyramidal<a>∶CRSSbasal<a> = 3.2∶3.0∶1.0,这个数值明显小于纯Mg,证实了稀土元素Y有效缩小了非基面与基面滑移系之间的启动能力差异,促进了多系滑移.Huang等[41]利用相同方法研究了Mg-5Y合金的塑性变形机理,估算了非基面滑移与基面的CRSS比值,其CRSSprismatic<a>∶CRSSbasal<a> = 1.8~2.7,CRSSpyramidal<a>∶CRSSbasal<a> = 1.6~1.8.Sabat等[42]制备了具有不同织构的Mg-0.2Ce (原子分数,%)合金,结合晶体塑性有限元模拟(crystal plasticity finite element modelling,CPFEM)方法,预测了其不同滑移系及孪晶的CRSS比值为CRSSbasal<a>∶CRSSprismatic<a>∶CRSSpyramidal<c + a>∶CRSStwinning = 1∶1.5∶4∶1.4.Zhu等[8]报道了Ca原子能够有效降低非基面与基面滑移系的CRSS比值,增强Mg-Ca合金中基面-柱面<a>位错的交滑移行为,从而提升镁合金的塑性.Standford和Barnett[24]研究发现,在Mg-2.8Zn合金中,柱面与基面滑移系的CRSS比值会随着晶粒尺寸的增大而递增,这说明CRSS比值的测定可能会受到多晶样品应变不均匀性和晶界等的影响.Liu等[43]通过单晶微柱压缩技术,在特定取向晶粒下加载微米级样品柱,使微柱能够在塑性变形过程中激活单一、特定的滑移系,结合表面迹线分析方法分析了滑移系对应的变形行为,精确地测定了纯Mg的基面<a>滑移系和孪晶的CRSS,分别为29和6 MPa.Lilleodden[44]也采用单晶微柱压缩技术测定了纯Mg的二级锥面<c + a>滑移系的CRSS.单晶微柱压缩能够更有效地排除晶界、相界等因素的干扰,定量反应合金元素的种类和含量对于Mg及其合金滑移系CRSS的影响,并进一步分析了滑移系的变形行为.Wang等[12,45,46]利用单晶微柱压缩技术结合高通量扩散多元节等手段,获得了不同Al、Zn、Ca合金成分下基面、锥面及拉伸孪晶的CRSS,定量表征了合金元素含量对非基面与基面滑移系CRSS比值的影响,如图3[45]所示.Wu等[47]也通过微柱压缩方法测定Mg-4Y合金中锥面<c + a>与基面<a>滑移系的CRSS比值降低到2.8~4.8,且Y元素的添加一定程度上提升了拉伸孪晶形核的CRSS,抑制了其形核,显著降低了孪晶造成的拉压不对称现象. ...
Large plasticity in magnesium mediated by pyramidal dislocations
1
2019
... 从晶体结构上看,除了基面<a>滑移系,Mg中常见的滑移系还有柱面<a>滑移系{100}<110>、一级锥面<a>滑移系{101}<110>、一级锥面<c + a>滑移系{101}<113>以及二级锥面<c + a>滑移系{112}<113>,如图1b~d所示.不同滑移系的位错运动能力及行为区别较大,同时也存在着位错的分解、交滑移或双交滑移等现象.Agnew和Duygulu[7]在AZ31镁合金多晶材料中观察到大量<a>位错在基面-柱面的交滑移现象,证实了基面<a>位错能够通过交滑移的方式运动到柱面.Zhu等[8]也在Mg-Ca合金中观察到<a>位错在基面和柱面的交滑移现象,认为交滑移能够有效增加<a>位错的运动路径,缓解应力集中.但是基面<a>和柱面<a>滑移系都只能协调a轴方向的塑性应变,Mg仍会出现塑性变形的各向异性.从晶体学角度来说,锥面<c + a>滑移系的启动能够有效协调c轴方向的塑性应变,这对Mg的塑性变形至关重要.Liu等[9]采用原位透射电镜表征结合三维重构分析,观测到室温下单晶Mg纳米柱中的刃型、螺型以及混合型<c + a>位错的平面滑移及交滑移现象,直接说明锥面<c + a>位错的可动性,证明其能够作为协调c轴变形的有效载体.然而,纯Mg室温下非基面滑移系的CRSS较高,是基面<a>滑移系的上百倍[10].因此,多晶体中非基面滑移系的启动较难,尤其是锥面<c + a>滑移系,通常会在塑性变形的中后期、应力集中的情况下才能出现. ...
Critical resolved shear stresses for slip and twinning in Mg-Y-Ca alloys and their effect on the ductility
3
2023
... 从晶体结构上看,除了基面<a>滑移系,Mg中常见的滑移系还有柱面<a>滑移系{100}<110>、一级锥面<a>滑移系{101}<110>、一级锥面<c + a>滑移系{101}<113>以及二级锥面<c + a>滑移系{112}<113>,如图1b~d所示.不同滑移系的位错运动能力及行为区别较大,同时也存在着位错的分解、交滑移或双交滑移等现象.Agnew和Duygulu[7]在AZ31镁合金多晶材料中观察到大量<a>位错在基面-柱面的交滑移现象,证实了基面<a>位错能够通过交滑移的方式运动到柱面.Zhu等[8]也在Mg-Ca合金中观察到<a>位错在基面和柱面的交滑移现象,认为交滑移能够有效增加<a>位错的运动路径,缓解应力集中.但是基面<a>和柱面<a>滑移系都只能协调a轴方向的塑性应变,Mg仍会出现塑性变形的各向异性.从晶体学角度来说,锥面<c + a>滑移系的启动能够有效协调c轴方向的塑性应变,这对Mg的塑性变形至关重要.Liu等[9]采用原位透射电镜表征结合三维重构分析,观测到室温下单晶Mg纳米柱中的刃型、螺型以及混合型<c + a>位错的平面滑移及交滑移现象,直接说明锥面<c + a>位错的可动性,证明其能够作为协调c轴变形的有效载体.然而,纯Mg室温下非基面滑移系的CRSS较高,是基面<a>滑移系的上百倍[10].因此,多晶体中非基面滑移系的启动较难,尤其是锥面<c + a>滑移系,通常会在塑性变形的中后期、应力集中的情况下才能出现. ...
... 从理论计算的角度来说,目前已有大量研究人员利用第一性原理计算和分子动力学模拟等手段探究固溶原子对镁合金的广义层错能(GSFE)[28~30]、理想剪切强度[31,32]、电子功函数[33]、交滑移激活能[23,34]等的影响.Shang等[35]利用第一性原理计算方法研究了合金元素对Mg基面广义层错能的影响,计算了镁合金中基面的稳定层错能、不稳定层错能、孪晶形成能以及理想剪切强度.结果表明,在Mg基体中加入不同的合金元素,会对Mg原子的电荷分布产生影响,进而改变镁合金基面滑移系的启动能力.Yu等[10]通过第一性原理计算的方法探究了Ca、Y以及2者的共同作用对镁合金中基面<a>、柱面<a>以及锥面<a>滑移系的不稳定层错能的影响,发现Ca和Y元素的共同作用能显著降低Mg的柱面<a>滑移系不稳定层错能,揭示了Mg-Y-Ca合金中的柱面<a>位错易激活的深层原因.Ding等[36]通过计算稀土元素Y对Mg的锥面<c + a>广义层错能曲线的影响,发现Y的加入促进了<c + a>位错在二级锥面上的分解,从而导致Mg-Y合金中二级锥面<c + a>位错比一级锥面<c + a>位错更容易形成和启动.进一步模拟发现,在Mg的二级锥面<c + a>的稳定层错能的位置,其周围存在一个平坦的势能面(potential-energy surface,PSE),使得原子可以在滑移面内协同运动,Y原子的添加增大了PSE的范围,可以为Mg-Y合金提供不同的滑移路径.除了广义层错能之外,大量的模拟研究也分析了合金元素对滑移系启动应力的影响.Yasi等[22]计算了29种合金元素在Mg中的基面刃位错、基面螺位错的相互作用能,预测了溶质元素-位错的化学交互作用和弹性交互作用对镁合金固溶强化的影响.Zeng等[32]也通过第一性原理计算准确预测了纯Mg和Mg-Sn合金中基面滑移系和锥面滑移系的理论临界剪切强度,并将其近似看做滑移系启动的CRSS.计算结果表明,Sn元素可有效提升基面滑移系的CRSS (从114 MPa提高至149 MPa),同时降低锥面滑移系的CRSS (从1571 MPa降至446 MPa),进而降低了锥面与基面滑移系的CRSS比值,更加有助于锥面滑移系的启动,提升Mg-Sn合金的成形性和塑性.Sandlöbes等[37]对纯Mg及Mg-Y合金中基面I1型层错能进行计算,并结合透射电镜表征技术讨论了添加Y元素有利于降低基面I1型层错能,认为I1型层错可能是锥面<c + a>位错形核位点,能进一步降低锥面<c + a>位错的激活阻碍.Wu和Curtin[38]通过修正嵌入原子势函数进行长时间的分子动力学模拟研究,发现二级锥面<c + a>刃位错是亚稳态的,会自发分解为不可动的与基面相关的<c + a>位错或不可动的<c>位错+基面<a>位错,认为这种可动锥面扩展结构(P)转变到能量更低的不可动基面结构(B)是纯Mg中<c + a>位错难以协调c轴塑性的根本原因.Wu等[23]认为,获得塑性良好的Mg就必须通过合金化的方法延迟或避免这种P→B转变,降低<c + a>在锥面之间的交滑移激活能,进一步协调塑性变形. ...
... 从实验研究的角度来说,研究人员采用多种微观力学测试手段测定了不同镁合金滑移系的CRSS,并深入研究了镁合金的塑性变形机制[10,39].Wang等[40]基于三维X射线衍射(3DXRD)技术,测定了多晶Mg-3Y (质量分数,%,下同)体系中非基面与基面滑移系的比值为CRSSprismatic<a>∶CRSSpyramidal<a>∶CRSSbasal<a> = 3.2∶3.0∶1.0,这个数值明显小于纯Mg,证实了稀土元素Y有效缩小了非基面与基面滑移系之间的启动能力差异,促进了多系滑移.Huang等[41]利用相同方法研究了Mg-5Y合金的塑性变形机理,估算了非基面滑移与基面的CRSS比值,其CRSSprismatic<a>∶CRSSbasal<a> = 1.8~2.7,CRSSpyramidal<a>∶CRSSbasal<a> = 1.6~1.8.Sabat等[42]制备了具有不同织构的Mg-0.2Ce (原子分数,%)合金,结合晶体塑性有限元模拟(crystal plasticity finite element modelling,CPFEM)方法,预测了其不同滑移系及孪晶的CRSS比值为CRSSbasal<a>∶CRSSprismatic<a>∶CRSSpyramidal<c + a>∶CRSStwinning = 1∶1.5∶4∶1.4.Zhu等[8]报道了Ca原子能够有效降低非基面与基面滑移系的CRSS比值,增强Mg-Ca合金中基面-柱面<a>位错的交滑移行为,从而提升镁合金的塑性.Standford和Barnett[24]研究发现,在Mg-2.8Zn合金中,柱面与基面滑移系的CRSS比值会随着晶粒尺寸的增大而递增,这说明CRSS比值的测定可能会受到多晶样品应变不均匀性和晶界等的影响.Liu等[43]通过单晶微柱压缩技术,在特定取向晶粒下加载微米级样品柱,使微柱能够在塑性变形过程中激活单一、特定的滑移系,结合表面迹线分析方法分析了滑移系对应的变形行为,精确地测定了纯Mg的基面<a>滑移系和孪晶的CRSS,分别为29和6 MPa.Lilleodden[44]也采用单晶微柱压缩技术测定了纯Mg的二级锥面<c + a>滑移系的CRSS.单晶微柱压缩能够更有效地排除晶界、相界等因素的干扰,定量反应合金元素的种类和含量对于Mg及其合金滑移系CRSS的影响,并进一步分析了滑移系的变形行为.Wang等[12,45,46]利用单晶微柱压缩技术结合高通量扩散多元节等手段,获得了不同Al、Zn、Ca合金成分下基面、锥面及拉伸孪晶的CRSS,定量表征了合金元素含量对非基面与基面滑移系CRSS比值的影响,如图3[45]所示.Wu等[47]也通过微柱压缩方法测定Mg-4Y合金中锥面<c + a>与基面<a>滑移系的CRSS比值降低到2.8~4.8,且Y元素的添加一定程度上提升了拉伸孪晶形核的CRSS,抑制了其形核,显著降低了孪晶造成的拉压不对称现象. ...
Why are twins profuse in magnesium?
1
2015
... 此外,孪晶也是Mg中另一种重要的塑性变形机制[11],能有效协调c轴方向的应变.Mg中常见的孪晶类型为{101}压缩孪晶和{102}拉伸孪晶(图1e和f),其形核的CRSS分别为76~153和2~2.8 MPa[12].由于形核CRSS较低,{102}拉伸孪晶更容易参与Mg的塑性变形,且容易扩展和生长.然而激活后的孪晶界易造成应力集中和剪切局域化,提供的剪切变形的切变量较小[13],因此孪晶提供塑性变形的能力有限.当位错的滑移受阻时,孪晶能够将晶体改变为对滑移有利的取向,继续协调塑性变形,在Mg的塑性加工过程中发挥重要作用. ...
Effect of Al content on the critical resolved shear stress for twin nucleation and growth in Mg alloys
2
2020
... 此外,孪晶也是Mg中另一种重要的塑性变形机制[11],能有效协调c轴方向的应变.Mg中常见的孪晶类型为{101}压缩孪晶和{102}拉伸孪晶(图1e和f),其形核的CRSS分别为76~153和2~2.8 MPa[12].由于形核CRSS较低,{102}拉伸孪晶更容易参与Mg的塑性变形,且容易扩展和生长.然而激活后的孪晶界易造成应力集中和剪切局域化,提供的剪切变形的切变量较小[13],因此孪晶提供塑性变形的能力有限.当位错的滑移受阻时,孪晶能够将晶体改变为对滑移有利的取向,继续协调塑性变形,在Mg的塑性加工过程中发挥重要作用. ...
... 从实验研究的角度来说,研究人员采用多种微观力学测试手段测定了不同镁合金滑移系的CRSS,并深入研究了镁合金的塑性变形机制[10,39].Wang等[40]基于三维X射线衍射(3DXRD)技术,测定了多晶Mg-3Y (质量分数,%,下同)体系中非基面与基面滑移系的比值为CRSSprismatic<a>∶CRSSpyramidal<a>∶CRSSbasal<a> = 3.2∶3.0∶1.0,这个数值明显小于纯Mg,证实了稀土元素Y有效缩小了非基面与基面滑移系之间的启动能力差异,促进了多系滑移.Huang等[41]利用相同方法研究了Mg-5Y合金的塑性变形机理,估算了非基面滑移与基面的CRSS比值,其CRSSprismatic<a>∶CRSSbasal<a> = 1.8~2.7,CRSSpyramidal<a>∶CRSSbasal<a> = 1.6~1.8.Sabat等[42]制备了具有不同织构的Mg-0.2Ce (原子分数,%)合金,结合晶体塑性有限元模拟(crystal plasticity finite element modelling,CPFEM)方法,预测了其不同滑移系及孪晶的CRSS比值为CRSSbasal<a>∶CRSSprismatic<a>∶CRSSpyramidal<c + a>∶CRSStwinning = 1∶1.5∶4∶1.4.Zhu等[8]报道了Ca原子能够有效降低非基面与基面滑移系的CRSS比值,增强Mg-Ca合金中基面-柱面<a>位错的交滑移行为,从而提升镁合金的塑性.Standford和Barnett[24]研究发现,在Mg-2.8Zn合金中,柱面与基面滑移系的CRSS比值会随着晶粒尺寸的增大而递增,这说明CRSS比值的测定可能会受到多晶样品应变不均匀性和晶界等的影响.Liu等[43]通过单晶微柱压缩技术,在特定取向晶粒下加载微米级样品柱,使微柱能够在塑性变形过程中激活单一、特定的滑移系,结合表面迹线分析方法分析了滑移系对应的变形行为,精确地测定了纯Mg的基面<a>滑移系和孪晶的CRSS,分别为29和6 MPa.Lilleodden[44]也采用单晶微柱压缩技术测定了纯Mg的二级锥面<c + a>滑移系的CRSS.单晶微柱压缩能够更有效地排除晶界、相界等因素的干扰,定量反应合金元素的种类和含量对于Mg及其合金滑移系CRSS的影响,并进一步分析了滑移系的变形行为.Wang等[12,45,46]利用单晶微柱压缩技术结合高通量扩散多元节等手段,获得了不同Al、Zn、Ca合金成分下基面、锥面及拉伸孪晶的CRSS,定量表征了合金元素含量对非基面与基面滑移系CRSS比值的影响,如图3[45]所示.Wu等[47]也通过微柱压缩方法测定Mg-4Y合金中锥面<c + a>与基面<a>滑移系的CRSS比值降低到2.8~4.8,且Y元素的添加一定程度上提升了拉伸孪晶形核的CRSS,抑制了其形核,显著降低了孪晶造成的拉压不对称现象. ...
Twin-induced stability and mechanical properties of pure magnesium
1
2019
... 此外,孪晶也是Mg中另一种重要的塑性变形机制[11],能有效协调c轴方向的应变.Mg中常见的孪晶类型为{101}压缩孪晶和{102}拉伸孪晶(图1e和f),其形核的CRSS分别为76~153和2~2.8 MPa[12].由于形核CRSS较低,{102}拉伸孪晶更容易参与Mg的塑性变形,且容易扩展和生长.然而激活后的孪晶界易造成应力集中和剪切局域化,提供的剪切变形的切变量较小[13],因此孪晶提供塑性变形的能力有限.当位错的滑移受阻时,孪晶能够将晶体改变为对滑移有利的取向,继续协调塑性变形,在Mg的塑性加工过程中发挥重要作用. ...
Deformation mechanisms in a novel multiscale hetero-structured Mg alloy with high strength-ductility synergy
1
2023
... 对于Mg的滑移和孪晶机制的研究通常集中于Mg的晶内变形行为,而多晶材料的力学行为可以看作所有晶粒变形行为的集合,某一晶粒的滑移或孪晶变形行为同时受其自身取向和邻近晶粒所施加的晶间作用的影响,因此在多晶材料中,晶粒间的相互作用和协调至关重要.借助单晶体的Schmid定律和CRSS来评估多晶Mg的变形行为可能存在一些局限性.当变形过程中一些晶粒有利于软取向基面<a>滑移开始发生塑性变形之后,一些有利于硬取向的晶粒并未变形,这种变形的不均匀性会导致宏观外加应力与微观局部应力状态之间存在差异,因此无法准确描述多晶Mg中某一晶粒的变形行为,存在不符合Schmid定律的变形行为,这种现象被称为非Schmid效应(non-Schmid effect)[14].目前的研究认为,在多晶体材料中,为了释放局部应力集中而保持应变的连续性,往往会在晶界处发生位错滑移传递.Mg的位错滑移传递机制有2种可能情况:一是位错在晶界处受阻而发生堆积,局部应力会随着应变增加而进一步增大,当局部应力超过临界值时,就会激发相邻的晶粒产生位错滑移;第二种是位错在晶界处受阻后,直接穿过晶界诱发相邻的晶粒产生滑移,从而协调多晶Mg的塑性变形. ...
Chemical inhomogeneities in high-entropy alloys help mitigate the strength-ductility trade-off
1
2024
... 位错的滑移能力决定着金属材料的塑性变形能力[15].基于Mg的塑性变形机制可以得出,提高Mg塑性的有效方式是激活更多类型的滑移,为位错运动提供更多的可动路径,协调塑性应变进而实现均匀的塑性变形,这是Mg塑韧化的重要方式.不同的位错在滑移面上会产生交互作用,引起位错缠结、交互和湮灭等行为,形成林位错(forest dislocations)及Lomer-Cottrell (L-C)位错锁等结构.Li等[16]通过分子动力学模拟研究发现,Mg基面位错的领先(leading)不全位错会与锥面{101}<113>的领先不全位错发生交互反应,生成一种不可动的L-C位错锁结构,增加位错的运动阻碍,产生应变硬化效应,进而影响Mg的塑性变形能力.Bertin等[17]通过离散位错动力学(discrete dislocation dynamics,DDD)量化了Mg中不同位错交互的潜在硬化能力及其对塑性变形的影响,发现基面<a>和二级锥面<c + a>位错会产生强烈的弹性交互作用,引起显著的应变硬化.多滑移系位错的交互作用及产生的硬化行为也强烈影响着Mg宏观塑性变形中的应变演化行为.Orozco-Caballero等[18]通过高分辨数字化图像关联(high-resolution digital image correlation,HRDIC)技术结合原位电子背散射衍射(EBSD)分析的方法,定量评估了Mg的塑性变形过程中不同滑移系对应变均匀性的贡献,评估了不同变形机制对应变协调的作用,如图2[18]所示.研究[18]发现,基面滑移一般呈现较为典型的平面滑移特征,在变形过程中承担更多的应变;柱面滑移一般表现出扩散滑移的特征,较难在变形过程中承担应变,2者会导致宏观镁材料的塑性变形不协调.同时提出,通过“软取向”和“硬取向”晶粒内位错的共同滑移作用,可以有效防止应变局域化,提升Mg的塑性变形能力.由此可见,具有不同变形特征的滑移系在塑性变形过程中承担着不同的角色,对塑性变形的贡献也截然不同,合理调控多种滑移系共同启动,对宏观塑性具有重要意义.此外,Mg的塑性变形机制及力学性能具有较强的成分和组织敏感性.例如,Zeng等[19]研究发现,通过传统热挤压方式将纯Mg的晶粒尺寸降低至1 μm后,位错的滑移和孪晶不再占据变形的主导地位,晶粒旋转和动态再结晶等晶间机制开始协调塑性变形,成为新的存续变形方式,使得镁合金在室温下呈现超高塑性和成形性.调控合金元素种类和含量、晶粒尺寸、析出相及织构等会显著改变其变形机制,进而产生不同的力学响应. ...
Basal-pyramidal dislocation lock in deformed magnesium
1
2017
... 位错的滑移能力决定着金属材料的塑性变形能力[15].基于Mg的塑性变形机制可以得出,提高Mg塑性的有效方式是激活更多类型的滑移,为位错运动提供更多的可动路径,协调塑性应变进而实现均匀的塑性变形,这是Mg塑韧化的重要方式.不同的位错在滑移面上会产生交互作用,引起位错缠结、交互和湮灭等行为,形成林位错(forest dislocations)及Lomer-Cottrell (L-C)位错锁等结构.Li等[16]通过分子动力学模拟研究发现,Mg基面位错的领先(leading)不全位错会与锥面{101}<113>的领先不全位错发生交互反应,生成一种不可动的L-C位错锁结构,增加位错的运动阻碍,产生应变硬化效应,进而影响Mg的塑性变形能力.Bertin等[17]通过离散位错动力学(discrete dislocation dynamics,DDD)量化了Mg中不同位错交互的潜在硬化能力及其对塑性变形的影响,发现基面<a>和二级锥面<c + a>位错会产生强烈的弹性交互作用,引起显著的应变硬化.多滑移系位错的交互作用及产生的硬化行为也强烈影响着Mg宏观塑性变形中的应变演化行为.Orozco-Caballero等[18]通过高分辨数字化图像关联(high-resolution digital image correlation,HRDIC)技术结合原位电子背散射衍射(EBSD)分析的方法,定量评估了Mg的塑性变形过程中不同滑移系对应变均匀性的贡献,评估了不同变形机制对应变协调的作用,如图2[18]所示.研究[18]发现,基面滑移一般呈现较为典型的平面滑移特征,在变形过程中承担更多的应变;柱面滑移一般表现出扩散滑移的特征,较难在变形过程中承担应变,2者会导致宏观镁材料的塑性变形不协调.同时提出,通过“软取向”和“硬取向”晶粒内位错的共同滑移作用,可以有效防止应变局域化,提升Mg的塑性变形能力.由此可见,具有不同变形特征的滑移系在塑性变形过程中承担着不同的角色,对塑性变形的贡献也截然不同,合理调控多种滑移系共同启动,对宏观塑性具有重要意义.此外,Mg的塑性变形机制及力学性能具有较强的成分和组织敏感性.例如,Zeng等[19]研究发现,通过传统热挤压方式将纯Mg的晶粒尺寸降低至1 μm后,位错的滑移和孪晶不再占据变形的主导地位,晶粒旋转和动态再结晶等晶间机制开始协调塑性变形,成为新的存续变形方式,使得镁合金在室温下呈现超高塑性和成形性.调控合金元素种类和含量、晶粒尺寸、析出相及织构等会显著改变其变形机制,进而产生不同的力学响应. ...
On the strength of dislocation interactions and their effect on latent hardening in pure magnesium
1
2014
... 位错的滑移能力决定着金属材料的塑性变形能力[15].基于Mg的塑性变形机制可以得出,提高Mg塑性的有效方式是激活更多类型的滑移,为位错运动提供更多的可动路径,协调塑性应变进而实现均匀的塑性变形,这是Mg塑韧化的重要方式.不同的位错在滑移面上会产生交互作用,引起位错缠结、交互和湮灭等行为,形成林位错(forest dislocations)及Lomer-Cottrell (L-C)位错锁等结构.Li等[16]通过分子动力学模拟研究发现,Mg基面位错的领先(leading)不全位错会与锥面{101}<113>的领先不全位错发生交互反应,生成一种不可动的L-C位错锁结构,增加位错的运动阻碍,产生应变硬化效应,进而影响Mg的塑性变形能力.Bertin等[17]通过离散位错动力学(discrete dislocation dynamics,DDD)量化了Mg中不同位错交互的潜在硬化能力及其对塑性变形的影响,发现基面<a>和二级锥面<c + a>位错会产生强烈的弹性交互作用,引起显著的应变硬化.多滑移系位错的交互作用及产生的硬化行为也强烈影响着Mg宏观塑性变形中的应变演化行为.Orozco-Caballero等[18]通过高分辨数字化图像关联(high-resolution digital image correlation,HRDIC)技术结合原位电子背散射衍射(EBSD)分析的方法,定量评估了Mg的塑性变形过程中不同滑移系对应变均匀性的贡献,评估了不同变形机制对应变协调的作用,如图2[18]所示.研究[18]发现,基面滑移一般呈现较为典型的平面滑移特征,在变形过程中承担更多的应变;柱面滑移一般表现出扩散滑移的特征,较难在变形过程中承担应变,2者会导致宏观镁材料的塑性变形不协调.同时提出,通过“软取向”和“硬取向”晶粒内位错的共同滑移作用,可以有效防止应变局域化,提升Mg的塑性变形能力.由此可见,具有不同变形特征的滑移系在塑性变形过程中承担着不同的角色,对塑性变形的贡献也截然不同,合理调控多种滑移系共同启动,对宏观塑性具有重要意义.此外,Mg的塑性变形机制及力学性能具有较强的成分和组织敏感性.例如,Zeng等[19]研究发现,通过传统热挤压方式将纯Mg的晶粒尺寸降低至1 μm后,位错的滑移和孪晶不再占据变形的主导地位,晶粒旋转和动态再结晶等晶间机制开始协调塑性变形,成为新的存续变形方式,使得镁合金在室温下呈现超高塑性和成形性.调控合金元素种类和含量、晶粒尺寸、析出相及织构等会显著改变其变形机制,进而产生不同的力学响应. ...
How magnesium accommodates local deformation incompatibility: A high-resolution digital image correlation study
5
2017
... 位错的滑移能力决定着金属材料的塑性变形能力[15].基于Mg的塑性变形机制可以得出,提高Mg塑性的有效方式是激活更多类型的滑移,为位错运动提供更多的可动路径,协调塑性应变进而实现均匀的塑性变形,这是Mg塑韧化的重要方式.不同的位错在滑移面上会产生交互作用,引起位错缠结、交互和湮灭等行为,形成林位错(forest dislocations)及Lomer-Cottrell (L-C)位错锁等结构.Li等[16]通过分子动力学模拟研究发现,Mg基面位错的领先(leading)不全位错会与锥面{101}<113>的领先不全位错发生交互反应,生成一种不可动的L-C位错锁结构,增加位错的运动阻碍,产生应变硬化效应,进而影响Mg的塑性变形能力.Bertin等[17]通过离散位错动力学(discrete dislocation dynamics,DDD)量化了Mg中不同位错交互的潜在硬化能力及其对塑性变形的影响,发现基面<a>和二级锥面<c + a>位错会产生强烈的弹性交互作用,引起显著的应变硬化.多滑移系位错的交互作用及产生的硬化行为也强烈影响着Mg宏观塑性变形中的应变演化行为.Orozco-Caballero等[18]通过高分辨数字化图像关联(high-resolution digital image correlation,HRDIC)技术结合原位电子背散射衍射(EBSD)分析的方法,定量评估了Mg的塑性变形过程中不同滑移系对应变均匀性的贡献,评估了不同变形机制对应变协调的作用,如图2[18]所示.研究[18]发现,基面滑移一般呈现较为典型的平面滑移特征,在变形过程中承担更多的应变;柱面滑移一般表现出扩散滑移的特征,较难在变形过程中承担应变,2者会导致宏观镁材料的塑性变形不协调.同时提出,通过“软取向”和“硬取向”晶粒内位错的共同滑移作用,可以有效防止应变局域化,提升Mg的塑性变形能力.由此可见,具有不同变形特征的滑移系在塑性变形过程中承担着不同的角色,对塑性变形的贡献也截然不同,合理调控多种滑移系共同启动,对宏观塑性具有重要意义.此外,Mg的塑性变形机制及力学性能具有较强的成分和组织敏感性.例如,Zeng等[19]研究发现,通过传统热挤压方式将纯Mg的晶粒尺寸降低至1 μm后,位错的滑移和孪晶不再占据变形的主导地位,晶粒旋转和动态再结晶等晶间机制开始协调塑性变形,成为新的存续变形方式,使得镁合金在室温下呈现超高塑性和成形性.调控合金元素种类和含量、晶粒尺寸、析出相及织构等会显著改变其变形机制,进而产生不同的力学响应. ...
... [18]所示.研究[18]发现,基面滑移一般呈现较为典型的平面滑移特征,在变形过程中承担更多的应变;柱面滑移一般表现出扩散滑移的特征,较难在变形过程中承担应变,2者会导致宏观镁材料的塑性变形不协调.同时提出,通过“软取向”和“硬取向”晶粒内位错的共同滑移作用,可以有效防止应变局域化,提升Mg的塑性变形能力.由此可见,具有不同变形特征的滑移系在塑性变形过程中承担着不同的角色,对塑性变形的贡献也截然不同,合理调控多种滑移系共同启动,对宏观塑性具有重要意义.此外,Mg的塑性变形机制及力学性能具有较强的成分和组织敏感性.例如,Zeng等[19]研究发现,通过传统热挤压方式将纯Mg的晶粒尺寸降低至1 μm后,位错的滑移和孪晶不再占据变形的主导地位,晶粒旋转和动态再结晶等晶间机制开始协调塑性变形,成为新的存续变形方式,使得镁合金在室温下呈现超高塑性和成形性.调控合金元素种类和含量、晶粒尺寸、析出相及织构等会显著改变其变形机制,进而产生不同的力学响应. ...
... [18]发现,基面滑移一般呈现较为典型的平面滑移特征,在变形过程中承担更多的应变;柱面滑移一般表现出扩散滑移的特征,较难在变形过程中承担应变,2者会导致宏观镁材料的塑性变形不协调.同时提出,通过“软取向”和“硬取向”晶粒内位错的共同滑移作用,可以有效防止应变局域化,提升Mg的塑性变形能力.由此可见,具有不同变形特征的滑移系在塑性变形过程中承担着不同的角色,对塑性变形的贡献也截然不同,合理调控多种滑移系共同启动,对宏观塑性具有重要意义.此外,Mg的塑性变形机制及力学性能具有较强的成分和组织敏感性.例如,Zeng等[19]研究发现,通过传统热挤压方式将纯Mg的晶粒尺寸降低至1 μm后,位错的滑移和孪晶不再占据变形的主导地位,晶粒旋转和动态再结晶等晶间机制开始协调塑性变形,成为新的存续变形方式,使得镁合金在室温下呈现超高塑性和成形性.调控合金元素种类和含量、晶粒尺寸、析出相及织构等会显著改变其变形机制,进而产生不同的力学响应. ...
... [
18]
Effective shear strains (<i>γ</i><sub>eff</sub>) showing the slip morphology for grains deforming by basal slip (a), diffuse prismatic slip (b), and wavy prismatic slip (c) (White arrows in Fig.2a point to hard particles interacting with slip. Additionally, a hexagonal prism showing the crystallographic orientation and the slip traces for the three main active slip systems at room temperature in magnesium with Schmid factors <i>m</i> > 0.1 are displayed for each grain)<sup>[<xref ref-type="bibr" rid="R18">18</xref>]</sup>Fig.2本团队近10年来对镁合金塑性变形机制进行了深入研究,提出了“多系滑移增塑”的镁合金设计方向:内在调控非基面与基面滑移系的CRSS比值,多元化镁合金中位错的种类和运动路径;外在复合可变形微结构(如晶界、可变形第二相),提供更多协调塑性应变的变形方式.调控非基面与基面滑移系的CRSS比值是指降低Mg中的非基面和基面滑移系的启动阻力差异,促进更多非基面滑移系的启动.值得注意的是,降低CRSS比值时要尽量避免降低基面滑移系的CRSS值,否则会导致Mg的屈服强度下降.因此,在多系滑移的设计时应尽量选择既能提高基面滑移系CRSS值,又能降低非基面滑移系与基面滑移系的CRSS比值差异的方法,既能够起到合金强化作用又能有效提升Mg及其合金的塑性.通过引入Mg的其他可变形微结构,能够在Mg基体滑移系协调变形受限后,使微结构继续参与塑性变形,有效提高合金塑性.本文将详细介绍实现“多系滑移增塑”的调控方法. ...
![]()
... [
18]
Fig.2本团队近10年来对镁合金塑性变形机制进行了深入研究,提出了“多系滑移增塑”的镁合金设计方向:内在调控非基面与基面滑移系的CRSS比值,多元化镁合金中位错的种类和运动路径;外在复合可变形微结构(如晶界、可变形第二相),提供更多协调塑性应变的变形方式.调控非基面与基面滑移系的CRSS比值是指降低Mg中的非基面和基面滑移系的启动阻力差异,促进更多非基面滑移系的启动.值得注意的是,降低CRSS比值时要尽量避免降低基面滑移系的CRSS值,否则会导致Mg的屈服强度下降.因此,在多系滑移的设计时应尽量选择既能提高基面滑移系CRSS值,又能降低非基面滑移系与基面滑移系的CRSS比值差异的方法,既能够起到合金强化作用又能有效提升Mg及其合金的塑性.通过引入Mg的其他可变形微结构,能够在Mg基体滑移系协调变形受限后,使微结构继续参与塑性变形,有效提高合金塑性.本文将详细介绍实现“多系滑移增塑”的调控方法. ...
![]()
Super-formable pure magnesium at room temperature
1
2017
... 位错的滑移能力决定着金属材料的塑性变形能力[15].基于Mg的塑性变形机制可以得出,提高Mg塑性的有效方式是激活更多类型的滑移,为位错运动提供更多的可动路径,协调塑性应变进而实现均匀的塑性变形,这是Mg塑韧化的重要方式.不同的位错在滑移面上会产生交互作用,引起位错缠结、交互和湮灭等行为,形成林位错(forest dislocations)及Lomer-Cottrell (L-C)位错锁等结构.Li等[16]通过分子动力学模拟研究发现,Mg基面位错的领先(leading)不全位错会与锥面{101}<113>的领先不全位错发生交互反应,生成一种不可动的L-C位错锁结构,增加位错的运动阻碍,产生应变硬化效应,进而影响Mg的塑性变形能力.Bertin等[17]通过离散位错动力学(discrete dislocation dynamics,DDD)量化了Mg中不同位错交互的潜在硬化能力及其对塑性变形的影响,发现基面<a>和二级锥面<c + a>位错会产生强烈的弹性交互作用,引起显著的应变硬化.多滑移系位错的交互作用及产生的硬化行为也强烈影响着Mg宏观塑性变形中的应变演化行为.Orozco-Caballero等[18]通过高分辨数字化图像关联(high-resolution digital image correlation,HRDIC)技术结合原位电子背散射衍射(EBSD)分析的方法,定量评估了Mg的塑性变形过程中不同滑移系对应变均匀性的贡献,评估了不同变形机制对应变协调的作用,如图2[18]所示.研究[18]发现,基面滑移一般呈现较为典型的平面滑移特征,在变形过程中承担更多的应变;柱面滑移一般表现出扩散滑移的特征,较难在变形过程中承担应变,2者会导致宏观镁材料的塑性变形不协调.同时提出,通过“软取向”和“硬取向”晶粒内位错的共同滑移作用,可以有效防止应变局域化,提升Mg的塑性变形能力.由此可见,具有不同变形特征的滑移系在塑性变形过程中承担着不同的角色,对塑性变形的贡献也截然不同,合理调控多种滑移系共同启动,对宏观塑性具有重要意义.此外,Mg的塑性变形机制及力学性能具有较强的成分和组织敏感性.例如,Zeng等[19]研究发现,通过传统热挤压方式将纯Mg的晶粒尺寸降低至1 μm后,位错的滑移和孪晶不再占据变形的主导地位,晶粒旋转和动态再结晶等晶间机制开始协调塑性变形,成为新的存续变形方式,使得镁合金在室温下呈现超高塑性和成形性.调控合金元素种类和含量、晶粒尺寸、析出相及织构等会显著改变其变形机制,进而产生不同的力学响应. ...
Multi-solute solid solution behavior and its effect on the properties of magnesium alloys
2
2022
... Mg的合金化是改变滑移系CRSS最常见和最有效方法[20,21].镁合金中的固溶原子能够引起晶格畸变,产生位错-固溶原子的弹性交互作用、化学交互作用等[22,23],从而影响位错的滑移,产生固溶强化或软化作用,进一步改变不同滑移系的启动能力.近年来,国内外学者开展了大量的理论及实验工作[4,24~27],测定Mg及其合金中合金元素对于不同滑移系启动能力的影响,研究合金元素对Mg及其合金滑移机制的影响. ...
... 由于Mg的塑性、成形性和可加工性差,有效提升其强塑性的策略较少,利用合金化协同Mg的塑性及强度问题一直备受关注.总体来说,基于合金元素对于Mg的多系滑移调控作用已有显著成效,国内外研究人员已经对Al、Zn、Ca、Li、RE等常见合金元素对Mg的CRSS的影响有了定性了解.例如,室温下,Zn的微量添加能够降低镁合金锥面与基面的CRSS比值;Ca的添加有助于降低镁合金柱面<a>或锥面<a>与基面<a>滑移系的CRSS比值,同时能够降低非基面与基面<a>位错的交滑移能垒;稀土元素(如Y、Gd、Nd等)的加入能够显著降低镁合金的锥面<c + a>滑移系与基面<a>滑移系的CRSS比值,激活更多的<c + a>位错参与塑性变形,显著提升镁合金的塑性.Wang等[20]也曾基于大量模拟计算及实验测定结果提出镁合金的“固溶增塑”机制,指出添加固溶元素后基面或非基面滑移阻力的变化与Mg强塑性关联.目前已有一些理论描述合金元素对塑性的定性影响,但是不能量化镁合金中“合金元素的种类及含量-非基面与基面的CRSS比值-镁合金延伸率”的直接关系.同时,大量的研究计算了多种影响金属材料塑性变形能力的理论参数,如广义层错能等,但其变化情况并不能直接与实际镁合金中的CRSS及延伸率挂钩.采用X射线衍射结合晶内平均取向差分析、EBSD结合原位滑移迹线分析、原位透射电镜加载力学耦合分析等方法可以实时观测镁合金中的位错滑移,但是对滑移系及位错的精确识别仍存在困难.镁合金的“电子尺度-原子尺度-位错/孪晶尺度-宏观尺度”关联机制尚不清晰,在揭示合金元素对Mg及其合金塑性变形影响的深层影响机制、量化合金元素对Mg固溶强化或软化的能力、搭建合金元素对Mg影响的多尺度关联框架、提出基于合金元素的镁合金塑韧化定制策略方面仍有较大的研究空间. ...
A rare-earth free magnesium alloy with improved intrinsic ductility
1
2017
... Mg的合金化是改变滑移系CRSS最常见和最有效方法[20,21].镁合金中的固溶原子能够引起晶格畸变,产生位错-固溶原子的弹性交互作用、化学交互作用等[22,23],从而影响位错的滑移,产生固溶强化或软化作用,进一步改变不同滑移系的启动能力.近年来,国内外学者开展了大量的理论及实验工作[4,24~27],测定Mg及其合金中合金元素对于不同滑移系启动能力的影响,研究合金元素对Mg及其合金滑移机制的影响. ...
First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties
2
2010
... Mg的合金化是改变滑移系CRSS最常见和最有效方法[20,21].镁合金中的固溶原子能够引起晶格畸变,产生位错-固溶原子的弹性交互作用、化学交互作用等[22,23],从而影响位错的滑移,产生固溶强化或软化作用,进一步改变不同滑移系的启动能力.近年来,国内外学者开展了大量的理论及实验工作[4,24~27],测定Mg及其合金中合金元素对于不同滑移系启动能力的影响,研究合金元素对Mg及其合金滑移机制的影响. ...
... 从理论计算的角度来说,目前已有大量研究人员利用第一性原理计算和分子动力学模拟等手段探究固溶原子对镁合金的广义层错能(GSFE)[28~30]、理想剪切强度[31,32]、电子功函数[33]、交滑移激活能[23,34]等的影响.Shang等[35]利用第一性原理计算方法研究了合金元素对Mg基面广义层错能的影响,计算了镁合金中基面的稳定层错能、不稳定层错能、孪晶形成能以及理想剪切强度.结果表明,在Mg基体中加入不同的合金元素,会对Mg原子的电荷分布产生影响,进而改变镁合金基面滑移系的启动能力.Yu等[10]通过第一性原理计算的方法探究了Ca、Y以及2者的共同作用对镁合金中基面<a>、柱面<a>以及锥面<a>滑移系的不稳定层错能的影响,发现Ca和Y元素的共同作用能显著降低Mg的柱面<a>滑移系不稳定层错能,揭示了Mg-Y-Ca合金中的柱面<a>位错易激活的深层原因.Ding等[36]通过计算稀土元素Y对Mg的锥面<c + a>广义层错能曲线的影响,发现Y的加入促进了<c + a>位错在二级锥面上的分解,从而导致Mg-Y合金中二级锥面<c + a>位错比一级锥面<c + a>位错更容易形成和启动.进一步模拟发现,在Mg的二级锥面<c + a>的稳定层错能的位置,其周围存在一个平坦的势能面(potential-energy surface,PSE),使得原子可以在滑移面内协同运动,Y原子的添加增大了PSE的范围,可以为Mg-Y合金提供不同的滑移路径.除了广义层错能之外,大量的模拟研究也分析了合金元素对滑移系启动应力的影响.Yasi等[22]计算了29种合金元素在Mg中的基面刃位错、基面螺位错的相互作用能,预测了溶质元素-位错的化学交互作用和弹性交互作用对镁合金固溶强化的影响.Zeng等[32]也通过第一性原理计算准确预测了纯Mg和Mg-Sn合金中基面滑移系和锥面滑移系的理论临界剪切强度,并将其近似看做滑移系启动的CRSS.计算结果表明,Sn元素可有效提升基面滑移系的CRSS (从114 MPa提高至149 MPa),同时降低锥面滑移系的CRSS (从1571 MPa降至446 MPa),进而降低了锥面与基面滑移系的CRSS比值,更加有助于锥面滑移系的启动,提升Mg-Sn合金的成形性和塑性.Sandlöbes等[37]对纯Mg及Mg-Y合金中基面I1型层错能进行计算,并结合透射电镜表征技术讨论了添加Y元素有利于降低基面I1型层错能,认为I1型层错可能是锥面<c + a>位错形核位点,能进一步降低锥面<c + a>位错的激活阻碍.Wu和Curtin[38]通过修正嵌入原子势函数进行长时间的分子动力学模拟研究,发现二级锥面<c + a>刃位错是亚稳态的,会自发分解为不可动的与基面相关的<c + a>位错或不可动的<c>位错+基面<a>位错,认为这种可动锥面扩展结构(P)转变到能量更低的不可动基面结构(B)是纯Mg中<c + a>位错难以协调c轴塑性的根本原因.Wu等[23]认为,获得塑性良好的Mg就必须通过合金化的方法延迟或避免这种P→B转变,降低<c + a>在锥面之间的交滑移激活能,进一步协调塑性变形. ...
Mechanistic origin and prediction of enhanced ductility in magnesium alloys
7
2018
... Mg的合金化是改变滑移系CRSS最常见和最有效方法[20,21].镁合金中的固溶原子能够引起晶格畸变,产生位错-固溶原子的弹性交互作用、化学交互作用等[22,23],从而影响位错的滑移,产生固溶强化或软化作用,进一步改变不同滑移系的启动能力.近年来,国内外学者开展了大量的理论及实验工作[4,24~27],测定Mg及其合金中合金元素对于不同滑移系启动能力的影响,研究合金元素对Mg及其合金滑移机制的影响. ...
... 从理论计算的角度来说,目前已有大量研究人员利用第一性原理计算和分子动力学模拟等手段探究固溶原子对镁合金的广义层错能(GSFE)[28~30]、理想剪切强度[31,32]、电子功函数[33]、交滑移激活能[23,34]等的影响.Shang等[35]利用第一性原理计算方法研究了合金元素对Mg基面广义层错能的影响,计算了镁合金中基面的稳定层错能、不稳定层错能、孪晶形成能以及理想剪切强度.结果表明,在Mg基体中加入不同的合金元素,会对Mg原子的电荷分布产生影响,进而改变镁合金基面滑移系的启动能力.Yu等[10]通过第一性原理计算的方法探究了Ca、Y以及2者的共同作用对镁合金中基面<a>、柱面<a>以及锥面<a>滑移系的不稳定层错能的影响,发现Ca和Y元素的共同作用能显著降低Mg的柱面<a>滑移系不稳定层错能,揭示了Mg-Y-Ca合金中的柱面<a>位错易激活的深层原因.Ding等[36]通过计算稀土元素Y对Mg的锥面<c + a>广义层错能曲线的影响,发现Y的加入促进了<c + a>位错在二级锥面上的分解,从而导致Mg-Y合金中二级锥面<c + a>位错比一级锥面<c + a>位错更容易形成和启动.进一步模拟发现,在Mg的二级锥面<c + a>的稳定层错能的位置,其周围存在一个平坦的势能面(potential-energy surface,PSE),使得原子可以在滑移面内协同运动,Y原子的添加增大了PSE的范围,可以为Mg-Y合金提供不同的滑移路径.除了广义层错能之外,大量的模拟研究也分析了合金元素对滑移系启动应力的影响.Yasi等[22]计算了29种合金元素在Mg中的基面刃位错、基面螺位错的相互作用能,预测了溶质元素-位错的化学交互作用和弹性交互作用对镁合金固溶强化的影响.Zeng等[32]也通过第一性原理计算准确预测了纯Mg和Mg-Sn合金中基面滑移系和锥面滑移系的理论临界剪切强度,并将其近似看做滑移系启动的CRSS.计算结果表明,Sn元素可有效提升基面滑移系的CRSS (从114 MPa提高至149 MPa),同时降低锥面滑移系的CRSS (从1571 MPa降至446 MPa),进而降低了锥面与基面滑移系的CRSS比值,更加有助于锥面滑移系的启动,提升Mg-Sn合金的成形性和塑性.Sandlöbes等[37]对纯Mg及Mg-Y合金中基面I1型层错能进行计算,并结合透射电镜表征技术讨论了添加Y元素有利于降低基面I1型层错能,认为I1型层错可能是锥面<c + a>位错形核位点,能进一步降低锥面<c + a>位错的激活阻碍.Wu和Curtin[38]通过修正嵌入原子势函数进行长时间的分子动力学模拟研究,发现二级锥面<c + a>刃位错是亚稳态的,会自发分解为不可动的与基面相关的<c + a>位错或不可动的<c>位错+基面<a>位错,认为这种可动锥面扩展结构(P)转变到能量更低的不可动基面结构(B)是纯Mg中<c + a>位错难以协调c轴塑性的根本原因.Wu等[23]认为,获得塑性良好的Mg就必须通过合金化的方法延迟或避免这种P→B转变,降低<c + a>在锥面之间的交滑移激活能,进一步协调塑性变形. ...
... [23]认为,获得塑性良好的Mg就必须通过合金化的方法延迟或避免这种P→B转变,降低<c + a>在锥面之间的交滑移激活能,进一步协调塑性变形. ...
... 晶粒尺寸对金属材料的力学性能存在显著的影响,细化晶粒也是提高金属材料强度、维持良好塑性的有效途径.然而,晶粒尺寸的改变通常不会影响Mg的内禀位错滑移阻力,而是通过调节孪晶与位错之间的启动竞争关系或借助晶界作用等来影响塑性变形.通常来说,在微米尺度下,减小晶粒尺寸会抑制拉伸孪晶的开动,进而促进非基面滑移系的开动,使得更多非基面位错协调变形.例如,Luo等[51]通过对比不同尺寸的镁合金样品发现,当晶粒尺寸大于10 μm时,镁合金主要以<a>位错滑移和拉伸孪晶协调塑性变形,而当晶粒尺寸小于5 μm时,样品的塑性变形机制转变为由<c + a>和<a>位错滑移主导,从而进一步提升其拉伸延伸率.Wu等[23]给出了纯Mg及镁合金的晶粒尺寸及断裂延伸率的对比图(图4[23]),可以看出,在微米尺度下,随着晶粒尺寸的降低,镁合金的延伸率普遍增大,这说明降低晶粒尺寸可以有效提升镁合金的塑性变形能力.但晶粒尺寸对于某些特殊镁合金体系的影响是存在区别的,例如Zhu等[52]采用原位同步辐射实验与VPSC的方法,研究了以柱面<a>滑移为主导的Mg-3Al-3Sn合金中晶粒尺寸对滑移系启动能力的影响.结果表明,晶粒尺寸在10~100 μm范围内,沿轧制方向对合金进行拉伸时,随着晶粒尺寸的增大,所开动的柱面<a>和基面<a>滑移减少,一级锥面<a>与二级锥面<c + a>滑移系则更容易启动.镁合金的延伸率随晶粒尺寸的减小而“先增大后减小”,晶粒尺寸为52 μm时延伸率达到最高,这可能是由多系滑移启动能力差异所决定的. ...
... [23]),可以看出,在微米尺度下,随着晶粒尺寸的降低,镁合金的延伸率普遍增大,这说明降低晶粒尺寸可以有效提升镁合金的塑性变形能力.但晶粒尺寸对于某些特殊镁合金体系的影响是存在区别的,例如Zhu等[52]采用原位同步辐射实验与VPSC的方法,研究了以柱面<a>滑移为主导的Mg-3Al-3Sn合金中晶粒尺寸对滑移系启动能力的影响.结果表明,晶粒尺寸在10~100 μm范围内,沿轧制方向对合金进行拉伸时,随着晶粒尺寸的增大,所开动的柱面<a>和基面<a>滑移减少,一级锥面<a>与二级锥面<c + a>滑移系则更容易启动.镁合金的延伸率随晶粒尺寸的减小而“先增大后减小”,晶粒尺寸为52 μm时延伸率达到最高,这可能是由多系滑移启动能力差异所决定的. ...
... [
23]
Room-temperature tensile failure strain, as a measure of ductility, versus grain size in selected polycrystalline Mg and Mg alloys<sup>[<xref ref-type="bibr" rid="R23">23</xref>]</sup>Fig.4最近的研究[53]表明,将镁合金的晶粒尺寸调控至纳米级有望引入新的晶间滑移机制,可替代传统的大量基面位错滑移,实现均匀的塑性变形.Zheng等[54]研究了纯Mg的晶粒尺寸、塑性变形机制与室温拉伸性能之间的关联,分析表明,基面滑移和拉伸孪晶是晶粒尺寸大于5 μm的粗晶样品的主要变形机制;当晶粒尺寸降低至1 μm以下后,晶界滑移成为超细晶Mg的另一种滑移来源,从而大幅提高其室温塑性(延伸率高达60%).Liu等[55]在亚微米尺寸的纯Mg单晶微柱沿<c>轴压缩过程中发现一种新的塑性变形机制,即“形变转晶”(deformation graining,DG).在亚微米纯Mg微柱压缩的超高流变应力下,当位错提供的塑性基本耗尽时,这种新的变形机制会突然启动.原位透射电镜表征结果表明,这种变形机制使初始单晶体突然转变为许多具有新取向的小晶粒,这些新的小晶粒能够通过从锥面到基面的转变形成,新生成的晶粒中位错滑移和孪晶机制重新出现,进一步协调应变,实现了大的塑性变形. ...
![]()
... [
23]
Fig.4最近的研究[53]表明,将镁合金的晶粒尺寸调控至纳米级有望引入新的晶间滑移机制,可替代传统的大量基面位错滑移,实现均匀的塑性变形.Zheng等[54]研究了纯Mg的晶粒尺寸、塑性变形机制与室温拉伸性能之间的关联,分析表明,基面滑移和拉伸孪晶是晶粒尺寸大于5 μm的粗晶样品的主要变形机制;当晶粒尺寸降低至1 μm以下后,晶界滑移成为超细晶Mg的另一种滑移来源,从而大幅提高其室温塑性(延伸率高达60%).Liu等[55]在亚微米尺寸的纯Mg单晶微柱沿<c>轴压缩过程中发现一种新的塑性变形机制,即“形变转晶”(deformation graining,DG).在亚微米纯Mg微柱压缩的超高流变应力下,当位错提供的塑性基本耗尽时,这种新的变形机制会突然启动.原位透射电镜表征结果表明,这种变形机制使初始单晶体突然转变为许多具有新取向的小晶粒,这些新的小晶粒能够通过从锥面到基面的转变形成,新生成的晶粒中位错滑移和孪晶机制重新出现,进一步协调应变,实现了大的塑性变形. ...
![]()
Solute strengthening of prismatic slip, basal slip and twinning in Mg and Mg-Zn binary alloys
2
2013
... Mg的合金化是改变滑移系CRSS最常见和最有效方法[20,21].镁合金中的固溶原子能够引起晶格畸变,产生位错-固溶原子的弹性交互作用、化学交互作用等[22,23],从而影响位错的滑移,产生固溶强化或软化作用,进一步改变不同滑移系的启动能力.近年来,国内外学者开展了大量的理论及实验工作[4,24~27],测定Mg及其合金中合金元素对于不同滑移系启动能力的影响,研究合金元素对Mg及其合金滑移机制的影响. ...
... 从实验研究的角度来说,研究人员采用多种微观力学测试手段测定了不同镁合金滑移系的CRSS,并深入研究了镁合金的塑性变形机制[10,39].Wang等[40]基于三维X射线衍射(3DXRD)技术,测定了多晶Mg-3Y (质量分数,%,下同)体系中非基面与基面滑移系的比值为CRSSprismatic<a>∶CRSSpyramidal<a>∶CRSSbasal<a> = 3.2∶3.0∶1.0,这个数值明显小于纯Mg,证实了稀土元素Y有效缩小了非基面与基面滑移系之间的启动能力差异,促进了多系滑移.Huang等[41]利用相同方法研究了Mg-5Y合金的塑性变形机理,估算了非基面滑移与基面的CRSS比值,其CRSSprismatic<a>∶CRSSbasal<a> = 1.8~2.7,CRSSpyramidal<a>∶CRSSbasal<a> = 1.6~1.8.Sabat等[42]制备了具有不同织构的Mg-0.2Ce (原子分数,%)合金,结合晶体塑性有限元模拟(crystal plasticity finite element modelling,CPFEM)方法,预测了其不同滑移系及孪晶的CRSS比值为CRSSbasal<a>∶CRSSprismatic<a>∶CRSSpyramidal<c + a>∶CRSStwinning = 1∶1.5∶4∶1.4.Zhu等[8]报道了Ca原子能够有效降低非基面与基面滑移系的CRSS比值,增强Mg-Ca合金中基面-柱面<a>位错的交滑移行为,从而提升镁合金的塑性.Standford和Barnett[24]研究发现,在Mg-2.8Zn合金中,柱面与基面滑移系的CRSS比值会随着晶粒尺寸的增大而递增,这说明CRSS比值的测定可能会受到多晶样品应变不均匀性和晶界等的影响.Liu等[43]通过单晶微柱压缩技术,在特定取向晶粒下加载微米级样品柱,使微柱能够在塑性变形过程中激活单一、特定的滑移系,结合表面迹线分析方法分析了滑移系对应的变形行为,精确地测定了纯Mg的基面<a>滑移系和孪晶的CRSS,分别为29和6 MPa.Lilleodden[44]也采用单晶微柱压缩技术测定了纯Mg的二级锥面<c + a>滑移系的CRSS.单晶微柱压缩能够更有效地排除晶界、相界等因素的干扰,定量反应合金元素的种类和含量对于Mg及其合金滑移系CRSS的影响,并进一步分析了滑移系的变形行为.Wang等[12,45,46]利用单晶微柱压缩技术结合高通量扩散多元节等手段,获得了不同Al、Zn、Ca合金成分下基面、锥面及拉伸孪晶的CRSS,定量表征了合金元素含量对非基面与基面滑移系CRSS比值的影响,如图3[45]所示.Wu等[47]也通过微柱压缩方法测定Mg-4Y合金中锥面<c + a>与基面<a>滑移系的CRSS比值降低到2.8~4.8,且Y元素的添加一定程度上提升了拉伸孪晶形核的CRSS,抑制了其形核,显著降低了孪晶造成的拉压不对称现象. ...
Twinning and the ductility of magnesium alloys: Part II. “Contraction” twins
0
2007
A rolled Mg-8Al-0.5Zn-0.8Ce alloy with high strength-ductility synergy via engineering high-density low angle boundaries
0
2022
Prominent role of multi-scale microstructural heterogeneities on superplastic deformation of a high solid solution Al-7Mg alloy
1
2021
... Mg的合金化是改变滑移系CRSS最常见和最有效方法[20,21].镁合金中的固溶原子能够引起晶格畸变,产生位错-固溶原子的弹性交互作用、化学交互作用等[22,23],从而影响位错的滑移,产生固溶强化或软化作用,进一步改变不同滑移系的启动能力.近年来,国内外学者开展了大量的理论及实验工作[4,24~27],测定Mg及其合金中合金元素对于不同滑移系启动能力的影响,研究合金元素对Mg及其合金滑移机制的影响. ...
Basal-plane stacking-fault energies of Mg alloys: A first-principles study of metallic alloying effects
1
2018
... 从理论计算的角度来说,目前已有大量研究人员利用第一性原理计算和分子动力学模拟等手段探究固溶原子对镁合金的广义层错能(GSFE)[28~30]、理想剪切强度[31,32]、电子功函数[33]、交滑移激活能[23,34]等的影响.Shang等[35]利用第一性原理计算方法研究了合金元素对Mg基面广义层错能的影响,计算了镁合金中基面的稳定层错能、不稳定层错能、孪晶形成能以及理想剪切强度.结果表明,在Mg基体中加入不同的合金元素,会对Mg原子的电荷分布产生影响,进而改变镁合金基面滑移系的启动能力.Yu等[10]通过第一性原理计算的方法探究了Ca、Y以及2者的共同作用对镁合金中基面<a>、柱面<a>以及锥面<a>滑移系的不稳定层错能的影响,发现Ca和Y元素的共同作用能显著降低Mg的柱面<a>滑移系不稳定层错能,揭示了Mg-Y-Ca合金中的柱面<a>位错易激活的深层原因.Ding等[36]通过计算稀土元素Y对Mg的锥面<c + a>广义层错能曲线的影响,发现Y的加入促进了<c + a>位错在二级锥面上的分解,从而导致Mg-Y合金中二级锥面<c + a>位错比一级锥面<c + a>位错更容易形成和启动.进一步模拟发现,在Mg的二级锥面<c + a>的稳定层错能的位置,其周围存在一个平坦的势能面(potential-energy surface,PSE),使得原子可以在滑移面内协同运动,Y原子的添加增大了PSE的范围,可以为Mg-Y合金提供不同的滑移路径.除了广义层错能之外,大量的模拟研究也分析了合金元素对滑移系启动应力的影响.Yasi等[22]计算了29种合金元素在Mg中的基面刃位错、基面螺位错的相互作用能,预测了溶质元素-位错的化学交互作用和弹性交互作用对镁合金固溶强化的影响.Zeng等[32]也通过第一性原理计算准确预测了纯Mg和Mg-Sn合金中基面滑移系和锥面滑移系的理论临界剪切强度,并将其近似看做滑移系启动的CRSS.计算结果表明,Sn元素可有效提升基面滑移系的CRSS (从114 MPa提高至149 MPa),同时降低锥面滑移系的CRSS (从1571 MPa降至446 MPa),进而降低了锥面与基面滑移系的CRSS比值,更加有助于锥面滑移系的启动,提升Mg-Sn合金的成形性和塑性.Sandlöbes等[37]对纯Mg及Mg-Y合金中基面I1型层错能进行计算,并结合透射电镜表征技术讨论了添加Y元素有利于降低基面I1型层错能,认为I1型层错可能是锥面<c + a>位错形核位点,能进一步降低锥面<c + a>位错的激活阻碍.Wu和Curtin[38]通过修正嵌入原子势函数进行长时间的分子动力学模拟研究,发现二级锥面<c + a>刃位错是亚稳态的,会自发分解为不可动的与基面相关的<c + a>位错或不可动的<c>位错+基面<a>位错,认为这种可动锥面扩展结构(P)转变到能量更低的不可动基面结构(B)是纯Mg中<c + a>位错难以协调c轴塑性的根本原因.Wu等[23]认为,获得塑性良好的Mg就必须通过合金化的方法延迟或避免这种P→B转变,降低<c + a>在锥面之间的交滑移激活能,进一步协调塑性变形. ...
Effects of doping atoms on the generalized stacking-fault energies of Mg alloys from first-principles calculations
0
2013
Alloying effects on the plasticity of magnesium: Comprehensive analysis of influences of all five slip systems
1
2020
... 从理论计算的角度来说,目前已有大量研究人员利用第一性原理计算和分子动力学模拟等手段探究固溶原子对镁合金的广义层错能(GSFE)[28~30]、理想剪切强度[31,32]、电子功函数[33]、交滑移激活能[23,34]等的影响.Shang等[35]利用第一性原理计算方法研究了合金元素对Mg基面广义层错能的影响,计算了镁合金中基面的稳定层错能、不稳定层错能、孪晶形成能以及理想剪切强度.结果表明,在Mg基体中加入不同的合金元素,会对Mg原子的电荷分布产生影响,进而改变镁合金基面滑移系的启动能力.Yu等[10]通过第一性原理计算的方法探究了Ca、Y以及2者的共同作用对镁合金中基面<a>、柱面<a>以及锥面<a>滑移系的不稳定层错能的影响,发现Ca和Y元素的共同作用能显著降低Mg的柱面<a>滑移系不稳定层错能,揭示了Mg-Y-Ca合金中的柱面<a>位错易激活的深层原因.Ding等[36]通过计算稀土元素Y对Mg的锥面<c + a>广义层错能曲线的影响,发现Y的加入促进了<c + a>位错在二级锥面上的分解,从而导致Mg-Y合金中二级锥面<c + a>位错比一级锥面<c + a>位错更容易形成和启动.进一步模拟发现,在Mg的二级锥面<c + a>的稳定层错能的位置,其周围存在一个平坦的势能面(potential-energy surface,PSE),使得原子可以在滑移面内协同运动,Y原子的添加增大了PSE的范围,可以为Mg-Y合金提供不同的滑移路径.除了广义层错能之外,大量的模拟研究也分析了合金元素对滑移系启动应力的影响.Yasi等[22]计算了29种合金元素在Mg中的基面刃位错、基面螺位错的相互作用能,预测了溶质元素-位错的化学交互作用和弹性交互作用对镁合金固溶强化的影响.Zeng等[32]也通过第一性原理计算准确预测了纯Mg和Mg-Sn合金中基面滑移系和锥面滑移系的理论临界剪切强度,并将其近似看做滑移系启动的CRSS.计算结果表明,Sn元素可有效提升基面滑移系的CRSS (从114 MPa提高至149 MPa),同时降低锥面滑移系的CRSS (从1571 MPa降至446 MPa),进而降低了锥面与基面滑移系的CRSS比值,更加有助于锥面滑移系的启动,提升Mg-Sn合金的成形性和塑性.Sandlöbes等[37]对纯Mg及Mg-Y合金中基面I1型层错能进行计算,并结合透射电镜表征技术讨论了添加Y元素有利于降低基面I1型层错能,认为I1型层错可能是锥面<c + a>位错形核位点,能进一步降低锥面<c + a>位错的激活阻碍.Wu和Curtin[38]通过修正嵌入原子势函数进行长时间的分子动力学模拟研究,发现二级锥面<c + a>刃位错是亚稳态的,会自发分解为不可动的与基面相关的<c + a>位错或不可动的<c>位错+基面<a>位错,认为这种可动锥面扩展结构(P)转变到能量更低的不可动基面结构(B)是纯Mg中<c + a>位错难以协调c轴塑性的根本原因.Wu等[23]认为,获得塑性良好的Mg就必须通过合金化的方法延迟或避免这种P→B转变,降低<c + a>在锥面之间的交滑移激活能,进一步协调塑性变形. ...
Effect of solutes on ideal shear resistance and electronic properties of magnesium: A first-principles study
1
2018
... 从理论计算的角度来说,目前已有大量研究人员利用第一性原理计算和分子动力学模拟等手段探究固溶原子对镁合金的广义层错能(GSFE)[28~30]、理想剪切强度[31,32]、电子功函数[33]、交滑移激活能[23,34]等的影响.Shang等[35]利用第一性原理计算方法研究了合金元素对Mg基面广义层错能的影响,计算了镁合金中基面的稳定层错能、不稳定层错能、孪晶形成能以及理想剪切强度.结果表明,在Mg基体中加入不同的合金元素,会对Mg原子的电荷分布产生影响,进而改变镁合金基面滑移系的启动能力.Yu等[10]通过第一性原理计算的方法探究了Ca、Y以及2者的共同作用对镁合金中基面<a>、柱面<a>以及锥面<a>滑移系的不稳定层错能的影响,发现Ca和Y元素的共同作用能显著降低Mg的柱面<a>滑移系不稳定层错能,揭示了Mg-Y-Ca合金中的柱面<a>位错易激活的深层原因.Ding等[36]通过计算稀土元素Y对Mg的锥面<c + a>广义层错能曲线的影响,发现Y的加入促进了<c + a>位错在二级锥面上的分解,从而导致Mg-Y合金中二级锥面<c + a>位错比一级锥面<c + a>位错更容易形成和启动.进一步模拟发现,在Mg的二级锥面<c + a>的稳定层错能的位置,其周围存在一个平坦的势能面(potential-energy surface,PSE),使得原子可以在滑移面内协同运动,Y原子的添加增大了PSE的范围,可以为Mg-Y合金提供不同的滑移路径.除了广义层错能之外,大量的模拟研究也分析了合金元素对滑移系启动应力的影响.Yasi等[22]计算了29种合金元素在Mg中的基面刃位错、基面螺位错的相互作用能,预测了溶质元素-位错的化学交互作用和弹性交互作用对镁合金固溶强化的影响.Zeng等[32]也通过第一性原理计算准确预测了纯Mg和Mg-Sn合金中基面滑移系和锥面滑移系的理论临界剪切强度,并将其近似看做滑移系启动的CRSS.计算结果表明,Sn元素可有效提升基面滑移系的CRSS (从114 MPa提高至149 MPa),同时降低锥面滑移系的CRSS (从1571 MPa降至446 MPa),进而降低了锥面与基面滑移系的CRSS比值,更加有助于锥面滑移系的启动,提升Mg-Sn合金的成形性和塑性.Sandlöbes等[37]对纯Mg及Mg-Y合金中基面I1型层错能进行计算,并结合透射电镜表征技术讨论了添加Y元素有利于降低基面I1型层错能,认为I1型层错可能是锥面<c + a>位错形核位点,能进一步降低锥面<c + a>位错的激活阻碍.Wu和Curtin[38]通过修正嵌入原子势函数进行长时间的分子动力学模拟研究,发现二级锥面<c + a>刃位错是亚稳态的,会自发分解为不可动的与基面相关的<c + a>位错或不可动的<c>位错+基面<a>位错,认为这种可动锥面扩展结构(P)转变到能量更低的不可动基面结构(B)是纯Mg中<c + a>位错难以协调c轴塑性的根本原因.Wu等[23]认为,获得塑性良好的Mg就必须通过合金化的方法延迟或避免这种P→B转变,降低<c + a>在锥面之间的交滑移激活能,进一步协调塑性变形. ...
Improved formability with theoretical critical shear strength transforming in Mg alloys with Sn addition
2
2018
... 从理论计算的角度来说,目前已有大量研究人员利用第一性原理计算和分子动力学模拟等手段探究固溶原子对镁合金的广义层错能(GSFE)[28~30]、理想剪切强度[31,32]、电子功函数[33]、交滑移激活能[23,34]等的影响.Shang等[35]利用第一性原理计算方法研究了合金元素对Mg基面广义层错能的影响,计算了镁合金中基面的稳定层错能、不稳定层错能、孪晶形成能以及理想剪切强度.结果表明,在Mg基体中加入不同的合金元素,会对Mg原子的电荷分布产生影响,进而改变镁合金基面滑移系的启动能力.Yu等[10]通过第一性原理计算的方法探究了Ca、Y以及2者的共同作用对镁合金中基面<a>、柱面<a>以及锥面<a>滑移系的不稳定层错能的影响,发现Ca和Y元素的共同作用能显著降低Mg的柱面<a>滑移系不稳定层错能,揭示了Mg-Y-Ca合金中的柱面<a>位错易激活的深层原因.Ding等[36]通过计算稀土元素Y对Mg的锥面<c + a>广义层错能曲线的影响,发现Y的加入促进了<c + a>位错在二级锥面上的分解,从而导致Mg-Y合金中二级锥面<c + a>位错比一级锥面<c + a>位错更容易形成和启动.进一步模拟发现,在Mg的二级锥面<c + a>的稳定层错能的位置,其周围存在一个平坦的势能面(potential-energy surface,PSE),使得原子可以在滑移面内协同运动,Y原子的添加增大了PSE的范围,可以为Mg-Y合金提供不同的滑移路径.除了广义层错能之外,大量的模拟研究也分析了合金元素对滑移系启动应力的影响.Yasi等[22]计算了29种合金元素在Mg中的基面刃位错、基面螺位错的相互作用能,预测了溶质元素-位错的化学交互作用和弹性交互作用对镁合金固溶强化的影响.Zeng等[32]也通过第一性原理计算准确预测了纯Mg和Mg-Sn合金中基面滑移系和锥面滑移系的理论临界剪切强度,并将其近似看做滑移系启动的CRSS.计算结果表明,Sn元素可有效提升基面滑移系的CRSS (从114 MPa提高至149 MPa),同时降低锥面滑移系的CRSS (从1571 MPa降至446 MPa),进而降低了锥面与基面滑移系的CRSS比值,更加有助于锥面滑移系的启动,提升Mg-Sn合金的成形性和塑性.Sandlöbes等[37]对纯Mg及Mg-Y合金中基面I1型层错能进行计算,并结合透射电镜表征技术讨论了添加Y元素有利于降低基面I1型层错能,认为I1型层错可能是锥面<c + a>位错形核位点,能进一步降低锥面<c + a>位错的激活阻碍.Wu和Curtin[38]通过修正嵌入原子势函数进行长时间的分子动力学模拟研究,发现二级锥面<c + a>刃位错是亚稳态的,会自发分解为不可动的与基面相关的<c + a>位错或不可动的<c>位错+基面<a>位错,认为这种可动锥面扩展结构(P)转变到能量更低的不可动基面结构(B)是纯Mg中<c + a>位错难以协调c轴塑性的根本原因.Wu等[23]认为,获得塑性良好的Mg就必须通过合金化的方法延迟或避免这种P→B转变,降低<c + a>在锥面之间的交滑移激活能,进一步协调塑性变形. ...
... [32]也通过第一性原理计算准确预测了纯Mg和Mg-Sn合金中基面滑移系和锥面滑移系的理论临界剪切强度,并将其近似看做滑移系启动的CRSS.计算结果表明,Sn元素可有效提升基面滑移系的CRSS (从114 MPa提高至149 MPa),同时降低锥面滑移系的CRSS (从1571 MPa降至446 MPa),进而降低了锥面与基面滑移系的CRSS比值,更加有助于锥面滑移系的启动,提升Mg-Sn合金的成形性和塑性.Sandlöbes等[37]对纯Mg及Mg-Y合金中基面I1型层错能进行计算,并结合透射电镜表征技术讨论了添加Y元素有利于降低基面I1型层错能,认为I1型层错可能是锥面<c + a>位错形核位点,能进一步降低锥面<c + a>位错的激活阻碍.Wu和Curtin[38]通过修正嵌入原子势函数进行长时间的分子动力学模拟研究,发现二级锥面<c + a>刃位错是亚稳态的,会自发分解为不可动的与基面相关的<c + a>位错或不可动的<c>位错+基面<a>位错,认为这种可动锥面扩展结构(P)转变到能量更低的不可动基面结构(B)是纯Mg中<c + a>位错难以协调c轴塑性的根本原因.Wu等[23]认为,获得塑性良好的Mg就必须通过合金化的方法延迟或避免这种P→B转变,降低<c + a>在锥面之间的交滑移激活能,进一步协调塑性变形. ...
The electronic origin of strengthening and ductilizing magnesium by solid solutes
1
2015
... 从理论计算的角度来说,目前已有大量研究人员利用第一性原理计算和分子动力学模拟等手段探究固溶原子对镁合金的广义层错能(GSFE)[28~30]、理想剪切强度[31,32]、电子功函数[33]、交滑移激活能[23,34]等的影响.Shang等[35]利用第一性原理计算方法研究了合金元素对Mg基面广义层错能的影响,计算了镁合金中基面的稳定层错能、不稳定层错能、孪晶形成能以及理想剪切强度.结果表明,在Mg基体中加入不同的合金元素,会对Mg原子的电荷分布产生影响,进而改变镁合金基面滑移系的启动能力.Yu等[10]通过第一性原理计算的方法探究了Ca、Y以及2者的共同作用对镁合金中基面<a>、柱面<a>以及锥面<a>滑移系的不稳定层错能的影响,发现Ca和Y元素的共同作用能显著降低Mg的柱面<a>滑移系不稳定层错能,揭示了Mg-Y-Ca合金中的柱面<a>位错易激活的深层原因.Ding等[36]通过计算稀土元素Y对Mg的锥面<c + a>广义层错能曲线的影响,发现Y的加入促进了<c + a>位错在二级锥面上的分解,从而导致Mg-Y合金中二级锥面<c + a>位错比一级锥面<c + a>位错更容易形成和启动.进一步模拟发现,在Mg的二级锥面<c + a>的稳定层错能的位置,其周围存在一个平坦的势能面(potential-energy surface,PSE),使得原子可以在滑移面内协同运动,Y原子的添加增大了PSE的范围,可以为Mg-Y合金提供不同的滑移路径.除了广义层错能之外,大量的模拟研究也分析了合金元素对滑移系启动应力的影响.Yasi等[22]计算了29种合金元素在Mg中的基面刃位错、基面螺位错的相互作用能,预测了溶质元素-位错的化学交互作用和弹性交互作用对镁合金固溶强化的影响.Zeng等[32]也通过第一性原理计算准确预测了纯Mg和Mg-Sn合金中基面滑移系和锥面滑移系的理论临界剪切强度,并将其近似看做滑移系启动的CRSS.计算结果表明,Sn元素可有效提升基面滑移系的CRSS (从114 MPa提高至149 MPa),同时降低锥面滑移系的CRSS (从1571 MPa降至446 MPa),进而降低了锥面与基面滑移系的CRSS比值,更加有助于锥面滑移系的启动,提升Mg-Sn合金的成形性和塑性.Sandlöbes等[37]对纯Mg及Mg-Y合金中基面I1型层错能进行计算,并结合透射电镜表征技术讨论了添加Y元素有利于降低基面I1型层错能,认为I1型层错可能是锥面<c + a>位错形核位点,能进一步降低锥面<c + a>位错的激活阻碍.Wu和Curtin[38]通过修正嵌入原子势函数进行长时间的分子动力学模拟研究,发现二级锥面<c + a>刃位错是亚稳态的,会自发分解为不可动的与基面相关的<c + a>位错或不可动的<c>位错+基面<a>位错,认为这种可动锥面扩展结构(P)转变到能量更低的不可动基面结构(B)是纯Mg中<c + a>位错难以协调c轴塑性的根本原因.Wu等[23]认为,获得塑性良好的Mg就必须通过合金化的方法延迟或避免这种P→B转变,降低<c + a>在锥面之间的交滑移激活能,进一步协调塑性变形. ...
Mechanism and energetics of <c + a> dislocation cross-slip in hcp metals
1
2016
... 从理论计算的角度来说,目前已有大量研究人员利用第一性原理计算和分子动力学模拟等手段探究固溶原子对镁合金的广义层错能(GSFE)[28~30]、理想剪切强度[31,32]、电子功函数[33]、交滑移激活能[23,34]等的影响.Shang等[35]利用第一性原理计算方法研究了合金元素对Mg基面广义层错能的影响,计算了镁合金中基面的稳定层错能、不稳定层错能、孪晶形成能以及理想剪切强度.结果表明,在Mg基体中加入不同的合金元素,会对Mg原子的电荷分布产生影响,进而改变镁合金基面滑移系的启动能力.Yu等[10]通过第一性原理计算的方法探究了Ca、Y以及2者的共同作用对镁合金中基面<a>、柱面<a>以及锥面<a>滑移系的不稳定层错能的影响,发现Ca和Y元素的共同作用能显著降低Mg的柱面<a>滑移系不稳定层错能,揭示了Mg-Y-Ca合金中的柱面<a>位错易激活的深层原因.Ding等[36]通过计算稀土元素Y对Mg的锥面<c + a>广义层错能曲线的影响,发现Y的加入促进了<c + a>位错在二级锥面上的分解,从而导致Mg-Y合金中二级锥面<c + a>位错比一级锥面<c + a>位错更容易形成和启动.进一步模拟发现,在Mg的二级锥面<c + a>的稳定层错能的位置,其周围存在一个平坦的势能面(potential-energy surface,PSE),使得原子可以在滑移面内协同运动,Y原子的添加增大了PSE的范围,可以为Mg-Y合金提供不同的滑移路径.除了广义层错能之外,大量的模拟研究也分析了合金元素对滑移系启动应力的影响.Yasi等[22]计算了29种合金元素在Mg中的基面刃位错、基面螺位错的相互作用能,预测了溶质元素-位错的化学交互作用和弹性交互作用对镁合金固溶强化的影响.Zeng等[32]也通过第一性原理计算准确预测了纯Mg和Mg-Sn合金中基面滑移系和锥面滑移系的理论临界剪切强度,并将其近似看做滑移系启动的CRSS.计算结果表明,Sn元素可有效提升基面滑移系的CRSS (从114 MPa提高至149 MPa),同时降低锥面滑移系的CRSS (从1571 MPa降至446 MPa),进而降低了锥面与基面滑移系的CRSS比值,更加有助于锥面滑移系的启动,提升Mg-Sn合金的成形性和塑性.Sandlöbes等[37]对纯Mg及Mg-Y合金中基面I1型层错能进行计算,并结合透射电镜表征技术讨论了添加Y元素有利于降低基面I1型层错能,认为I1型层错可能是锥面<c + a>位错形核位点,能进一步降低锥面<c + a>位错的激活阻碍.Wu和Curtin[38]通过修正嵌入原子势函数进行长时间的分子动力学模拟研究,发现二级锥面<c + a>刃位错是亚稳态的,会自发分解为不可动的与基面相关的<c + a>位错或不可动的<c>位错+基面<a>位错,认为这种可动锥面扩展结构(P)转变到能量更低的不可动基面结构(B)是纯Mg中<c + a>位错难以协调c轴塑性的根本原因.Wu等[23]认为,获得塑性良好的Mg就必须通过合金化的方法延迟或避免这种P→B转变,降低<c + a>在锥面之间的交滑移激活能,进一步协调塑性变形. ...
Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys:A first-principles study of shear deformation
1
2014
... 从理论计算的角度来说,目前已有大量研究人员利用第一性原理计算和分子动力学模拟等手段探究固溶原子对镁合金的广义层错能(GSFE)[28~30]、理想剪切强度[31,32]、电子功函数[33]、交滑移激活能[23,34]等的影响.Shang等[35]利用第一性原理计算方法研究了合金元素对Mg基面广义层错能的影响,计算了镁合金中基面的稳定层错能、不稳定层错能、孪晶形成能以及理想剪切强度.结果表明,在Mg基体中加入不同的合金元素,会对Mg原子的电荷分布产生影响,进而改变镁合金基面滑移系的启动能力.Yu等[10]通过第一性原理计算的方法探究了Ca、Y以及2者的共同作用对镁合金中基面<a>、柱面<a>以及锥面<a>滑移系的不稳定层错能的影响,发现Ca和Y元素的共同作用能显著降低Mg的柱面<a>滑移系不稳定层错能,揭示了Mg-Y-Ca合金中的柱面<a>位错易激活的深层原因.Ding等[36]通过计算稀土元素Y对Mg的锥面<c + a>广义层错能曲线的影响,发现Y的加入促进了<c + a>位错在二级锥面上的分解,从而导致Mg-Y合金中二级锥面<c + a>位错比一级锥面<c + a>位错更容易形成和启动.进一步模拟发现,在Mg的二级锥面<c + a>的稳定层错能的位置,其周围存在一个平坦的势能面(potential-energy surface,PSE),使得原子可以在滑移面内协同运动,Y原子的添加增大了PSE的范围,可以为Mg-Y合金提供不同的滑移路径.除了广义层错能之外,大量的模拟研究也分析了合金元素对滑移系启动应力的影响.Yasi等[22]计算了29种合金元素在Mg中的基面刃位错、基面螺位错的相互作用能,预测了溶质元素-位错的化学交互作用和弹性交互作用对镁合金固溶强化的影响.Zeng等[32]也通过第一性原理计算准确预测了纯Mg和Mg-Sn合金中基面滑移系和锥面滑移系的理论临界剪切强度,并将其近似看做滑移系启动的CRSS.计算结果表明,Sn元素可有效提升基面滑移系的CRSS (从114 MPa提高至149 MPa),同时降低锥面滑移系的CRSS (从1571 MPa降至446 MPa),进而降低了锥面与基面滑移系的CRSS比值,更加有助于锥面滑移系的启动,提升Mg-Sn合金的成形性和塑性.Sandlöbes等[37]对纯Mg及Mg-Y合金中基面I1型层错能进行计算,并结合透射电镜表征技术讨论了添加Y元素有利于降低基面I1型层错能,认为I1型层错可能是锥面<c + a>位错形核位点,能进一步降低锥面<c + a>位错的激活阻碍.Wu和Curtin[38]通过修正嵌入原子势函数进行长时间的分子动力学模拟研究,发现二级锥面<c + a>刃位错是亚稳态的,会自发分解为不可动的与基面相关的<c + a>位错或不可动的<c>位错+基面<a>位错,认为这种可动锥面扩展结构(P)转变到能量更低的不可动基面结构(B)是纯Mg中<c + a>位错难以协调c轴塑性的根本原因.Wu等[23]认为,获得塑性良好的Mg就必须通过合金化的方法延迟或避免这种P→B转变,降低<c + a>在锥面之间的交滑移激活能,进一步协调塑性变形. ...
Origins and dissociation of pyramidal <c + a> dislocations in magnesium and its alloys
1
2018
... 从理论计算的角度来说,目前已有大量研究人员利用第一性原理计算和分子动力学模拟等手段探究固溶原子对镁合金的广义层错能(GSFE)[28~30]、理想剪切强度[31,32]、电子功函数[33]、交滑移激活能[23,34]等的影响.Shang等[35]利用第一性原理计算方法研究了合金元素对Mg基面广义层错能的影响,计算了镁合金中基面的稳定层错能、不稳定层错能、孪晶形成能以及理想剪切强度.结果表明,在Mg基体中加入不同的合金元素,会对Mg原子的电荷分布产生影响,进而改变镁合金基面滑移系的启动能力.Yu等[10]通过第一性原理计算的方法探究了Ca、Y以及2者的共同作用对镁合金中基面<a>、柱面<a>以及锥面<a>滑移系的不稳定层错能的影响,发现Ca和Y元素的共同作用能显著降低Mg的柱面<a>滑移系不稳定层错能,揭示了Mg-Y-Ca合金中的柱面<a>位错易激活的深层原因.Ding等[36]通过计算稀土元素Y对Mg的锥面<c + a>广义层错能曲线的影响,发现Y的加入促进了<c + a>位错在二级锥面上的分解,从而导致Mg-Y合金中二级锥面<c + a>位错比一级锥面<c + a>位错更容易形成和启动.进一步模拟发现,在Mg的二级锥面<c + a>的稳定层错能的位置,其周围存在一个平坦的势能面(potential-energy surface,PSE),使得原子可以在滑移面内协同运动,Y原子的添加增大了PSE的范围,可以为Mg-Y合金提供不同的滑移路径.除了广义层错能之外,大量的模拟研究也分析了合金元素对滑移系启动应力的影响.Yasi等[22]计算了29种合金元素在Mg中的基面刃位错、基面螺位错的相互作用能,预测了溶质元素-位错的化学交互作用和弹性交互作用对镁合金固溶强化的影响.Zeng等[32]也通过第一性原理计算准确预测了纯Mg和Mg-Sn合金中基面滑移系和锥面滑移系的理论临界剪切强度,并将其近似看做滑移系启动的CRSS.计算结果表明,Sn元素可有效提升基面滑移系的CRSS (从114 MPa提高至149 MPa),同时降低锥面滑移系的CRSS (从1571 MPa降至446 MPa),进而降低了锥面与基面滑移系的CRSS比值,更加有助于锥面滑移系的启动,提升Mg-Sn合金的成形性和塑性.Sandlöbes等[37]对纯Mg及Mg-Y合金中基面I1型层错能进行计算,并结合透射电镜表征技术讨论了添加Y元素有利于降低基面I1型层错能,认为I1型层错可能是锥面<c + a>位错形核位点,能进一步降低锥面<c + a>位错的激活阻碍.Wu和Curtin[38]通过修正嵌入原子势函数进行长时间的分子动力学模拟研究,发现二级锥面<c + a>刃位错是亚稳态的,会自发分解为不可动的与基面相关的<c + a>位错或不可动的<c>位错+基面<a>位错,认为这种可动锥面扩展结构(P)转变到能量更低的不可动基面结构(B)是纯Mg中<c + a>位错难以协调c轴塑性的根本原因.Wu等[23]认为,获得塑性良好的Mg就必须通过合金化的方法延迟或避免这种P→B转变,降低<c + a>在锥面之间的交滑移激活能,进一步协调塑性变形. ...
The relation between ductility and stacking fault energies in Mg and Mg-Y alloys
1
2012
... 从理论计算的角度来说,目前已有大量研究人员利用第一性原理计算和分子动力学模拟等手段探究固溶原子对镁合金的广义层错能(GSFE)[28~30]、理想剪切强度[31,32]、电子功函数[33]、交滑移激活能[23,34]等的影响.Shang等[35]利用第一性原理计算方法研究了合金元素对Mg基面广义层错能的影响,计算了镁合金中基面的稳定层错能、不稳定层错能、孪晶形成能以及理想剪切强度.结果表明,在Mg基体中加入不同的合金元素,会对Mg原子的电荷分布产生影响,进而改变镁合金基面滑移系的启动能力.Yu等[10]通过第一性原理计算的方法探究了Ca、Y以及2者的共同作用对镁合金中基面<a>、柱面<a>以及锥面<a>滑移系的不稳定层错能的影响,发现Ca和Y元素的共同作用能显著降低Mg的柱面<a>滑移系不稳定层错能,揭示了Mg-Y-Ca合金中的柱面<a>位错易激活的深层原因.Ding等[36]通过计算稀土元素Y对Mg的锥面<c + a>广义层错能曲线的影响,发现Y的加入促进了<c + a>位错在二级锥面上的分解,从而导致Mg-Y合金中二级锥面<c + a>位错比一级锥面<c + a>位错更容易形成和启动.进一步模拟发现,在Mg的二级锥面<c + a>的稳定层错能的位置,其周围存在一个平坦的势能面(potential-energy surface,PSE),使得原子可以在滑移面内协同运动,Y原子的添加增大了PSE的范围,可以为Mg-Y合金提供不同的滑移路径.除了广义层错能之外,大量的模拟研究也分析了合金元素对滑移系启动应力的影响.Yasi等[22]计算了29种合金元素在Mg中的基面刃位错、基面螺位错的相互作用能,预测了溶质元素-位错的化学交互作用和弹性交互作用对镁合金固溶强化的影响.Zeng等[32]也通过第一性原理计算准确预测了纯Mg和Mg-Sn合金中基面滑移系和锥面滑移系的理论临界剪切强度,并将其近似看做滑移系启动的CRSS.计算结果表明,Sn元素可有效提升基面滑移系的CRSS (从114 MPa提高至149 MPa),同时降低锥面滑移系的CRSS (从1571 MPa降至446 MPa),进而降低了锥面与基面滑移系的CRSS比值,更加有助于锥面滑移系的启动,提升Mg-Sn合金的成形性和塑性.Sandlöbes等[37]对纯Mg及Mg-Y合金中基面I1型层错能进行计算,并结合透射电镜表征技术讨论了添加Y元素有利于降低基面I1型层错能,认为I1型层错可能是锥面<c + a>位错形核位点,能进一步降低锥面<c + a>位错的激活阻碍.Wu和Curtin[38]通过修正嵌入原子势函数进行长时间的分子动力学模拟研究,发现二级锥面<c + a>刃位错是亚稳态的,会自发分解为不可动的与基面相关的<c + a>位错或不可动的<c>位错+基面<a>位错,认为这种可动锥面扩展结构(P)转变到能量更低的不可动基面结构(B)是纯Mg中<c + a>位错难以协调c轴塑性的根本原因.Wu等[23]认为,获得塑性良好的Mg就必须通过合金化的方法延迟或避免这种P→B转变,降低<c + a>在锥面之间的交滑移激活能,进一步协调塑性变形. ...
The origins of high hardening and low ductility in magnesium
1
2015
... 从理论计算的角度来说,目前已有大量研究人员利用第一性原理计算和分子动力学模拟等手段探究固溶原子对镁合金的广义层错能(GSFE)[28~30]、理想剪切强度[31,32]、电子功函数[33]、交滑移激活能[23,34]等的影响.Shang等[35]利用第一性原理计算方法研究了合金元素对Mg基面广义层错能的影响,计算了镁合金中基面的稳定层错能、不稳定层错能、孪晶形成能以及理想剪切强度.结果表明,在Mg基体中加入不同的合金元素,会对Mg原子的电荷分布产生影响,进而改变镁合金基面滑移系的启动能力.Yu等[10]通过第一性原理计算的方法探究了Ca、Y以及2者的共同作用对镁合金中基面<a>、柱面<a>以及锥面<a>滑移系的不稳定层错能的影响,发现Ca和Y元素的共同作用能显著降低Mg的柱面<a>滑移系不稳定层错能,揭示了Mg-Y-Ca合金中的柱面<a>位错易激活的深层原因.Ding等[36]通过计算稀土元素Y对Mg的锥面<c + a>广义层错能曲线的影响,发现Y的加入促进了<c + a>位错在二级锥面上的分解,从而导致Mg-Y合金中二级锥面<c + a>位错比一级锥面<c + a>位错更容易形成和启动.进一步模拟发现,在Mg的二级锥面<c + a>的稳定层错能的位置,其周围存在一个平坦的势能面(potential-energy surface,PSE),使得原子可以在滑移面内协同运动,Y原子的添加增大了PSE的范围,可以为Mg-Y合金提供不同的滑移路径.除了广义层错能之外,大量的模拟研究也分析了合金元素对滑移系启动应力的影响.Yasi等[22]计算了29种合金元素在Mg中的基面刃位错、基面螺位错的相互作用能,预测了溶质元素-位错的化学交互作用和弹性交互作用对镁合金固溶强化的影响.Zeng等[32]也通过第一性原理计算准确预测了纯Mg和Mg-Sn合金中基面滑移系和锥面滑移系的理论临界剪切强度,并将其近似看做滑移系启动的CRSS.计算结果表明,Sn元素可有效提升基面滑移系的CRSS (从114 MPa提高至149 MPa),同时降低锥面滑移系的CRSS (从1571 MPa降至446 MPa),进而降低了锥面与基面滑移系的CRSS比值,更加有助于锥面滑移系的启动,提升Mg-Sn合金的成形性和塑性.Sandlöbes等[37]对纯Mg及Mg-Y合金中基面I1型层错能进行计算,并结合透射电镜表征技术讨论了添加Y元素有利于降低基面I1型层错能,认为I1型层错可能是锥面<c + a>位错形核位点,能进一步降低锥面<c + a>位错的激活阻碍.Wu和Curtin[38]通过修正嵌入原子势函数进行长时间的分子动力学模拟研究,发现二级锥面<c + a>刃位错是亚稳态的,会自发分解为不可动的与基面相关的<c + a>位错或不可动的<c>位错+基面<a>位错,认为这种可动锥面扩展结构(P)转变到能量更低的不可动基面结构(B)是纯Mg中<c + a>位错难以协调c轴塑性的根本原因.Wu等[23]认为,获得塑性良好的Mg就必须通过合金化的方法延迟或避免这种P→B转变,降低<c + a>在锥面之间的交滑移激活能,进一步协调塑性变形. ...
Effect of basal precipitates on extension twinning and pyramidal slip: A micro-mechanical and electron microscopy study of a Mg-Al binary alloy
1
2020
... 从实验研究的角度来说,研究人员采用多种微观力学测试手段测定了不同镁合金滑移系的CRSS,并深入研究了镁合金的塑性变形机制[10,39].Wang等[40]基于三维X射线衍射(3DXRD)技术,测定了多晶Mg-3Y (质量分数,%,下同)体系中非基面与基面滑移系的比值为CRSSprismatic<a>∶CRSSpyramidal<a>∶CRSSbasal<a> = 3.2∶3.0∶1.0,这个数值明显小于纯Mg,证实了稀土元素Y有效缩小了非基面与基面滑移系之间的启动能力差异,促进了多系滑移.Huang等[41]利用相同方法研究了Mg-5Y合金的塑性变形机理,估算了非基面滑移与基面的CRSS比值,其CRSSprismatic<a>∶CRSSbasal<a> = 1.8~2.7,CRSSpyramidal<a>∶CRSSbasal<a> = 1.6~1.8.Sabat等[42]制备了具有不同织构的Mg-0.2Ce (原子分数,%)合金,结合晶体塑性有限元模拟(crystal plasticity finite element modelling,CPFEM)方法,预测了其不同滑移系及孪晶的CRSS比值为CRSSbasal<a>∶CRSSprismatic<a>∶CRSSpyramidal<c + a>∶CRSStwinning = 1∶1.5∶4∶1.4.Zhu等[8]报道了Ca原子能够有效降低非基面与基面滑移系的CRSS比值,增强Mg-Ca合金中基面-柱面<a>位错的交滑移行为,从而提升镁合金的塑性.Standford和Barnett[24]研究发现,在Mg-2.8Zn合金中,柱面与基面滑移系的CRSS比值会随着晶粒尺寸的增大而递增,这说明CRSS比值的测定可能会受到多晶样品应变不均匀性和晶界等的影响.Liu等[43]通过单晶微柱压缩技术,在特定取向晶粒下加载微米级样品柱,使微柱能够在塑性变形过程中激活单一、特定的滑移系,结合表面迹线分析方法分析了滑移系对应的变形行为,精确地测定了纯Mg的基面<a>滑移系和孪晶的CRSS,分别为29和6 MPa.Lilleodden[44]也采用单晶微柱压缩技术测定了纯Mg的二级锥面<c + a>滑移系的CRSS.单晶微柱压缩能够更有效地排除晶界、相界等因素的干扰,定量反应合金元素的种类和含量对于Mg及其合金滑移系CRSS的影响,并进一步分析了滑移系的变形行为.Wang等[12,45,46]利用单晶微柱压缩技术结合高通量扩散多元节等手段,获得了不同Al、Zn、Ca合金成分下基面、锥面及拉伸孪晶的CRSS,定量表征了合金元素含量对非基面与基面滑移系CRSS比值的影响,如图3[45]所示.Wu等[47]也通过微柱压缩方法测定Mg-4Y合金中锥面<c + a>与基面<a>滑移系的CRSS比值降低到2.8~4.8,且Y元素的添加一定程度上提升了拉伸孪晶形核的CRSS,抑制了其形核,显著降低了孪晶造成的拉压不对称现象. ...
Study of slip activity in a Mg-Y alloy by in situ high energy X-ray diffraction microscopy and elastic viscoplastic self-consistent modeling
1
2018
... 从实验研究的角度来说,研究人员采用多种微观力学测试手段测定了不同镁合金滑移系的CRSS,并深入研究了镁合金的塑性变形机制[10,39].Wang等[40]基于三维X射线衍射(3DXRD)技术,测定了多晶Mg-3Y (质量分数,%,下同)体系中非基面与基面滑移系的比值为CRSSprismatic<a>∶CRSSpyramidal<a>∶CRSSbasal<a> = 3.2∶3.0∶1.0,这个数值明显小于纯Mg,证实了稀土元素Y有效缩小了非基面与基面滑移系之间的启动能力差异,促进了多系滑移.Huang等[41]利用相同方法研究了Mg-5Y合金的塑性变形机理,估算了非基面滑移与基面的CRSS比值,其CRSSprismatic<a>∶CRSSbasal<a> = 1.8~2.7,CRSSpyramidal<a>∶CRSSbasal<a> = 1.6~1.8.Sabat等[42]制备了具有不同织构的Mg-0.2Ce (原子分数,%)合金,结合晶体塑性有限元模拟(crystal plasticity finite element modelling,CPFEM)方法,预测了其不同滑移系及孪晶的CRSS比值为CRSSbasal<a>∶CRSSprismatic<a>∶CRSSpyramidal<c + a>∶CRSStwinning = 1∶1.5∶4∶1.4.Zhu等[8]报道了Ca原子能够有效降低非基面与基面滑移系的CRSS比值,增强Mg-Ca合金中基面-柱面<a>位错的交滑移行为,从而提升镁合金的塑性.Standford和Barnett[24]研究发现,在Mg-2.8Zn合金中,柱面与基面滑移系的CRSS比值会随着晶粒尺寸的增大而递增,这说明CRSS比值的测定可能会受到多晶样品应变不均匀性和晶界等的影响.Liu等[43]通过单晶微柱压缩技术,在特定取向晶粒下加载微米级样品柱,使微柱能够在塑性变形过程中激活单一、特定的滑移系,结合表面迹线分析方法分析了滑移系对应的变形行为,精确地测定了纯Mg的基面<a>滑移系和孪晶的CRSS,分别为29和6 MPa.Lilleodden[44]也采用单晶微柱压缩技术测定了纯Mg的二级锥面<c + a>滑移系的CRSS.单晶微柱压缩能够更有效地排除晶界、相界等因素的干扰,定量反应合金元素的种类和含量对于Mg及其合金滑移系CRSS的影响,并进一步分析了滑移系的变形行为.Wang等[12,45,46]利用单晶微柱压缩技术结合高通量扩散多元节等手段,获得了不同Al、Zn、Ca合金成分下基面、锥面及拉伸孪晶的CRSS,定量表征了合金元素含量对非基面与基面滑移系CRSS比值的影响,如图3[45]所示.Wu等[47]也通过微柱压缩方法测定Mg-4Y合金中锥面<c + a>与基面<a>滑移系的CRSS比值降低到2.8~4.8,且Y元素的添加一定程度上提升了拉伸孪晶形核的CRSS,抑制了其形核,显著降低了孪晶造成的拉压不对称现象. ...
Observation of non-basal slip in Mg-Y by in situ three-dimensional X-ray diffraction
1
2018
... 从实验研究的角度来说,研究人员采用多种微观力学测试手段测定了不同镁合金滑移系的CRSS,并深入研究了镁合金的塑性变形机制[10,39].Wang等[40]基于三维X射线衍射(3DXRD)技术,测定了多晶Mg-3Y (质量分数,%,下同)体系中非基面与基面滑移系的比值为CRSSprismatic<a>∶CRSSpyramidal<a>∶CRSSbasal<a> = 3.2∶3.0∶1.0,这个数值明显小于纯Mg,证实了稀土元素Y有效缩小了非基面与基面滑移系之间的启动能力差异,促进了多系滑移.Huang等[41]利用相同方法研究了Mg-5Y合金的塑性变形机理,估算了非基面滑移与基面的CRSS比值,其CRSSprismatic<a>∶CRSSbasal<a> = 1.8~2.7,CRSSpyramidal<a>∶CRSSbasal<a> = 1.6~1.8.Sabat等[42]制备了具有不同织构的Mg-0.2Ce (原子分数,%)合金,结合晶体塑性有限元模拟(crystal plasticity finite element modelling,CPFEM)方法,预测了其不同滑移系及孪晶的CRSS比值为CRSSbasal<a>∶CRSSprismatic<a>∶CRSSpyramidal<c + a>∶CRSStwinning = 1∶1.5∶4∶1.4.Zhu等[8]报道了Ca原子能够有效降低非基面与基面滑移系的CRSS比值,增强Mg-Ca合金中基面-柱面<a>位错的交滑移行为,从而提升镁合金的塑性.Standford和Barnett[24]研究发现,在Mg-2.8Zn合金中,柱面与基面滑移系的CRSS比值会随着晶粒尺寸的增大而递增,这说明CRSS比值的测定可能会受到多晶样品应变不均匀性和晶界等的影响.Liu等[43]通过单晶微柱压缩技术,在特定取向晶粒下加载微米级样品柱,使微柱能够在塑性变形过程中激活单一、特定的滑移系,结合表面迹线分析方法分析了滑移系对应的变形行为,精确地测定了纯Mg的基面<a>滑移系和孪晶的CRSS,分别为29和6 MPa.Lilleodden[44]也采用单晶微柱压缩技术测定了纯Mg的二级锥面<c + a>滑移系的CRSS.单晶微柱压缩能够更有效地排除晶界、相界等因素的干扰,定量反应合金元素的种类和含量对于Mg及其合金滑移系CRSS的影响,并进一步分析了滑移系的变形行为.Wang等[12,45,46]利用单晶微柱压缩技术结合高通量扩散多元节等手段,获得了不同Al、Zn、Ca合金成分下基面、锥面及拉伸孪晶的CRSS,定量表征了合金元素含量对非基面与基面滑移系CRSS比值的影响,如图3[45]所示.Wu等[47]也通过微柱压缩方法测定Mg-4Y合金中锥面<c + a>与基面<a>滑移系的CRSS比值降低到2.8~4.8,且Y元素的添加一定程度上提升了拉伸孪晶形核的CRSS,抑制了其形核,显著降低了孪晶造成的拉压不对称现象. ...
Ductility enhancement in Mg-0.2%Ce alloys
1
2018
... 从实验研究的角度来说,研究人员采用多种微观力学测试手段测定了不同镁合金滑移系的CRSS,并深入研究了镁合金的塑性变形机制[10,39].Wang等[40]基于三维X射线衍射(3DXRD)技术,测定了多晶Mg-3Y (质量分数,%,下同)体系中非基面与基面滑移系的比值为CRSSprismatic<a>∶CRSSpyramidal<a>∶CRSSbasal<a> = 3.2∶3.0∶1.0,这个数值明显小于纯Mg,证实了稀土元素Y有效缩小了非基面与基面滑移系之间的启动能力差异,促进了多系滑移.Huang等[41]利用相同方法研究了Mg-5Y合金的塑性变形机理,估算了非基面滑移与基面的CRSS比值,其CRSSprismatic<a>∶CRSSbasal<a> = 1.8~2.7,CRSSpyramidal<a>∶CRSSbasal<a> = 1.6~1.8.Sabat等[42]制备了具有不同织构的Mg-0.2Ce (原子分数,%)合金,结合晶体塑性有限元模拟(crystal plasticity finite element modelling,CPFEM)方法,预测了其不同滑移系及孪晶的CRSS比值为CRSSbasal<a>∶CRSSprismatic<a>∶CRSSpyramidal<c + a>∶CRSStwinning = 1∶1.5∶4∶1.4.Zhu等[8]报道了Ca原子能够有效降低非基面与基面滑移系的CRSS比值,增强Mg-Ca合金中基面-柱面<a>位错的交滑移行为,从而提升镁合金的塑性.Standford和Barnett[24]研究发现,在Mg-2.8Zn合金中,柱面与基面滑移系的CRSS比值会随着晶粒尺寸的增大而递增,这说明CRSS比值的测定可能会受到多晶样品应变不均匀性和晶界等的影响.Liu等[43]通过单晶微柱压缩技术,在特定取向晶粒下加载微米级样品柱,使微柱能够在塑性变形过程中激活单一、特定的滑移系,结合表面迹线分析方法分析了滑移系对应的变形行为,精确地测定了纯Mg的基面<a>滑移系和孪晶的CRSS,分别为29和6 MPa.Lilleodden[44]也采用单晶微柱压缩技术测定了纯Mg的二级锥面<c + a>滑移系的CRSS.单晶微柱压缩能够更有效地排除晶界、相界等因素的干扰,定量反应合金元素的种类和含量对于Mg及其合金滑移系CRSS的影响,并进一步分析了滑移系的变形行为.Wang等[12,45,46]利用单晶微柱压缩技术结合高通量扩散多元节等手段,获得了不同Al、Zn、Ca合金成分下基面、锥面及拉伸孪晶的CRSS,定量表征了合金元素含量对非基面与基面滑移系CRSS比值的影响,如图3[45]所示.Wu等[47]也通过微柱压缩方法测定Mg-4Y合金中锥面<c + a>与基面<a>滑移系的CRSS比值降低到2.8~4.8,且Y元素的添加一定程度上提升了拉伸孪晶形核的CRSS,抑制了其形核,显著降低了孪晶造成的拉压不对称现象. ...
Experimentally quantifying critical stresses associated with basal slip and twinning in magnesium using micropillars
1
2017
... 从实验研究的角度来说,研究人员采用多种微观力学测试手段测定了不同镁合金滑移系的CRSS,并深入研究了镁合金的塑性变形机制[10,39].Wang等[40]基于三维X射线衍射(3DXRD)技术,测定了多晶Mg-3Y (质量分数,%,下同)体系中非基面与基面滑移系的比值为CRSSprismatic<a>∶CRSSpyramidal<a>∶CRSSbasal<a> = 3.2∶3.0∶1.0,这个数值明显小于纯Mg,证实了稀土元素Y有效缩小了非基面与基面滑移系之间的启动能力差异,促进了多系滑移.Huang等[41]利用相同方法研究了Mg-5Y合金的塑性变形机理,估算了非基面滑移与基面的CRSS比值,其CRSSprismatic<a>∶CRSSbasal<a> = 1.8~2.7,CRSSpyramidal<a>∶CRSSbasal<a> = 1.6~1.8.Sabat等[42]制备了具有不同织构的Mg-0.2Ce (原子分数,%)合金,结合晶体塑性有限元模拟(crystal plasticity finite element modelling,CPFEM)方法,预测了其不同滑移系及孪晶的CRSS比值为CRSSbasal<a>∶CRSSprismatic<a>∶CRSSpyramidal<c + a>∶CRSStwinning = 1∶1.5∶4∶1.4.Zhu等[8]报道了Ca原子能够有效降低非基面与基面滑移系的CRSS比值,增强Mg-Ca合金中基面-柱面<a>位错的交滑移行为,从而提升镁合金的塑性.Standford和Barnett[24]研究发现,在Mg-2.8Zn合金中,柱面与基面滑移系的CRSS比值会随着晶粒尺寸的增大而递增,这说明CRSS比值的测定可能会受到多晶样品应变不均匀性和晶界等的影响.Liu等[43]通过单晶微柱压缩技术,在特定取向晶粒下加载微米级样品柱,使微柱能够在塑性变形过程中激活单一、特定的滑移系,结合表面迹线分析方法分析了滑移系对应的变形行为,精确地测定了纯Mg的基面<a>滑移系和孪晶的CRSS,分别为29和6 MPa.Lilleodden[44]也采用单晶微柱压缩技术测定了纯Mg的二级锥面<c + a>滑移系的CRSS.单晶微柱压缩能够更有效地排除晶界、相界等因素的干扰,定量反应合金元素的种类和含量对于Mg及其合金滑移系CRSS的影响,并进一步分析了滑移系的变形行为.Wang等[12,45,46]利用单晶微柱压缩技术结合高通量扩散多元节等手段,获得了不同Al、Zn、Ca合金成分下基面、锥面及拉伸孪晶的CRSS,定量表征了合金元素含量对非基面与基面滑移系CRSS比值的影响,如图3[45]所示.Wu等[47]也通过微柱压缩方法测定Mg-4Y合金中锥面<c + a>与基面<a>滑移系的CRSS比值降低到2.8~4.8,且Y元素的添加一定程度上提升了拉伸孪晶形核的CRSS,抑制了其形核,显著降低了孪晶造成的拉压不对称现象. ...
Microcompression study of Mg (0001) single crystal
1
2010
... 从实验研究的角度来说,研究人员采用多种微观力学测试手段测定了不同镁合金滑移系的CRSS,并深入研究了镁合金的塑性变形机制[10,39].Wang等[40]基于三维X射线衍射(3DXRD)技术,测定了多晶Mg-3Y (质量分数,%,下同)体系中非基面与基面滑移系的比值为CRSSprismatic<a>∶CRSSpyramidal<a>∶CRSSbasal<a> = 3.2∶3.0∶1.0,这个数值明显小于纯Mg,证实了稀土元素Y有效缩小了非基面与基面滑移系之间的启动能力差异,促进了多系滑移.Huang等[41]利用相同方法研究了Mg-5Y合金的塑性变形机理,估算了非基面滑移与基面的CRSS比值,其CRSSprismatic<a>∶CRSSbasal<a> = 1.8~2.7,CRSSpyramidal<a>∶CRSSbasal<a> = 1.6~1.8.Sabat等[42]制备了具有不同织构的Mg-0.2Ce (原子分数,%)合金,结合晶体塑性有限元模拟(crystal plasticity finite element modelling,CPFEM)方法,预测了其不同滑移系及孪晶的CRSS比值为CRSSbasal<a>∶CRSSprismatic<a>∶CRSSpyramidal<c + a>∶CRSStwinning = 1∶1.5∶4∶1.4.Zhu等[8]报道了Ca原子能够有效降低非基面与基面滑移系的CRSS比值,增强Mg-Ca合金中基面-柱面<a>位错的交滑移行为,从而提升镁合金的塑性.Standford和Barnett[24]研究发现,在Mg-2.8Zn合金中,柱面与基面滑移系的CRSS比值会随着晶粒尺寸的增大而递增,这说明CRSS比值的测定可能会受到多晶样品应变不均匀性和晶界等的影响.Liu等[43]通过单晶微柱压缩技术,在特定取向晶粒下加载微米级样品柱,使微柱能够在塑性变形过程中激活单一、特定的滑移系,结合表面迹线分析方法分析了滑移系对应的变形行为,精确地测定了纯Mg的基面<a>滑移系和孪晶的CRSS,分别为29和6 MPa.Lilleodden[44]也采用单晶微柱压缩技术测定了纯Mg的二级锥面<c + a>滑移系的CRSS.单晶微柱压缩能够更有效地排除晶界、相界等因素的干扰,定量反应合金元素的种类和含量对于Mg及其合金滑移系CRSS的影响,并进一步分析了滑移系的变形行为.Wang等[12,45,46]利用单晶微柱压缩技术结合高通量扩散多元节等手段,获得了不同Al、Zn、Ca合金成分下基面、锥面及拉伸孪晶的CRSS,定量表征了合金元素含量对非基面与基面滑移系CRSS比值的影响,如图3[45]所示.Wu等[47]也通过微柱压缩方法测定Mg-4Y合金中锥面<c + a>与基面<a>滑移系的CRSS比值降低到2.8~4.8,且Y元素的添加一定程度上提升了拉伸孪晶形核的CRSS,抑制了其形核,显著降低了孪晶造成的拉压不对称现象. ...
Deformation mechanisms of Mg-Ca-Zn alloys studied by means of micropillar compression tests
4
2021
... 从实验研究的角度来说,研究人员采用多种微观力学测试手段测定了不同镁合金滑移系的CRSS,并深入研究了镁合金的塑性变形机制[10,39].Wang等[40]基于三维X射线衍射(3DXRD)技术,测定了多晶Mg-3Y (质量分数,%,下同)体系中非基面与基面滑移系的比值为CRSSprismatic<a>∶CRSSpyramidal<a>∶CRSSbasal<a> = 3.2∶3.0∶1.0,这个数值明显小于纯Mg,证实了稀土元素Y有效缩小了非基面与基面滑移系之间的启动能力差异,促进了多系滑移.Huang等[41]利用相同方法研究了Mg-5Y合金的塑性变形机理,估算了非基面滑移与基面的CRSS比值,其CRSSprismatic<a>∶CRSSbasal<a> = 1.8~2.7,CRSSpyramidal<a>∶CRSSbasal<a> = 1.6~1.8.Sabat等[42]制备了具有不同织构的Mg-0.2Ce (原子分数,%)合金,结合晶体塑性有限元模拟(crystal plasticity finite element modelling,CPFEM)方法,预测了其不同滑移系及孪晶的CRSS比值为CRSSbasal<a>∶CRSSprismatic<a>∶CRSSpyramidal<c + a>∶CRSStwinning = 1∶1.5∶4∶1.4.Zhu等[8]报道了Ca原子能够有效降低非基面与基面滑移系的CRSS比值,增强Mg-Ca合金中基面-柱面<a>位错的交滑移行为,从而提升镁合金的塑性.Standford和Barnett[24]研究发现,在Mg-2.8Zn合金中,柱面与基面滑移系的CRSS比值会随着晶粒尺寸的增大而递增,这说明CRSS比值的测定可能会受到多晶样品应变不均匀性和晶界等的影响.Liu等[43]通过单晶微柱压缩技术,在特定取向晶粒下加载微米级样品柱,使微柱能够在塑性变形过程中激活单一、特定的滑移系,结合表面迹线分析方法分析了滑移系对应的变形行为,精确地测定了纯Mg的基面<a>滑移系和孪晶的CRSS,分别为29和6 MPa.Lilleodden[44]也采用单晶微柱压缩技术测定了纯Mg的二级锥面<c + a>滑移系的CRSS.单晶微柱压缩能够更有效地排除晶界、相界等因素的干扰,定量反应合金元素的种类和含量对于Mg及其合金滑移系CRSS的影响,并进一步分析了滑移系的变形行为.Wang等[12,45,46]利用单晶微柱压缩技术结合高通量扩散多元节等手段,获得了不同Al、Zn、Ca合金成分下基面、锥面及拉伸孪晶的CRSS,定量表征了合金元素含量对非基面与基面滑移系CRSS比值的影响,如图3[45]所示.Wu等[47]也通过微柱压缩方法测定Mg-4Y合金中锥面<c + a>与基面<a>滑移系的CRSS比值降低到2.8~4.8,且Y元素的添加一定程度上提升了拉伸孪晶形核的CRSS,抑制了其形核,显著降低了孪晶造成的拉压不对称现象. ...
... [45]所示.Wu等[47]也通过微柱压缩方法测定Mg-4Y合金中锥面<c + a>与基面<a>滑移系的CRSS比值降低到2.8~4.8,且Y元素的添加一定程度上提升了拉伸孪晶形核的CRSS,抑制了其形核,显著降低了孪晶造成的拉压不对称现象. ...
... [
45]
Engineering stress-strain curves of Mg-Zn-Ca alloys loading along the <i>a-</i>axis based on the micropillar compression method (D: [10<span class="formulaText"><inline-formula><math id="M16"><mover><mrow><mn mathvariant="normal">1</mn></mrow><mo>¯</mo></mover></math></span></inline-formula></span><span class="formulaNumber">0</span>] indicates the loading direction of the grain crystal) (a); SEM images and schematics of crystallographic orientations of micropillar surface slip traces analysed from front (b) and back (c, d) views<sup>[<xref ref-type="bibr" rid="R45">45</xref>]</sup>Fig.3由于Mg的塑性、成形性和可加工性差,有效提升其强塑性的策略较少,利用合金化协同Mg的塑性及强度问题一直备受关注.总体来说,基于合金元素对于Mg的多系滑移调控作用已有显著成效,国内外研究人员已经对Al、Zn、Ca、Li、RE等常见合金元素对Mg的CRSS的影响有了定性了解.例如,室温下,Zn的微量添加能够降低镁合金锥面与基面的CRSS比值;Ca的添加有助于降低镁合金柱面<a>或锥面<a>与基面<a>滑移系的CRSS比值,同时能够降低非基面与基面<a>位错的交滑移能垒;稀土元素(如Y、Gd、Nd等)的加入能够显著降低镁合金的锥面<c + a>滑移系与基面<a>滑移系的CRSS比值,激活更多的<c + a>位错参与塑性变形,显著提升镁合金的塑性.Wang等[20]也曾基于大量模拟计算及实验测定结果提出镁合金的“固溶增塑”机制,指出添加固溶元素后基面或非基面滑移阻力的变化与Mg强塑性关联.目前已有一些理论描述合金元素对塑性的定性影响,但是不能量化镁合金中“合金元素的种类及含量-非基面与基面的CRSS比值-镁合金延伸率”的直接关系.同时,大量的研究计算了多种影响金属材料塑性变形能力的理论参数,如广义层错能等,但其变化情况并不能直接与实际镁合金中的CRSS及延伸率挂钩.采用X射线衍射结合晶内平均取向差分析、EBSD结合原位滑移迹线分析、原位透射电镜加载力学耦合分析等方法可以实时观测镁合金中的位错滑移,但是对滑移系及位错的精确识别仍存在困难.镁合金的“电子尺度-原子尺度-位错/孪晶尺度-宏观尺度”关联机制尚不清晰,在揭示合金元素对Mg及其合金塑性变形影响的深层影响机制、量化合金元素对Mg固溶强化或软化的能力、搭建合金元素对Mg影响的多尺度关联框架、提出基于合金元素的镁合金塑韧化定制策略方面仍有较大的研究空间. ...
![]()
... [
45]
Fig.3由于Mg的塑性、成形性和可加工性差,有效提升其强塑性的策略较少,利用合金化协同Mg的塑性及强度问题一直备受关注.总体来说,基于合金元素对于Mg的多系滑移调控作用已有显著成效,国内外研究人员已经对Al、Zn、Ca、Li、RE等常见合金元素对Mg的CRSS的影响有了定性了解.例如,室温下,Zn的微量添加能够降低镁合金锥面与基面的CRSS比值;Ca的添加有助于降低镁合金柱面<a>或锥面<a>与基面<a>滑移系的CRSS比值,同时能够降低非基面与基面<a>位错的交滑移能垒;稀土元素(如Y、Gd、Nd等)的加入能够显著降低镁合金的锥面<c + a>滑移系与基面<a>滑移系的CRSS比值,激活更多的<c + a>位错参与塑性变形,显著提升镁合金的塑性.Wang等[20]也曾基于大量模拟计算及实验测定结果提出镁合金的“固溶增塑”机制,指出添加固溶元素后基面或非基面滑移阻力的变化与Mg强塑性关联.目前已有一些理论描述合金元素对塑性的定性影响,但是不能量化镁合金中“合金元素的种类及含量-非基面与基面的CRSS比值-镁合金延伸率”的直接关系.同时,大量的研究计算了多种影响金属材料塑性变形能力的理论参数,如广义层错能等,但其变化情况并不能直接与实际镁合金中的CRSS及延伸率挂钩.采用X射线衍射结合晶内平均取向差分析、EBSD结合原位滑移迹线分析、原位透射电镜加载力学耦合分析等方法可以实时观测镁合金中的位错滑移,但是对滑移系及位错的精确识别仍存在困难.镁合金的“电子尺度-原子尺度-位错/孪晶尺度-宏观尺度”关联机制尚不清晰,在揭示合金元素对Mg及其合金塑性变形影响的深层影响机制、量化合金元素对Mg固溶强化或软化的能力、搭建合金元素对Mg影响的多尺度关联框架、提出基于合金元素的镁合金塑韧化定制策略方面仍有较大的研究空间. ...
![]()
Effect of solute content and temperature on the deformation mechanisms and critical resolved shear stress in Mg-Al and Mg-Zn alloys
1
2019
... 从实验研究的角度来说,研究人员采用多种微观力学测试手段测定了不同镁合金滑移系的CRSS,并深入研究了镁合金的塑性变形机制[10,39].Wang等[40]基于三维X射线衍射(3DXRD)技术,测定了多晶Mg-3Y (质量分数,%,下同)体系中非基面与基面滑移系的比值为CRSSprismatic<a>∶CRSSpyramidal<a>∶CRSSbasal<a> = 3.2∶3.0∶1.0,这个数值明显小于纯Mg,证实了稀土元素Y有效缩小了非基面与基面滑移系之间的启动能力差异,促进了多系滑移.Huang等[41]利用相同方法研究了Mg-5Y合金的塑性变形机理,估算了非基面滑移与基面的CRSS比值,其CRSSprismatic<a>∶CRSSbasal<a> = 1.8~2.7,CRSSpyramidal<a>∶CRSSbasal<a> = 1.6~1.8.Sabat等[42]制备了具有不同织构的Mg-0.2Ce (原子分数,%)合金,结合晶体塑性有限元模拟(crystal plasticity finite element modelling,CPFEM)方法,预测了其不同滑移系及孪晶的CRSS比值为CRSSbasal<a>∶CRSSprismatic<a>∶CRSSpyramidal<c + a>∶CRSStwinning = 1∶1.5∶4∶1.4.Zhu等[8]报道了Ca原子能够有效降低非基面与基面滑移系的CRSS比值,增强Mg-Ca合金中基面-柱面<a>位错的交滑移行为,从而提升镁合金的塑性.Standford和Barnett[24]研究发现,在Mg-2.8Zn合金中,柱面与基面滑移系的CRSS比值会随着晶粒尺寸的增大而递增,这说明CRSS比值的测定可能会受到多晶样品应变不均匀性和晶界等的影响.Liu等[43]通过单晶微柱压缩技术,在特定取向晶粒下加载微米级样品柱,使微柱能够在塑性变形过程中激活单一、特定的滑移系,结合表面迹线分析方法分析了滑移系对应的变形行为,精确地测定了纯Mg的基面<a>滑移系和孪晶的CRSS,分别为29和6 MPa.Lilleodden[44]也采用单晶微柱压缩技术测定了纯Mg的二级锥面<c + a>滑移系的CRSS.单晶微柱压缩能够更有效地排除晶界、相界等因素的干扰,定量反应合金元素的种类和含量对于Mg及其合金滑移系CRSS的影响,并进一步分析了滑移系的变形行为.Wang等[12,45,46]利用单晶微柱压缩技术结合高通量扩散多元节等手段,获得了不同Al、Zn、Ca合金成分下基面、锥面及拉伸孪晶的CRSS,定量表征了合金元素含量对非基面与基面滑移系CRSS比值的影响,如图3[45]所示.Wu等[47]也通过微柱压缩方法测定Mg-4Y合金中锥面<c + a>与基面<a>滑移系的CRSS比值降低到2.8~4.8,且Y元素的添加一定程度上提升了拉伸孪晶形核的CRSS,抑制了其形核,显著降低了孪晶造成的拉压不对称现象. ...
Study of basal <a> and pyramidal<c + a> slips in Mg-Y alloys using micro-pillar compression
1
2020
... 从实验研究的角度来说,研究人员采用多种微观力学测试手段测定了不同镁合金滑移系的CRSS,并深入研究了镁合金的塑性变形机制[10,39].Wang等[40]基于三维X射线衍射(3DXRD)技术,测定了多晶Mg-3Y (质量分数,%,下同)体系中非基面与基面滑移系的比值为CRSSprismatic<a>∶CRSSpyramidal<a>∶CRSSbasal<a> = 3.2∶3.0∶1.0,这个数值明显小于纯Mg,证实了稀土元素Y有效缩小了非基面与基面滑移系之间的启动能力差异,促进了多系滑移.Huang等[41]利用相同方法研究了Mg-5Y合金的塑性变形机理,估算了非基面滑移与基面的CRSS比值,其CRSSprismatic<a>∶CRSSbasal<a> = 1.8~2.7,CRSSpyramidal<a>∶CRSSbasal<a> = 1.6~1.8.Sabat等[42]制备了具有不同织构的Mg-0.2Ce (原子分数,%)合金,结合晶体塑性有限元模拟(crystal plasticity finite element modelling,CPFEM)方法,预测了其不同滑移系及孪晶的CRSS比值为CRSSbasal<a>∶CRSSprismatic<a>∶CRSSpyramidal<c + a>∶CRSStwinning = 1∶1.5∶4∶1.4.Zhu等[8]报道了Ca原子能够有效降低非基面与基面滑移系的CRSS比值,增强Mg-Ca合金中基面-柱面<a>位错的交滑移行为,从而提升镁合金的塑性.Standford和Barnett[24]研究发现,在Mg-2.8Zn合金中,柱面与基面滑移系的CRSS比值会随着晶粒尺寸的增大而递增,这说明CRSS比值的测定可能会受到多晶样品应变不均匀性和晶界等的影响.Liu等[43]通过单晶微柱压缩技术,在特定取向晶粒下加载微米级样品柱,使微柱能够在塑性变形过程中激活单一、特定的滑移系,结合表面迹线分析方法分析了滑移系对应的变形行为,精确地测定了纯Mg的基面<a>滑移系和孪晶的CRSS,分别为29和6 MPa.Lilleodden[44]也采用单晶微柱压缩技术测定了纯Mg的二级锥面<c + a>滑移系的CRSS.单晶微柱压缩能够更有效地排除晶界、相界等因素的干扰,定量反应合金元素的种类和含量对于Mg及其合金滑移系CRSS的影响,并进一步分析了滑移系的变形行为.Wang等[12,45,46]利用单晶微柱压缩技术结合高通量扩散多元节等手段,获得了不同Al、Zn、Ca合金成分下基面、锥面及拉伸孪晶的CRSS,定量表征了合金元素含量对非基面与基面滑移系CRSS比值的影响,如图3[45]所示.Wu等[47]也通过微柱压缩方法测定Mg-4Y合金中锥面<c + a>与基面<a>滑移系的CRSS比值降低到2.8~4.8,且Y元素的添加一定程度上提升了拉伸孪晶形核的CRSS,抑制了其形核,显著降低了孪晶造成的拉压不对称现象. ...
Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals
1
2011
... 金属材料通常在高温下表现出良好的塑性和可加工性,这是由于高温下位错容易借助热振动的能量越过启动能垒,还可以激活动态再结晶等软化过程,表现出较高的塑性变形能力.Mg及镁合金由于hcp结构的低对称性,其在高温下的塑性变形能力有别于一般的热激活原理,还取决于不同滑移系的启动能力差异,本文作者将其称之为温度对Mg中位错启动能力的内禀影响.一般来说,Mg不同滑移系的CRSS对温度变化的敏感度存在显著差异.Chapuis和Driver[48]研究发现,纯Mg的基面滑移和拉伸孪晶的CRSS随着温度升高的变化幅度较小,但柱面<a>滑移和锥面<c + a>滑移对应的CRSS受温度影响的波动很大,温度提升300~400 K,Mg中非基面滑移系的CRSS会下降近50 MPa.Shin等[49]使用黏塑性自洽晶体模型(viscoplastic self-consistent,VPSC)结合遗传算法代码(genetic algorithm code,GA-code)模拟了纯Mg中各个滑移系随温度的变化情况,发现柱面滑移系的激活能力呈现显著的温度依赖性,随着温度从室温升高至733 K,其CRSS从37.73 MPa显著降低至0.95 MPa.类似地,二级锥面<c + a>滑移系的启动能力也呈现随温度升高而增强的效果.因此,升高温度能够显著内禀增强Mg非基面滑移系的激活能力,缩小Mg非基面与基面滑移的滑移阻力,促进多系滑移,进一步提升Mg及其合金的塑性变形能力. ...
Effects of temperature on critical resolved shear stresses of slip and twining in Mg single crystal via experimental and crystal plasticity modeling
1
2023
... 金属材料通常在高温下表现出良好的塑性和可加工性,这是由于高温下位错容易借助热振动的能量越过启动能垒,还可以激活动态再结晶等软化过程,表现出较高的塑性变形能力.Mg及镁合金由于hcp结构的低对称性,其在高温下的塑性变形能力有别于一般的热激活原理,还取决于不同滑移系的启动能力差异,本文作者将其称之为温度对Mg中位错启动能力的内禀影响.一般来说,Mg不同滑移系的CRSS对温度变化的敏感度存在显著差异.Chapuis和Driver[48]研究发现,纯Mg的基面滑移和拉伸孪晶的CRSS随着温度升高的变化幅度较小,但柱面<a>滑移和锥面<c + a>滑移对应的CRSS受温度影响的波动很大,温度提升300~400 K,Mg中非基面滑移系的CRSS会下降近50 MPa.Shin等[49]使用黏塑性自洽晶体模型(viscoplastic self-consistent,VPSC)结合遗传算法代码(genetic algorithm code,GA-code)模拟了纯Mg中各个滑移系随温度的变化情况,发现柱面滑移系的激活能力呈现显著的温度依赖性,随着温度从室温升高至733 K,其CRSS从37.73 MPa显著降低至0.95 MPa.类似地,二级锥面<c + a>滑移系的启动能力也呈现随温度升高而增强的效果.因此,升高温度能够显著内禀增强Mg非基面滑移系的激活能力,缩小Mg非基面与基面滑移的滑移阻力,促进多系滑移,进一步提升Mg及其合金的塑性变形能力. ...
Enhancing strength-ductility synergy in a Mg-Gd-Y-Zr alloy at sub-zero temperatures via high dislocation density and shearable precipitates
1
2023
... 近年来,随着镁合金应用场景的不断拓宽,研究人员开始研究低温下镁合金的塑性变形机制.与高温情况不同,研究人员在Mg-Y和Mg-Al合金中发现,低温下镁合金非基面滑移系的CRSS与温度不是单调的近线性关系.Qi等[50]采用滑移迹线分析的方法研究了低温下Mg-3Y和Mg-3Al合金的非基面滑移系,实验发现-70 ℃时Mg-3Y合金中柱面<a>滑移系与基面<a>滑移系的CRSS比值降低至1.5~2.7,同时发现Y的添加也显著降低了<c + a>滑移系与<a>滑移系的CRSS比值,实现了低温下的高延伸率.而对于Mg-3Al合金来说,研究发现-196 ℃时柱面<a>滑移系与基面<a>滑移系的CRSS比值降低至2.0~2.7,但<c + a>滑移系与基面<a>滑移系的CRSS比值随温度降低而增大,因此Mg-3Al合金在低温下难以激活大量<c + a>位错来协调塑性变形.可以看出,镁合金低温下的塑性变形机制与合金元素种类、含量及存在形式密切相关.总体来说,调节温度可以有效调控Mg及其合金中非基面与基面滑移系的CRSS比值,激活更多柱面<a>、锥面<c + a>位错来协调塑性应变.但是,目前仍缺少镁合金的塑性、滑移系启动以及温度之间的定量关系模型,这有望通过理论计算结合实验测定来进一步研究,对于镁合金的塑性加工具有重要意义. ...
Transitions in mechanical behavior and in deformation mechanisms enhance the strength and ductility of Mg-3Gd
1
2020
... 晶粒尺寸对金属材料的力学性能存在显著的影响,细化晶粒也是提高金属材料强度、维持良好塑性的有效途径.然而,晶粒尺寸的改变通常不会影响Mg的内禀位错滑移阻力,而是通过调节孪晶与位错之间的启动竞争关系或借助晶界作用等来影响塑性变形.通常来说,在微米尺度下,减小晶粒尺寸会抑制拉伸孪晶的开动,进而促进非基面滑移系的开动,使得更多非基面位错协调变形.例如,Luo等[51]通过对比不同尺寸的镁合金样品发现,当晶粒尺寸大于10 μm时,镁合金主要以<a>位错滑移和拉伸孪晶协调塑性变形,而当晶粒尺寸小于5 μm时,样品的塑性变形机制转变为由<c + a>和<a>位错滑移主导,从而进一步提升其拉伸延伸率.Wu等[23]给出了纯Mg及镁合金的晶粒尺寸及断裂延伸率的对比图(图4[23]),可以看出,在微米尺度下,随着晶粒尺寸的降低,镁合金的延伸率普遍增大,这说明降低晶粒尺寸可以有效提升镁合金的塑性变形能力.但晶粒尺寸对于某些特殊镁合金体系的影响是存在区别的,例如Zhu等[52]采用原位同步辐射实验与VPSC的方法,研究了以柱面<a>滑移为主导的Mg-3Al-3Sn合金中晶粒尺寸对滑移系启动能力的影响.结果表明,晶粒尺寸在10~100 μm范围内,沿轧制方向对合金进行拉伸时,随着晶粒尺寸的增大,所开动的柱面<a>和基面<a>滑移减少,一级锥面<a>与二级锥面<c + a>滑移系则更容易启动.镁合金的延伸率随晶粒尺寸的减小而“先增大后减小”,晶粒尺寸为52 μm时延伸率达到最高,这可能是由多系滑移启动能力差异所决定的. ...
Grain-size effect on the deformation of Mg-3Al-3Sn alloy: Experiments and elastic-viscoplastic self-consistent modeling
1
2021
... 晶粒尺寸对金属材料的力学性能存在显著的影响,细化晶粒也是提高金属材料强度、维持良好塑性的有效途径.然而,晶粒尺寸的改变通常不会影响Mg的内禀位错滑移阻力,而是通过调节孪晶与位错之间的启动竞争关系或借助晶界作用等来影响塑性变形.通常来说,在微米尺度下,减小晶粒尺寸会抑制拉伸孪晶的开动,进而促进非基面滑移系的开动,使得更多非基面位错协调变形.例如,Luo等[51]通过对比不同尺寸的镁合金样品发现,当晶粒尺寸大于10 μm时,镁合金主要以<a>位错滑移和拉伸孪晶协调塑性变形,而当晶粒尺寸小于5 μm时,样品的塑性变形机制转变为由<c + a>和<a>位错滑移主导,从而进一步提升其拉伸延伸率.Wu等[23]给出了纯Mg及镁合金的晶粒尺寸及断裂延伸率的对比图(图4[23]),可以看出,在微米尺度下,随着晶粒尺寸的降低,镁合金的延伸率普遍增大,这说明降低晶粒尺寸可以有效提升镁合金的塑性变形能力.但晶粒尺寸对于某些特殊镁合金体系的影响是存在区别的,例如Zhu等[52]采用原位同步辐射实验与VPSC的方法,研究了以柱面<a>滑移为主导的Mg-3Al-3Sn合金中晶粒尺寸对滑移系启动能力的影响.结果表明,晶粒尺寸在10~100 μm范围内,沿轧制方向对合金进行拉伸时,随着晶粒尺寸的增大,所开动的柱面<a>和基面<a>滑移减少,一级锥面<a>与二级锥面<c + a>滑移系则更容易启动.镁合金的延伸率随晶粒尺寸的减小而“先增大后减小”,晶粒尺寸为52 μm时延伸率达到最高,这可能是由多系滑移启动能力差异所决定的. ...
Research progress of newly developed high-strength and low-alloyed magnesium alloy
1
2020
... 最近的研究[53]表明,将镁合金的晶粒尺寸调控至纳米级有望引入新的晶间滑移机制,可替代传统的大量基面位错滑移,实现均匀的塑性变形.Zheng等[54]研究了纯Mg的晶粒尺寸、塑性变形机制与室温拉伸性能之间的关联,分析表明,基面滑移和拉伸孪晶是晶粒尺寸大于5 μm的粗晶样品的主要变形机制;当晶粒尺寸降低至1 μm以下后,晶界滑移成为超细晶Mg的另一种滑移来源,从而大幅提高其室温塑性(延伸率高达60%).Liu等[55]在亚微米尺寸的纯Mg单晶微柱沿<c>轴压缩过程中发现一种新的塑性变形机制,即“形变转晶”(deformation graining,DG).在亚微米纯Mg微柱压缩的超高流变应力下,当位错提供的塑性基本耗尽时,这种新的变形机制会突然启动.原位透射电镜表征结果表明,这种变形机制使初始单晶体突然转变为许多具有新取向的小晶粒,这些新的小晶粒能够通过从锥面到基面的转变形成,新生成的晶粒中位错滑移和孪晶机制重新出现,进一步协调应变,实现了大的塑性变形. ...
新型高强度低合金化镁合金研究进展
1
2020
... 最近的研究[53]表明,将镁合金的晶粒尺寸调控至纳米级有望引入新的晶间滑移机制,可替代传统的大量基面位错滑移,实现均匀的塑性变形.Zheng等[54]研究了纯Mg的晶粒尺寸、塑性变形机制与室温拉伸性能之间的关联,分析表明,基面滑移和拉伸孪晶是晶粒尺寸大于5 μm的粗晶样品的主要变形机制;当晶粒尺寸降低至1 μm以下后,晶界滑移成为超细晶Mg的另一种滑移来源,从而大幅提高其室温塑性(延伸率高达60%).Liu等[55]在亚微米尺寸的纯Mg单晶微柱沿<c>轴压缩过程中发现一种新的塑性变形机制,即“形变转晶”(deformation graining,DG).在亚微米纯Mg微柱压缩的超高流变应力下,当位错提供的塑性基本耗尽时,这种新的变形机制会突然启动.原位透射电镜表征结果表明,这种变形机制使初始单晶体突然转变为许多具有新取向的小晶粒,这些新的小晶粒能够通过从锥面到基面的转变形成,新生成的晶粒中位错滑移和孪晶机制重新出现,进一步协调应变,实现了大的塑性变形. ...
Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer
1
2020
... 最近的研究[53]表明,将镁合金的晶粒尺寸调控至纳米级有望引入新的晶间滑移机制,可替代传统的大量基面位错滑移,实现均匀的塑性变形.Zheng等[54]研究了纯Mg的晶粒尺寸、塑性变形机制与室温拉伸性能之间的关联,分析表明,基面滑移和拉伸孪晶是晶粒尺寸大于5 μm的粗晶样品的主要变形机制;当晶粒尺寸降低至1 μm以下后,晶界滑移成为超细晶Mg的另一种滑移来源,从而大幅提高其室温塑性(延伸率高达60%).Liu等[55]在亚微米尺寸的纯Mg单晶微柱沿<c>轴压缩过程中发现一种新的塑性变形机制,即“形变转晶”(deformation graining,DG).在亚微米纯Mg微柱压缩的超高流变应力下,当位错提供的塑性基本耗尽时,这种新的变形机制会突然启动.原位透射电镜表征结果表明,这种变形机制使初始单晶体突然转变为许多具有新取向的小晶粒,这些新的小晶粒能够通过从锥面到基面的转变形成,新生成的晶粒中位错滑移和孪晶机制重新出现,进一步协调应变,实现了大的塑性变形. ...
Rejuvenation of plasticity via deformation graining in magnesium
1
2022
... 最近的研究[53]表明,将镁合金的晶粒尺寸调控至纳米级有望引入新的晶间滑移机制,可替代传统的大量基面位错滑移,实现均匀的塑性变形.Zheng等[54]研究了纯Mg的晶粒尺寸、塑性变形机制与室温拉伸性能之间的关联,分析表明,基面滑移和拉伸孪晶是晶粒尺寸大于5 μm的粗晶样品的主要变形机制;当晶粒尺寸降低至1 μm以下后,晶界滑移成为超细晶Mg的另一种滑移来源,从而大幅提高其室温塑性(延伸率高达60%).Liu等[55]在亚微米尺寸的纯Mg单晶微柱沿<c>轴压缩过程中发现一种新的塑性变形机制,即“形变转晶”(deformation graining,DG).在亚微米纯Mg微柱压缩的超高流变应力下,当位错提供的塑性基本耗尽时,这种新的变形机制会突然启动.原位透射电镜表征结果表明,这种变形机制使初始单晶体突然转变为许多具有新取向的小晶粒,这些新的小晶粒能够通过从锥面到基面的转变形成,新生成的晶粒中位错滑移和孪晶机制重新出现,进一步协调应变,实现了大的塑性变形. ...
Highly deformable Mg-Al-Ca alloy with Al2Ca precipitates
4
2020
... 镁合金中相的种类、尺寸及分布均会显著影响其塑性变形机制,调控第二相成为调节镁合金塑性的重要途径.通常来说,引入第二相通常起到阻碍位错滑移的作用,从而提升镁合金的强度,但这往往会限制位错运动而牺牲镁合金的塑性.因此,镁合金中常见的强化相难以满足镁合金塑性提升的需求.事实上,镁合金中也存在一些不可剪切的第二相,这些第二相可以通过自身的塑性变形机制协调基体的变形,缓解应变局域化的产生,同时也有效缓解界面的应力集中现象,这是一种能够通过外部引入新滑移系来协调Mg基体塑性变形的全新思路.例如Zhu等[56]通过热力学计算设计合金成分与热处理条件,设计了一种Mg-6Al-1Ca合金,使成形材料中仅析出Al2Ca相,而不出现对力学性能有危害的Mg17Al12及Mg2Ca相.这种析出的Al2Ca相具有类似fcc的晶体结构,如图5[56]所示,可以在其{111}晶面上形成位错和层错而协调基体的塑性变形[57],有效消除了局部应力集中,使镁合金的延伸率大幅提升.此外,Al2Ca相具有亚微米级尺寸(0.63 μm)和随机晶体取向,能够有效阻碍Mg基体中的位错滑移,提高材料的加工硬化率.Chen等[58]也报道了Mg97Y2Zn1 (原子分数,%)合金中LPSO相的扭折变形是其主要的塑性变形方式.在室温下拉伸时,LPSO相中不仅能激活基面<a>滑移系,也能激活非基面<a>滑移系协调塑性.所以,可自身变形的第二相,既可以作为障碍物阻碍位错滑移强化合金,又可以通过自身变形协调应变,实现在不牺牲强度的情况下提升塑性.LPSO相作为镁合金中重要的基面析出相,其与位错的交互作用对强度和塑性具有重要影响.Li等[59]基于透射电镜观察下的原位纳米力学测试技术,研究了具有不同间距的LPSO相与基面<a>位错的交互作用及LPSO相层间的基面<a>位错滑移行为.分析发现,LPSO相层间的基面<a>位错的滑移阻力与LPSO相间距有关,并且滑移阻力随LPSO相间距减小而增大,尤其当LPSO相间距小于20 nm时,基面位错的活性明显降低.这为Mg及其合金的多系滑移调控提供了新思路,可以通过调节LPSO相间距提升稀土镁合金基面滑移临界强度,进而缩小非基面与基面滑移系启动能力的差异.从以上分析可知,设计并引入能够提供有效塑性变形能力的新型第二相,可以延续Mg的本征滑移机制进而协调塑性应变,实现镁合金塑性和成形性的提升. ...
... [56]所示,可以在其{111}晶面上形成位错和层错而协调基体的塑性变形[57],有效消除了局部应力集中,使镁合金的延伸率大幅提升.此外,Al2Ca相具有亚微米级尺寸(0.63 μm)和随机晶体取向,能够有效阻碍Mg基体中的位错滑移,提高材料的加工硬化率.Chen等[58]也报道了Mg97Y2Zn1 (原子分数,%)合金中LPSO相的扭折变形是其主要的塑性变形方式.在室温下拉伸时,LPSO相中不仅能激活基面<a>滑移系,也能激活非基面<a>滑移系协调塑性.所以,可自身变形的第二相,既可以作为障碍物阻碍位错滑移强化合金,又可以通过自身变形协调应变,实现在不牺牲强度的情况下提升塑性.LPSO相作为镁合金中重要的基面析出相,其与位错的交互作用对强度和塑性具有重要影响.Li等[59]基于透射电镜观察下的原位纳米力学测试技术,研究了具有不同间距的LPSO相与基面<a>位错的交互作用及LPSO相层间的基面<a>位错滑移行为.分析发现,LPSO相层间的基面<a>位错的滑移阻力与LPSO相间距有关,并且滑移阻力随LPSO相间距减小而增大,尤其当LPSO相间距小于20 nm时,基面位错的活性明显降低.这为Mg及其合金的多系滑移调控提供了新思路,可以通过调节LPSO相间距提升稀土镁合金基面滑移临界强度,进而缩小非基面与基面滑移系启动能力的差异.从以上分析可知,设计并引入能够提供有效塑性变形能力的新型第二相,可以延续Mg的本征滑移机制进而协调塑性应变,实现镁合金塑性和成形性的提升. ...
... [
56]
Schematic of the deformation mechanisms in the Mg-6Al-1Ca alloy<sup>[<xref ref-type="bibr" rid="R56">56</xref>]</sup> (GB—grain boundary, GNDs—geometrically necessary dislocations)Fig.5<strong>4</strong> 总结和展望本文针对Mg和镁合金塑韧性差的瓶颈问题,从Mg的晶体结构特性及塑性变形机制出发,深入阐述了镁合金塑韧化的思路,提出了“镁合金的多系滑移调控塑性”的合金设计思想,旨在通过合金化与温度调控等内禀手段,有效降低非基面与基面滑移系的CRSS比值,激发多滑移系参与变形,实现塑性协调.同时希望建立塑性影响因素、CRSS比值与宏观塑性表现之间的量化联系,为材料性能的精确调控奠定基础.从外禀角度,通过优化晶粒尺寸、引入可变形第二相,为Mg及其合金的塑性变形提供新的载体.尤其在Mg基体位错滑移受限时,通过提供连续滑移机制,实现均匀持续的塑性变形,提升Mg及其合金的塑性、加工性和成形性,这也为其他金属材料的塑韧化提供了借鉴.然而,在理解微结构对材料塑性变形的本征影响机制及设计超高强塑性镁合金方面尚存在诸多问题,需要开展深入研究. ...
... [
56] (GB—grain boundary, GNDs—geometrically necessary dislocations)
Fig.5<strong>4</strong> 总结和展望本文针对Mg和镁合金塑韧性差的瓶颈问题,从Mg的晶体结构特性及塑性变形机制出发,深入阐述了镁合金塑韧化的思路,提出了“镁合金的多系滑移调控塑性”的合金设计思想,旨在通过合金化与温度调控等内禀手段,有效降低非基面与基面滑移系的CRSS比值,激发多滑移系参与变形,实现塑性协调.同时希望建立塑性影响因素、CRSS比值与宏观塑性表现之间的量化联系,为材料性能的精确调控奠定基础.从外禀角度,通过优化晶粒尺寸、引入可变形第二相,为Mg及其合金的塑性变形提供新的载体.尤其在Mg基体位错滑移受限时,通过提供连续滑移机制,实现均匀持续的塑性变形,提升Mg及其合金的塑性、加工性和成形性,这也为其他金属材料的塑韧化提供了借鉴.然而,在理解微结构对材料塑性变形的本征影响机制及设计超高强塑性镁合金方面尚存在诸多问题,需要开展深入研究. ...
Micro-compression of Al2Ca particles in a Mg-Al-Ca alloy
1
2022
... 镁合金中相的种类、尺寸及分布均会显著影响其塑性变形机制,调控第二相成为调节镁合金塑性的重要途径.通常来说,引入第二相通常起到阻碍位错滑移的作用,从而提升镁合金的强度,但这往往会限制位错运动而牺牲镁合金的塑性.因此,镁合金中常见的强化相难以满足镁合金塑性提升的需求.事实上,镁合金中也存在一些不可剪切的第二相,这些第二相可以通过自身的塑性变形机制协调基体的变形,缓解应变局域化的产生,同时也有效缓解界面的应力集中现象,这是一种能够通过外部引入新滑移系来协调Mg基体塑性变形的全新思路.例如Zhu等[56]通过热力学计算设计合金成分与热处理条件,设计了一种Mg-6Al-1Ca合金,使成形材料中仅析出Al2Ca相,而不出现对力学性能有危害的Mg17Al12及Mg2Ca相.这种析出的Al2Ca相具有类似fcc的晶体结构,如图5[56]所示,可以在其{111}晶面上形成位错和层错而协调基体的塑性变形[57],有效消除了局部应力集中,使镁合金的延伸率大幅提升.此外,Al2Ca相具有亚微米级尺寸(0.63 μm)和随机晶体取向,能够有效阻碍Mg基体中的位错滑移,提高材料的加工硬化率.Chen等[58]也报道了Mg97Y2Zn1 (原子分数,%)合金中LPSO相的扭折变形是其主要的塑性变形方式.在室温下拉伸时,LPSO相中不仅能激活基面<a>滑移系,也能激活非基面<a>滑移系协调塑性.所以,可自身变形的第二相,既可以作为障碍物阻碍位错滑移强化合金,又可以通过自身变形协调应变,实现在不牺牲强度的情况下提升塑性.LPSO相作为镁合金中重要的基面析出相,其与位错的交互作用对强度和塑性具有重要影响.Li等[59]基于透射电镜观察下的原位纳米力学测试技术,研究了具有不同间距的LPSO相与基面<a>位错的交互作用及LPSO相层间的基面<a>位错滑移行为.分析发现,LPSO相层间的基面<a>位错的滑移阻力与LPSO相间距有关,并且滑移阻力随LPSO相间距减小而增大,尤其当LPSO相间距小于20 nm时,基面位错的活性明显降低.这为Mg及其合金的多系滑移调控提供了新思路,可以通过调节LPSO相间距提升稀土镁合金基面滑移临界强度,进而缩小非基面与基面滑移系启动能力的差异.从以上分析可知,设计并引入能够提供有效塑性变形能力的新型第二相,可以延续Mg的本征滑移机制进而协调塑性应变,实现镁合金塑性和成形性的提升. ...
Room temperature deformation of LPSO structures by non-basal slip
1
2017
... 镁合金中相的种类、尺寸及分布均会显著影响其塑性变形机制,调控第二相成为调节镁合金塑性的重要途径.通常来说,引入第二相通常起到阻碍位错滑移的作用,从而提升镁合金的强度,但这往往会限制位错运动而牺牲镁合金的塑性.因此,镁合金中常见的强化相难以满足镁合金塑性提升的需求.事实上,镁合金中也存在一些不可剪切的第二相,这些第二相可以通过自身的塑性变形机制协调基体的变形,缓解应变局域化的产生,同时也有效缓解界面的应力集中现象,这是一种能够通过外部引入新滑移系来协调Mg基体塑性变形的全新思路.例如Zhu等[56]通过热力学计算设计合金成分与热处理条件,设计了一种Mg-6Al-1Ca合金,使成形材料中仅析出Al2Ca相,而不出现对力学性能有危害的Mg17Al12及Mg2Ca相.这种析出的Al2Ca相具有类似fcc的晶体结构,如图5[56]所示,可以在其{111}晶面上形成位错和层错而协调基体的塑性变形[57],有效消除了局部应力集中,使镁合金的延伸率大幅提升.此外,Al2Ca相具有亚微米级尺寸(0.63 μm)和随机晶体取向,能够有效阻碍Mg基体中的位错滑移,提高材料的加工硬化率.Chen等[58]也报道了Mg97Y2Zn1 (原子分数,%)合金中LPSO相的扭折变形是其主要的塑性变形方式.在室温下拉伸时,LPSO相中不仅能激活基面<a>滑移系,也能激活非基面<a>滑移系协调塑性.所以,可自身变形的第二相,既可以作为障碍物阻碍位错滑移强化合金,又可以通过自身变形协调应变,实现在不牺牲强度的情况下提升塑性.LPSO相作为镁合金中重要的基面析出相,其与位错的交互作用对强度和塑性具有重要影响.Li等[59]基于透射电镜观察下的原位纳米力学测试技术,研究了具有不同间距的LPSO相与基面<a>位错的交互作用及LPSO相层间的基面<a>位错滑移行为.分析发现,LPSO相层间的基面<a>位错的滑移阻力与LPSO相间距有关,并且滑移阻力随LPSO相间距减小而增大,尤其当LPSO相间距小于20 nm时,基面位错的活性明显降低.这为Mg及其合金的多系滑移调控提供了新思路,可以通过调节LPSO相间距提升稀土镁合金基面滑移临界强度,进而缩小非基面与基面滑移系启动能力的差异.从以上分析可知,设计并引入能够提供有效塑性变形能力的新型第二相,可以延续Mg的本征滑移机制进而协调塑性应变,实现镁合金塑性和成形性的提升. ...
In-situ TEM characterization of basal dislocations between nano-spaced long-period stacking ordered phases in MgYZn alloy
1
2023
... 镁合金中相的种类、尺寸及分布均会显著影响其塑性变形机制,调控第二相成为调节镁合金塑性的重要途径.通常来说,引入第二相通常起到阻碍位错滑移的作用,从而提升镁合金的强度,但这往往会限制位错运动而牺牲镁合金的塑性.因此,镁合金中常见的强化相难以满足镁合金塑性提升的需求.事实上,镁合金中也存在一些不可剪切的第二相,这些第二相可以通过自身的塑性变形机制协调基体的变形,缓解应变局域化的产生,同时也有效缓解界面的应力集中现象,这是一种能够通过外部引入新滑移系来协调Mg基体塑性变形的全新思路.例如Zhu等[56]通过热力学计算设计合金成分与热处理条件,设计了一种Mg-6Al-1Ca合金,使成形材料中仅析出Al2Ca相,而不出现对力学性能有危害的Mg17Al12及Mg2Ca相.这种析出的Al2Ca相具有类似fcc的晶体结构,如图5[56]所示,可以在其{111}晶面上形成位错和层错而协调基体的塑性变形[57],有效消除了局部应力集中,使镁合金的延伸率大幅提升.此外,Al2Ca相具有亚微米级尺寸(0.63 μm)和随机晶体取向,能够有效阻碍Mg基体中的位错滑移,提高材料的加工硬化率.Chen等[58]也报道了Mg97Y2Zn1 (原子分数,%)合金中LPSO相的扭折变形是其主要的塑性变形方式.在室温下拉伸时,LPSO相中不仅能激活基面<a>滑移系,也能激活非基面<a>滑移系协调塑性.所以,可自身变形的第二相,既可以作为障碍物阻碍位错滑移强化合金,又可以通过自身变形协调应变,实现在不牺牲强度的情况下提升塑性.LPSO相作为镁合金中重要的基面析出相,其与位错的交互作用对强度和塑性具有重要影响.Li等[59]基于透射电镜观察下的原位纳米力学测试技术,研究了具有不同间距的LPSO相与基面<a>位错的交互作用及LPSO相层间的基面<a>位错滑移行为.分析发现,LPSO相层间的基面<a>位错的滑移阻力与LPSO相间距有关,并且滑移阻力随LPSO相间距减小而增大,尤其当LPSO相间距小于20 nm时,基面位错的活性明显降低.这为Mg及其合金的多系滑移调控提供了新思路,可以通过调节LPSO相间距提升稀土镁合金基面滑移临界强度,进而缩小非基面与基面滑移系启动能力的差异.从以上分析可知,设计并引入能够提供有效塑性变形能力的新型第二相,可以延续Mg的本征滑移机制进而协调塑性应变,实现镁合金塑性和成形性的提升. ...