Please wait a minute...
金属学报  2023, Vol. 59 Issue (9): 1209-1220    DOI: 10.11900/0412.1961.2023.00118
  研究论文 本期目录 | 过刊浏览 |
新型钴基高温合金中W元素对蠕变组织和性能的影响
陈佳, 郭敏, 杨敏, 刘林, 张军()
西北工业大学 凝固技术国家重点实验室 西安 710072
Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys
CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun()
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
Jia CHEN, Min GUO, Min YANG, Lin LIU, Jun ZHANG. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. Acta Metall Sin, 2023, 59(9): 1209-1220.

全文: PDF(4005 KB)   HTML
摘要: 

γʹ相强化的Co-Al-W高温合金(Co-9Al-xW,x = 8、9、10,原子分数,%)为研究对象,耦合CALPHAD和晶体塑性本构关系,建立了高温加载时微观组织演化的三元弹塑性相场模型,考察了W含量对蠕变过程中γʹ相演化行为和蠕变性能的影响。结果表明,随W含量增加,γ'相体积分数增加,γ基体塑性变形降低,筏化形成并提前,导致蠕变性能提高。不变矩分析表明,9W和10W合金中筏组织形成是出现稳态蠕变阶段的主要原因。应力/应变分析表明,高W合金γ基体中较大的错配应力减小了塑性变形。

关键词 钴基高温合金相场模拟蠕变筏化    
Abstract

γ' precipitate strengthened cobalt-based alloys exhibit superior comprehensive properties and are potential candidates for the anticipated next-generation superalloy. The phase field method, which considers the combined effect of multiple energy fields, effectively elucidates the processing and mechanism of microstructure evolution. By using the ternary elastoplastic phase field model coupled with CALPHAD and crystal plasticity model, the γ' evolution of Co-9Al-xW (x = 8, 9, and 10; atomic fraction, %) alloys during creep processes is simulated herein. The corresponding rafting behaviors and creep properties are evaluated from the perspective of the changes in second-order moment invariant map (SOMIM) and stress/strain fields. The results show that as the W content increases, the volume fraction of the γ' phase increases, the plastic strain in the γ matrix reduces, and rafting occurs with accelerated rate, which enhances the creep property. Further, the SOMIM analysis shows that the raft structure leads to a steady creep behavior in 9W and 10W alloys. In addition, the alloy with a high W content has a high misfit stress in the γ matrix, which leads to a low plastic strain.

Key wordsCo-based superalloy    phase field simulation    creep    rafting
收稿日期: 2023-03-23     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金项目(51971174);国家自然科学基金项目(52031012);国家科技重大专项项目(J2019-VI-0020-0135);国家重点研发计划项目(2017YFB0702902);西北工业大学凝固技术国家重点实验室项目(2022-TZ-01)
作者简介: 陈 佳,女,1992年生,博士
AlloyElastic constant of γ / GPaElastic constant of γ' / GPa
C11mC12mC44mC11pC12pC44p
Co-9Al-8W (8W)315209160361190212
Co-9Al-9W (9W)316363
Co-9Al-10W (10W)317364
表1  γ、γ'两相弹性常数
Alloyr0mr0p
8W18210
9W26235
10W30260
表2  γ和γ'中滑移系开动阈值r0m和r0p (MPa)
图1  八面体滑移系
图2  蠕变应变和蠕变速率曲线
图3  不同W含量合金在900℃、275 MPa压缩蠕变过程中γ/γʹ两相组织演化
图4  不同应变下的二阶不变矩密度谱(SOMIM)
图5  SOMIM中0 < ω¯1 ≤ 0.5范围内γ'数量分数
图6  蠕变过程中筏组织特征演化
图7  蠕变过程中塑性变形演化
图8  蠕变过程中分切应力演化
图9  蠕变过程中位错交互作用阻力演化
图10  γ基体和γ'相中位错运动的平均驱动力
图11  γ和γ'两相中内应力和σ33的平均值演化
1 Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys [J]. Science, 2006, 312: 90
pmid: 16601187
2 Titus M S, Suzuki A, Pollock T M. High Temperature creep of new L12 containing cobalt-base superalloys [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 823
3 Bauer A, Neumeier S, Pyczak F, et al. Creep properties of different γ'-strengthened Co-base superalloys [J]. Mater. Sci. Eng., 2012, A550: 333
4 Xue F, Zenk C H, Freund L P, et al. Double minimum creep in the rafting regime of a single-crystal Co-base superalloy [J]. Scr. Mater., 2018, 142: 129
doi: 10.1016/j.scriptamat.2017.08.039
5 Lu S, Antonov S, Li L F, et al. Two steady-state creep stages in Co-Al-W-base single-crystal superalloys at 1273 K/137 MPa [J]. Metall. Mater. Trans., 2018, 49A: 4079
6 Tanaka K, Ooshima M, Tsuno N, et al. Creep deformation of single crystals of new Co-Al-W-based alloys with fcc/L12 two-phase microstructures [J]. Philos. Mag., 2012, 92: 4011
doi: 10.1080/14786435.2012.700416
7 Titus M S, Suzuki A, Pollock T M. Creep and directional coarsening in single crystals of new γ-γ' cobalt-base alloys [J]. Scr. Mater., 2012, 66: 574
doi: 10.1016/j.scriptamat.2012.01.008
8 Shinagawa K, Omori T, Oikawa K, et al. Ductility enhancement by boron addition in Co-Al-W high-temperature alloys [J]. Scr. Mater., 2009, 61: 612
doi: 10.1016/j.scriptamat.2009.05.037
9 Pyczak F, Bauer A, Göken M, et al. The effect of tungsten content on the properties of L12-hardened Co-Al-W alloys [J]. J. Alloys Compd., 2015, 632: 110
doi: 10.1016/j.jallcom.2015.01.031
10 Bocchini P J, Sudbrack C K, Sauza D J, et al. Effect of tungsten concentration on microstructures of Co-10Ni-6Al-(0,2,4,6)W-6Ti(at%) cobalt-based superalloys [J]. Mater. Sci. Eng., 2017, A700: 481
11 Tourret D, Liu H, Llorca J. Phase-field modeling of microstructure evolution: Recent applications, perspectives and challenges [J]. Prog. Mater. Sci., 2022, 123: 100810
doi: 10.1016/j.pmatsci.2021.100810
12 Gaubert A, Le Bouar Y, Finel A. Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys [J]. Philos. Mag., 2010, 90: 375
doi: 10.1080/14786430902877802
13 Cottura M, Le Bouar Y, Finel A, et al. A phase field model incorporating strain gradient viscoplasticity: Application to rafting in Ni-base superalloys [J]. J. Mech. Phys. Solids, 2012, 60: 1243
doi: 10.1016/j.jmps.2012.04.003
14 Wang C, Ali M A, Gao S W, et al. Combined phase-field crystal plasticity simulation of P- and N-type rafting in Co-based superalloys [J]. Acta Mater., 2019, 175: 21
doi: 10.1016/j.actamat.2019.05.063
15 Wang D, Li Y S, Shi S J, et al. Phase-field simulation of γ' precipitates rafting and creep property of Co-base superalloys [J]. Mater. Des., 2020, 196: 109077
doi: 10.1016/j.matdes.2020.109077
16 Yang M, Zhang J, Wei H, et al. Study of γ′ rafting under different stress states—A phase-field simulation considering viscoplasticity [J]. J. Alloys Compd., 2018, 769: 453
doi: 10.1016/j.jallcom.2018.07.317
17 Ali M A, Amin W, Shchyglo O, et al. 45-degree rafting in Ni-based superalloys: A combined phase-field and strain gradient crystal plasticity study [J]. Int. J. Plast., 2020, 128: 102659
doi: 10.1016/j.ijplas.2020.102659
18 Zhou N, Shen C, Mills M, et al. Large-scale three-dimensional phase field simulation of γ'-rafting and creep deformation [J]. Philos. Mag., 2010, 90: 405
doi: 10.1080/14786430903081990
19 Nguyen L, Shi R P, Wang Y Z, et al. Quantification of rafting of γ' precipitates in Ni-based superalloys [J]. Acta Mater., 2016, 103: 322
doi: 10.1016/j.actamat.2015.09.060
20 Yang M, Zhang J, Wei H, et al. A phase-field model for creep behavior in nickel-base single-crystal superalloy: Coupled with creep damage [J]. Scr. Mater., 2018, 147: 16
doi: 10.1016/j.scriptamat.2017.12.008
21 Yang M, Zhang J, Gui W M, et al. Coupling phase field with creep damage to study γ' evolution and creep deformation of single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 71: 129
doi: 10.1016/j.jmst.2020.07.036
22 Chen J, Guo M, Yang M, et al. Double minimum creep processing and mechanism for γ' strengthened cobalt-based superalloy [J]. J. Mater. Sci. Technol., 2022, 112: 123
doi: 10.1016/j.jmst.2021.10.015
23 Chen L Q, Zhao Y H. From classical thermodynamics to phase-field method [J]. Prog. Mater. Sci., 2022, 124: 100868
doi: 10.1016/j.pmatsci.2021.100868
24 Meher S, Nag S, Tiley J, et al. Coarsening kinetics of γ' precipitates in cobalt-base alloys [J]. Acta Mater., 2013, 61: 4266
doi: 10.1016/j.actamat.2013.03.052
25 Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys [J]. Phys. Rev., 1999, 60E: 7186
26 Wang P S, Xiong W, Kattner U R, et al. Thermodynamic re-assessment of the Al-Co-W system [J]. Calphad, 2017, 59: 112
doi: 10.1016/j.calphad.2017.09.007
27 Zhao Y H. Co-precipitated Ni/Mn shell coated nano Cu-rich core structure: A phase-field study [J]. J. Mater. Res. Technol., 2022, 21: 546
doi: 10.1016/j.jmrt.2022.09.032
28 Dinsdale A T. SGTE data for pure elements [J]. Calphad, 1991, 15: 317
doi: 10.1016/0364-5916(91)90030-N
29 Zhou N, Lv D C, Zhang H L, et al. Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation [J]. Acta Mater., 2014, 65: 270
doi: 10.1016/j.actamat.2013.10.069
30 Khachaturyan A G, Semenovskaya S, Tsakalakos T. Elastic strain energy of inhomogeneous solids [J]. Phys. Rev., 1995, 52B: 15909
31 Li D Y, Chen L Q. Shape evolution and splitting of coherent particles under applied stresses [J]. Acta Mater., 1998, 47: 247
doi: 10.1016/S1359-6454(98)00323-1
32 Moon K W, Campbell C E, Williams M E, et al. Diffusion in FCC Co-rich Co-Al-W alloys at 900 and 1000oC [J]. J. Phase Equilib. Diffus., 2016, 37: 402
doi: 10.1007/s11669-016-0486-7
33 Wen Y H, Lill J V, Chen S L, et al. A ternary phase-field model incorporating commercial CALPHAD software and its application to precipitation in superalloys [J]. Acta Mater., 2010, 58: 875
doi: 10.1016/j.actamat.2009.10.002
34 Shinagawa K, Omori T, Sato J, et al. Phase equilibria and microstructure on γ' phase in Co-Ni-Al-W system [J]. Mater. Trans., 2008, 49: 1474
doi: 10.2320/matertrans.MER2008073
35 Vladimirov I N, Reese S, Eggeler G. Constitutive modelling of the anisotropic creep behaviour of nickel-base single crystal superalloys [J]. Int. J. Mech. Sci., 2009, 51: 305
doi: 10.1016/j.ijmecsci.2009.02.004
36 Méric L, Poubanne P, Cailletaud G. Single crystal modeling for structural calculations: part 1—Model presentation [J]. J. Eng. Mater. Technol., 1991, 113: 162
doi: 10.1115/1.2903374
37 Cormier J, Cailletaud G. Constitutive modeling of the creep behavior of single crystal superalloys under non-isothermal conditions inducing phase transformations [J]. Mater. Sci. Eng., 2010, A527: 6300
38 Titus M S, Mottura A, Babu Viswanathan G, et al. High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloys [J]. Acta Mater., 2015, 89: 423
doi: 10.1016/j.actamat.2015.01.050
39 Franciosi P. The concepts of latent hardening and strain hardening in metallic single crystals [J]. Acta Metall., 1985, 33: 1601
doi: 10.1016/0001-6160(85)90154-3
40 Hu S Y, Chen L Q. A phase-field model for evolving microstructures with strong elastic inhomogeneity [J]. Acta Mater., 2001, 49: 1879
doi: 10.1016/S1359-6454(01)00118-5
41 Méric L, Cailletaud G. Single crystal modeling for structural calculations: Part 2—Finite element implementation [J]. J. Eng. Mater. Technol., 1991, 113: 171
doi: 10.1115/1.2903375
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[4] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[5] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[6] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[8] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[9] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[10] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.
[11] 杨志昆, 王浩, 张义文, 胡本芙. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响[J]. 金属学报, 2021, 57(8): 1027-1038.
[12] 张倪侦, 马昕迪, 耿川, 穆永坤, 孙康, 贾延东, 黄波, 王刚. Ag元素添加对Cu-Zr-Al基金属玻璃纳米压痕行为的影响[J]. 金属学报, 2021, 57(4): 567-574.
[13] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[14] 郭倩颖, 李彦默, 陈斌, 丁然, 余黎明, 刘永长. 高温时效处理对S31042耐热钢组织和蠕变性能的影响[J]. 金属学报, 2021, 57(1): 82-94.
[15] 孙正阳, 王昱天, 柳文波. 气孔与晶界相互作用的相场模拟[J]. 金属学报, 2020, 56(12): 1643-1653.