|
|
新型钴基高温合金中W元素对蠕变组织和性能的影响 |
陈佳, 郭敏, 杨敏, 刘林, 张军( ) |
西北工业大学 凝固技术国家重点实验室 西安 710072 |
|
Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys |
CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun( ) |
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
Jia CHEN,
Min GUO,
Min YANG,
Lin LIU,
Jun ZHANG.
Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. Acta Metall Sin, 2023, 59(9): 1209-1220.
1 |
Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys [J]. Science, 2006, 312: 90
pmid: 16601187
|
2 |
Titus M S, Suzuki A, Pollock T M. High Temperature creep of new L12 containing cobalt-base superalloys [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 823
|
3 |
Bauer A, Neumeier S, Pyczak F, et al. Creep properties of different γ'-strengthened Co-base superalloys [J]. Mater. Sci. Eng., 2012, A550: 333
|
4 |
Xue F, Zenk C H, Freund L P, et al. Double minimum creep in the rafting regime of a single-crystal Co-base superalloy [J]. Scr. Mater., 2018, 142: 129
doi: 10.1016/j.scriptamat.2017.08.039
|
5 |
Lu S, Antonov S, Li L F, et al. Two steady-state creep stages in Co-Al-W-base single-crystal superalloys at 1273 K/137 MPa [J]. Metall. Mater. Trans., 2018, 49A: 4079
|
6 |
Tanaka K, Ooshima M, Tsuno N, et al. Creep deformation of single crystals of new Co-Al-W-based alloys with fcc/L12 two-phase microstructures [J]. Philos. Mag., 2012, 92: 4011
doi: 10.1080/14786435.2012.700416
|
7 |
Titus M S, Suzuki A, Pollock T M. Creep and directional coarsening in single crystals of new γ-γ' cobalt-base alloys [J]. Scr. Mater., 2012, 66: 574
doi: 10.1016/j.scriptamat.2012.01.008
|
8 |
Shinagawa K, Omori T, Oikawa K, et al. Ductility enhancement by boron addition in Co-Al-W high-temperature alloys [J]. Scr. Mater., 2009, 61: 612
doi: 10.1016/j.scriptamat.2009.05.037
|
9 |
Pyczak F, Bauer A, Göken M, et al. The effect of tungsten content on the properties of L12-hardened Co-Al-W alloys [J]. J. Alloys Compd., 2015, 632: 110
doi: 10.1016/j.jallcom.2015.01.031
|
10 |
Bocchini P J, Sudbrack C K, Sauza D J, et al. Effect of tungsten concentration on microstructures of Co-10Ni-6Al-(0,2,4,6)W-6Ti(at%) cobalt-based superalloys [J]. Mater. Sci. Eng., 2017, A700: 481
|
11 |
Tourret D, Liu H, Llorca J. Phase-field modeling of microstructure evolution: Recent applications, perspectives and challenges [J]. Prog. Mater. Sci., 2022, 123: 100810
doi: 10.1016/j.pmatsci.2021.100810
|
12 |
Gaubert A, Le Bouar Y, Finel A. Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys [J]. Philos. Mag., 2010, 90: 375
doi: 10.1080/14786430902877802
|
13 |
Cottura M, Le Bouar Y, Finel A, et al. A phase field model incorporating strain gradient viscoplasticity: Application to rafting in Ni-base superalloys [J]. J. Mech. Phys. Solids, 2012, 60: 1243
doi: 10.1016/j.jmps.2012.04.003
|
14 |
Wang C, Ali M A, Gao S W, et al. Combined phase-field crystal plasticity simulation of P- and N-type rafting in Co-based superalloys [J]. Acta Mater., 2019, 175: 21
doi: 10.1016/j.actamat.2019.05.063
|
15 |
Wang D, Li Y S, Shi S J, et al. Phase-field simulation of γ' precipitates rafting and creep property of Co-base superalloys [J]. Mater. Des., 2020, 196: 109077
doi: 10.1016/j.matdes.2020.109077
|
16 |
Yang M, Zhang J, Wei H, et al. Study of γ′ rafting under different stress states—A phase-field simulation considering viscoplasticity [J]. J. Alloys Compd., 2018, 769: 453
doi: 10.1016/j.jallcom.2018.07.317
|
17 |
Ali M A, Amin W, Shchyglo O, et al. 45-degree rafting in Ni-based superalloys: A combined phase-field and strain gradient crystal plasticity study [J]. Int. J. Plast., 2020, 128: 102659
doi: 10.1016/j.ijplas.2020.102659
|
18 |
Zhou N, Shen C, Mills M, et al. Large-scale three-dimensional phase field simulation of γ'-rafting and creep deformation [J]. Philos. Mag., 2010, 90: 405
doi: 10.1080/14786430903081990
|
19 |
Nguyen L, Shi R P, Wang Y Z, et al. Quantification of rafting of γ' precipitates in Ni-based superalloys [J]. Acta Mater., 2016, 103: 322
doi: 10.1016/j.actamat.2015.09.060
|
20 |
Yang M, Zhang J, Wei H, et al. A phase-field model for creep behavior in nickel-base single-crystal superalloy: Coupled with creep damage [J]. Scr. Mater., 2018, 147: 16
doi: 10.1016/j.scriptamat.2017.12.008
|
21 |
Yang M, Zhang J, Gui W M, et al. Coupling phase field with creep damage to study γ' evolution and creep deformation of single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 71: 129
doi: 10.1016/j.jmst.2020.07.036
|
22 |
Chen J, Guo M, Yang M, et al. Double minimum creep processing and mechanism for γ' strengthened cobalt-based superalloy [J]. J. Mater. Sci. Technol., 2022, 112: 123
doi: 10.1016/j.jmst.2021.10.015
|
23 |
Chen L Q, Zhao Y H. From classical thermodynamics to phase-field method [J]. Prog. Mater. Sci., 2022, 124: 100868
doi: 10.1016/j.pmatsci.2021.100868
|
24 |
Meher S, Nag S, Tiley J, et al. Coarsening kinetics of γ' precipitates in cobalt-base alloys [J]. Acta Mater., 2013, 61: 4266
doi: 10.1016/j.actamat.2013.03.052
|
25 |
Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys [J]. Phys. Rev., 1999, 60E: 7186
|
26 |
Wang P S, Xiong W, Kattner U R, et al. Thermodynamic re-assessment of the Al-Co-W system [J]. Calphad, 2017, 59: 112
doi: 10.1016/j.calphad.2017.09.007
|
27 |
Zhao Y H. Co-precipitated Ni/Mn shell coated nano Cu-rich core structure: A phase-field study [J]. J. Mater. Res. Technol., 2022, 21: 546
doi: 10.1016/j.jmrt.2022.09.032
|
28 |
Dinsdale A T. SGTE data for pure elements [J]. Calphad, 1991, 15: 317
doi: 10.1016/0364-5916(91)90030-N
|
29 |
Zhou N, Lv D C, Zhang H L, et al. Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation [J]. Acta Mater., 2014, 65: 270
doi: 10.1016/j.actamat.2013.10.069
|
30 |
Khachaturyan A G, Semenovskaya S, Tsakalakos T. Elastic strain energy of inhomogeneous solids [J]. Phys. Rev., 1995, 52B: 15909
|
31 |
Li D Y, Chen L Q. Shape evolution and splitting of coherent particles under applied stresses [J]. Acta Mater., 1998, 47: 247
doi: 10.1016/S1359-6454(98)00323-1
|
32 |
Moon K W, Campbell C E, Williams M E, et al. Diffusion in FCC Co-rich Co-Al-W alloys at 900 and 1000oC [J]. J. Phase Equilib. Diffus., 2016, 37: 402
doi: 10.1007/s11669-016-0486-7
|
33 |
Wen Y H, Lill J V, Chen S L, et al. A ternary phase-field model incorporating commercial CALPHAD software and its application to precipitation in superalloys [J]. Acta Mater., 2010, 58: 875
doi: 10.1016/j.actamat.2009.10.002
|
34 |
Shinagawa K, Omori T, Sato J, et al. Phase equilibria and microstructure on γ' phase in Co-Ni-Al-W system [J]. Mater. Trans., 2008, 49: 1474
doi: 10.2320/matertrans.MER2008073
|
35 |
Vladimirov I N, Reese S, Eggeler G. Constitutive modelling of the anisotropic creep behaviour of nickel-base single crystal superalloys [J]. Int. J. Mech. Sci., 2009, 51: 305
doi: 10.1016/j.ijmecsci.2009.02.004
|
36 |
Méric L, Poubanne P, Cailletaud G. Single crystal modeling for structural calculations: part 1—Model presentation [J]. J. Eng. Mater. Technol., 1991, 113: 162
doi: 10.1115/1.2903374
|
37 |
Cormier J, Cailletaud G. Constitutive modeling of the creep behavior of single crystal superalloys under non-isothermal conditions inducing phase transformations [J]. Mater. Sci. Eng., 2010, A527: 6300
|
38 |
Titus M S, Mottura A, Babu Viswanathan G, et al. High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloys [J]. Acta Mater., 2015, 89: 423
doi: 10.1016/j.actamat.2015.01.050
|
39 |
Franciosi P. The concepts of latent hardening and strain hardening in metallic single crystals [J]. Acta Metall., 1985, 33: 1601
doi: 10.1016/0001-6160(85)90154-3
|
40 |
Hu S Y, Chen L Q. A phase-field model for evolving microstructures with strong elastic inhomogeneity [J]. Acta Mater., 2001, 49: 1879
doi: 10.1016/S1359-6454(01)00118-5
|
41 |
Méric L, Cailletaud G. Single crystal modeling for structural calculations: Part 2—Finite element implementation [J]. J. Eng. Mater. Technol., 1991, 113: 171
doi: 10.1115/1.2903375
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|